-
1
-
-
80053289254
-
The evolution of antiplatelet therapy in cardiovascular disease
-
Yousuf O, Bhatt DL. The evolution of antiplatelet therapy in cardiovascular disease. Nat Rev Cardiol. 2011;8:547–59
-
(2011)
Nat Rev Cardiol
, vol.8
, pp. 547-559
-
-
Yousuf, O.1
Bhatt, D.L.2
-
2
-
-
79961016308
-
Platelets, inflammation and tissue regeneration
-
Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost. 2011;105 (Suppl 1):S13–33
-
(2011)
Thromb Haemost
, vol.105
-
-
Nurden, A.T.1
-
4
-
-
79251478398
-
Contribution of platelets to tumour metastasis
-
Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11:123–34
-
(2011)
Nat Rev Cancer
, vol.11
, pp. 123-134
-
-
Gay, L.J.1
Felding-Habermann, B.2
-
5
-
-
0030926006
-
A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development
-
Shivdasani RA, Fujiwara Y, McDevitt MA, Orkin SH. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J. 1997;16:3965–73
-
(1997)
EMBO J
, vol.16
, pp. 3965-3973
-
-
Shivdasani, R.A.1
Fujiwara, Y.2
McDevitt, M.A.3
Orkin, S.H.4
-
6
-
-
0027472732
-
GATA and Ets cis-acting sequences mediate megakaryocyte-specific expression
-
Lemarchandel V, Ghysdael J, Mignotte V, Rahuel C, Romeo PH. GATA and Ets cis-acting sequences mediate megakaryocyte-specific expression. Mol Cell Biol. 1993;13:668–76
-
(1993)
Mol Cell Biol
, vol.13
, pp. 668-676
-
-
Lemarchandel, V.1
Ghysdael, J.2
Mignotte, V.3
Rahuel, C.4
Romeo, P.H.5
-
7
-
-
0033561432
-
Regulation of the megakaryocytic glycoprotein IX promoter by the oncogenic Ets transcription factor Fli-1
-
Bastian LS, Kwiatkowski BA, Breininger J, Danner S, Roth G. Regulation of the megakaryocytic glycoprotein IX promoter by the oncogenic Ets transcription factor Fli-1. Blood. 1999;93:2637–44
-
(1999)
Blood
, vol.93
, pp. 2637-2644
-
-
Bastian, L.S.1
Kwiatkowski, B.A.2
Breininger, J.3
Danner, S.4
Roth, G.5
-
8
-
-
0036792638
-
Characterization of human glycoprotein VI gene 5 ¢ regulatory and promoter regions
-
Furihata K, Kunicki TJ. Characterization of human glycoprotein VI gene 5 ¢ regulatory and promoter regions. Arterioscler Thromb Vasc Biol. 2002;22:1733–9
-
(2002)
Arterioscler Thromb Vasc Biol
, vol.22
, pp. 1733-1739
-
-
Furihata, K.1
Kunicki, T.J.2
-
9
-
-
0034664988
-
Biogenesis of endoplasmic reticulum proteins involved in Ca2+ signalling during megakaryocytic differentiation: An in vitro study
-
Lacabaratz-Porret C, et al. Biogenesis of endoplasmic reticulum proteins involved in Ca2+ signalling during megakaryocytic differentiation: an in vitro study. Biochem J. 2000;350(Pt 3):723–34
-
(2000)
Biochem J
, vol.350
, pp. 723-734
-
-
Lacabaratz-Porret, C.1
-
10
-
-
23044499360
-
Differential requirements for the activation domain and FOGinteraction surface of GATA-1 in megakaryocyte gene expression and development
-
Muntean AG, Crispino JD. Differential requirements for the activation domain and FOGinteraction surface of GATA-1 in megakaryocyte gene expression and development. Blood. 2005;106:1223–31
-
(2005)
Blood
, vol.106
, pp. 1223-1231
-
-
Muntean, A.G.1
Crispino, J.D.2
-
11
-
-
0027243681
-
Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein
-
Andrews NC, Erdjument-Bromage H, Davidson MB, Tempst P, Orkin SH. Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature. 1993;362:722–8
-
(1993)
Nature
, vol.362
, pp. 722-728
-
-
Andrews, N.C.1
Erdjument-Bromage, H.2
Davidson, M.B.3
Tempst, P.4
Orkin, S.H.5
-
12
-
-
0030795526
-
Multiple regions of p45 NF-E2 are required for beta-globin gene expression in erythroid cells
-
Bean TL, Ney PA. Multiple regions of p45 NF-E2 are required for beta-globin gene expression in erythroid cells. Nucleic Acids Res. 1997;25:2509–15
-
(1997)
Nucleic Acids Res
, vol.25
, pp. 2509-2515
-
-
Bean, T.L.1
Ney, P.A.2
-
13
-
-
0029051295
-
Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development
-
Shivdasani RA, et al. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell. 1995;81: 695–704
-
(1995)
Cell
, vol.81
, pp. 695-704
-
-
Shivdasani, R.A.1
-
14
-
-
0034663319
-
Hematopoietic-specific beta 1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF-E2
-
Lecine P, Italiano JE Jr, Kim SW, Villeval JL, Shivdasani RA. Hematopoietic-specific beta 1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF-E2. Blood. 2000;96:1366–73
-
(2000)
Blood
, vol.96
, pp. 1366-1373
-
-
Lecine, P.1
Italiano, J.E.2
Kim, S.W.3
Villeval, J.L.4
Shivdasani, R.A.5
-
15
-
-
0030865547
-
P45 NF-E2 regulates expression of thromboxane synthase in megakaryocytes
-
Deveaux S, et al. p45 NF-E2 regulates expression of thromboxane synthase in megakaryocytes. EMBO J. 1997;16:5654–61
-
(1997)
EMBO J
, vol.16
, pp. 5654-5661
-
-
Deveaux, S.1
-
16
-
-
85047689917
-
FLI-1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia
-
Raslova H, et al. FLI-1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia. J Clin Invest. 2004;114:77–84
-
(2004)
J Clin Invest
, vol.114
, pp. 77-84
-
-
Raslova, H.1
-
17
-
-
77957856698
-
Thrombocytopenia in mice lacking the carboxy-terminal regulatory domain of the Ets transcription factor Fli1
-
Moussa O, et al. Thrombocytopenia in mice lacking the carboxy-terminal regulatory domain of the Ets transcription factor Fli1. Mol Cell Biol. 2012;30:5194–206
-
(2012)
Mol Cell Biol
, vol.30
, pp. 5194-5206
-
-
Moussa, O.1
-
18
-
-
69549138554
-
Dual requirement for the ETS transcription factors Fli-1 and Erg in hematopoietic stem cells and the megakaryocyte lineage
-
Kruse EA, et al. Dual requirement for the ETS transcription factors Fli-1 and Erg in hematopoietic stem cells and the megakaryocyte lineage. Proc Natl Acad Sci U S A. 2009;106:13814–9
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 13814-13819
-
-
Kruse, E.A.1
-
19
-
-
64549100747
-
Cell cycle and developmental control of hematopoiesis by Runx1
-
Friedman AD. Cell cycle and developmental control of hematopoiesis by Runx1. J Cell Physiol. 2009;219:520–4
-
(2009)
J Cell Physiol
, vol.219
, pp. 520-524
-
-
Friedman, A.D.1
-
20
-
-
0035895630
-
Regulation of MyoD function in the dividing myoblast
-
Wei Q, Paterson BM. Regulation of MyoD function in the dividing myoblast. FEBS Lett. 2001;490:171–8
-
(2001)
FEBS Lett
, vol.490
, pp. 171-178
-
-
Wei, Q.1
Paterson, B.M.2
-
21
-
-
0037209029
-
Molecular cloning and characterization of the GATA1 cofactor human FOG1 and assessment of its binding to GATA1 proteins carrying D218 substitutions
-
Freson K, et al. Molecular cloning and characterization of the GATA1 cofactor human FOG1 and assessment of its binding to GATA1 proteins carrying D218 substitutions. Hum Genet. 2003;112:42–9
-
(2003)
Hum Genet
, vol.112
, pp. 42-49
-
-
Freson, K.1
-
22
-
-
0034602148
-
GATA-1- and FOG-dependent activation of megakaryocytic alpha IIB gene expression
-
Gaines P, Geiger JN, Knudsen G, Seshasayee D, Wojchowski DM. GATA-1- and FOG-dependent activation of megakaryocytic alpha IIB gene expression. J Biol Chem. 2000;275:34114–21
-
(2000)
J Biol Chem
, vol.275
, pp. 34114-34121
-
-
Gaines, P.1
Geiger, J.N.2
Knudsen, G.3
Seshasayee, D.4
Wojchowski, D.M.5
-
23
-
-
0035412362
-
Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation
-
Freson K, et al. Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood. 2001;98:85–92
-
(2001)
Blood
, vol.98
, pp. 85-92
-
-
Freson, K.1
-
24
-
-
83055179245
-
Pleiotropic platelet defects in mice with disrupted FOG1-NuRD interaction
-
Wang Y, et al. Pleiotropic platelet defects in mice with disrupted FOG1-NuRD interaction. Blood. 2011;118:6183–91
-
(2011)
Blood
, vol.118
, pp. 6183-6191
-
-
Wang, Y.1
-
26
-
-
41149130219
-
Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder
-
O’Connell RM, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med. 2008;205:585–94
-
(2008)
J Exp Med
, vol.205
, pp. 585-594
-
-
O’connell, R.M.1
-
27
-
-
44449108570
-
MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors
-
Lu J, et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell. 2008;14:843–53
-
(2008)
Dev Cell
, vol.14
, pp. 843-853
-
-
Lu, J.1
-
28
-
-
0043239343
-
Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb
-
Emambokus N, et al. Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J. 2003;22:4478–88
-
(2003)
EMBO J
, vol.22
, pp. 4478-4488
-
-
Emambokus, N.1
-
29
-
-
70349256065
-
MiR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53
-
Navarro F, et al. miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53. Blood. 2009;114:2181–92
-
(2009)
Blood
, vol.114
, pp. 2181-2192
-
-
Navarro, F.1
-
30
-
-
58549104795
-
A regulatory interplay between miR-27a and Runx1 during megakaryopoiesis
-
Ben-Ami O, Pencovich N, Lotem J, Levanon D, Groner Y. A regulatory interplay between miR-27a and Runx1 during megakaryopoiesis. Proc Natl Acad Sci U S A. 2009;106:238–43
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 238-243
-
-
Ben-Ami, O.1
Pencovich, N.2
Lotem, J.3
Levanon, D.4
Groner, Y.5
-
31
-
-
43049102041
-
Gene Ontology-driven transcriptional analysis of CD34+ cell-initiated megakaryocytic cultures identifies new transcriptional regulators of megakaryopoiesis
-
Fuhrken PG, et al. Gene Ontology-driven transcriptional analysis of CD34+ cell-initiated megakaryocytic cultures identifies new transcriptional regulators of megakaryopoiesis. Physiol Genomics. 2008;33:159–69
-
(2008)
Physiol Genomics
, vol.33
, pp. 159-169
-
-
Fuhrken, P.G.1
-
32
-
-
78649441087
-
A requirement for Lim domain binding protein 1 in erythropoiesis
-
Li L, et al. A requirement for Lim domain binding protein 1 in erythropoiesis. J Exp Med. 2010;207:2543–50
-
(2010)
J Exp Med
, vol.207
, pp. 2543-2550
-
-
Li, L.1
-
33
-
-
80051505603
-
Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network
-
Krumsiek J, Marr C, Schroeder T, Theis FJ. Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network. PLoS ONE. 2011;6:e22649
-
(2011)
Plos ONE
, vol.6
-
-
Krumsiek, J.1
Marr, C.2
Schroeder, T.3
Theis, F.J.4
-
34
-
-
33645525964
-
MicroRNA fingerprints during human megakaryocytopoiesis
-
Garzon R, et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc NatlAcad Sci U S A. 2006;103:5078–83
-
(2006)
Proc Natlacad Sci U S A
, vol.103
, pp. 5078-5083
-
-
Garzon, R.1
-
35
-
-
78649729095
-
MicroRNA expression in maturing murine megakaryocytes
-
Opalinska JB, et al. MicroRNA expression in maturing murine megakaryocytes. Blood. 2010;116:e128–38
-
(2010)
Blood
, vol.116
-
-
Opalinska, J.B.1
-
36
-
-
77953648970
-
MicroRNA expression profiling of megakaryocytes in primary myelofibrosis and essential thrombocythemia
-
Hussein K, et al. MicroRNA expression profiling of megakaryocytes in primary myelofibrosis and essential thrombocythemia. Platelets. 2009;20:391–400
-
(2009)
Platelets
, vol.20
, pp. 391-400
-
-
Hussein, K.1
-
37
-
-
77955895735
-
MiR-28 is a thrombopoietin receptor targeting microRNA detected in a fraction of myeloproliferative neoplasm patient platelets
-
Girardot M, et al. miR-28 is a thrombopoietin receptor targeting microRNA detected in a fraction of myeloproliferative neoplasm patient platelets. Blood. 2010;116:437–45
-
(2010)
Blood
, vol.116
, pp. 437-445
-
-
Girardot, M.1
-
38
-
-
59649116172
-
Regulation of the human thromboxane A2 receptor gene by Sp1, Egr1, NF-E2, GATA-1, and Ets-1 in megakaryocytes
-
Gannon AM, Kinsella BT. Regulation of the human thromboxane A2 receptor gene by Sp1, Egr1, NF-E2, GATA-1, and Ets-1 in megakaryocytes. J Lipid Res. 2008;49:2590–604
-
(2008)
J Lipid Res
, vol.49
, pp. 2590-2604
-
-
Gannon, A.M.1
Kinsella, B.T.2
-
39
-
-
0038642045
-
Protein-protein interaction between Fli-1 andGATA-1 mediates synergistic expression ofmegakaryocyte-specific genes through cooperativeDNAbinding
-
Eisbacher M, et al. Protein-protein interaction between Fli-1 andGATA-1 mediates synergistic expression ofmegakaryocyte-specific genes through cooperativeDNAbinding. Mol Cell Biol. 2003;23:3427–41
-
(2003)
Mol Cell Biol
, vol.23
, pp. 3427-3441
-
-
Eisbacher, M.1
-
40
-
-
25444476461
-
Transcriptional profiling of human hematopoiesis during in vitro lineagespecific differentiation
-
Komor M, et al. Transcriptional profiling of human hematopoiesis during in vitro lineagespecific differentiation. Stem Cells. 2005;23:1154–69
-
(2005)
Stem Cells
, vol.23
, pp. 1154-1169
-
-
Komor, M.1
-
41
-
-
38349119453
-
A systems-biology analysis of isogenic megakaryocytic and granulocytic cultures identifies new molecular components of megakaryocytic apoptosis
-
Chen C, et al. A systems-biology analysis of isogenic megakaryocytic and granulocytic cultures identifies new molecular components of megakaryocytic apoptosis. BMC Genomics. 2007;8:384
-
(2007)
BMC Genomics
, vol.8
-
-
Chen, C.1
-
42
-
-
79955883317
-
Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in megakaryocytes identifies hematopoietic regulators
-
Tijssen MR, et al. Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in megakaryocytes identifies hematopoietic regulators. Dev Cell. 2011;20:597–609
-
(2011)
Dev Cell
, vol.20
, pp. 597-609
-
-
Tijssen, M.R.1
-
43
-
-
79959837835
-
Maps of open chromatin guide the functional follow-up of genome-wide association signals: Application to hematological traits
-
Paul DS, et al. Maps of open chromatin guide the functional follow-up of genome-wide association signals: application to hematological traits. PLoS Genet. 2011;7:e1002139
-
(2011)
Plos Genet
, vol.7
-
-
Paul, D.S.1
-
44
-
-
0034610340
-
Inositol polyphosphate 4-phosphatase type I regulates cell growth downstream of transcription factor GATA-1
-
Vyas P, Norris FA, Joseph R, Majerus PW, Orkin SH. Inositol polyphosphate 4-phosphatase type I regulates cell growth downstream of transcription factor GATA-1. Proc Natl Acad Sci U S A. 2000;97:13696–701
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 13696-13701
-
-
Vyas, P.1
Norris, F.A.2
Joseph, R.3
Majerus, P.W.4
Orkin, S.H.5
-
45
-
-
0030825407
-
Chemokines
-
Rollins BJ. Chemokines. Blood. 1997;90:909–28
-
(1997)
Blood
, vol.90
, pp. 909-928
-
-
Rollins, B.J.1
-
46
-
-
0029758113
-
Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1
-
Nagasawa T, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 1996;382:635–8
-
(1996)
Nature
, vol.382
, pp. 635-638
-
-
Nagasawa, T.1
-
47
-
-
0032482926
-
Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice
-
Ma Q, et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc NatlAcad SciUSA. 1998;95:9448–53
-
(1998)
Proc Natlacad Sciusa
, vol.95
, pp. 9448-9453
-
-
Ma, Q.1
-
48
-
-
0032147012
-
The alpha-chemokine receptor CXCR4 is expressed on the megakaryocytic lineage from progenitor to platelets and modulates migration and adhesion
-
Wang JF, Liu ZY, Groopman JE. The alpha-chemokine receptor CXCR4 is expressed on the megakaryocytic lineage from progenitor to platelets and modulates migration and adhesion. Blood. 1998;92:756–64
-
(1998)
Blood
, vol.92
, pp. 756-764
-
-
Wang, J.F.1
Liu, Z.Y.2
Groopman, J.E.3
-
49
-
-
0032479867
-
Transendothelial migration of megakaryocytes in response to stromal cellderived factor 1 (SDF-1) enhances platelet formation
-
Hamada T, et al. Transendothelial migration of megakaryocytes in response to stromal cellderived factor 1 (SDF-1) enhances platelet formation. J Exp Med. 1998;188:539–48
-
(1998)
J Exp Med
, vol.188
, pp. 539-548
-
-
Hamada, T.1
-
50
-
-
0034142019
-
Stromal cell-derived factor-1 (SDF-1) acts together with thrombopoietin to enhance the development of megakaryocytic progenitor cells (CFU-MK)
-
Hodohara K, Fujii N, Yamamoto N, Kaushansky K. Stromal cell-derived factor-1 (SDF-1) acts together with thrombopoietin to enhance the development of megakaryocytic progenitor cells (CFU-MK). Blood. 2000;95:769–75
-
(2000)
Blood
, vol.95
, pp. 769-775
-
-
Hodohara, K.1
Fujii, N.2
Yamamoto, N.3
Kaushansky, K.4
-
51
-
-
11144356721
-
Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis
-
Avecilla ST, et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med. 2004;10:64–71
-
(2004)
Nat Med
, vol.10
, pp. 64-71
-
-
Avecilla, S.T.1
-
52
-
-
80455174620
-
Orientation-specific signalling by thrombopoietin receptor dimers
-
Staerk J, et al. Orientation-specific signalling by thrombopoietin receptor dimers. EMBO J. 2011;30:4398–413
-
(2011)
EMBO J
, vol.30
, pp. 4398-4413
-
-
Staerk, J.1
-
53
-
-
0035525771
-
Interleukin-6 stimulates thrombopoiesis through thrombopoietin: Role in inflammatory thrombocytosis
-
Kaser A, et al. Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytosis. Blood. 2001;98:2720–25
-
(2001)
Blood
, vol.98
, pp. 2720-2725
-
-
Kaser, A.1
-
54
-
-
82755161998
-
Expression and functionality of type I interferon receptor in the megakaryocytic lineage
-
Negrotto S, et al. Expression and functionality of type I interferon receptor in the megakaryocytic lineage. J Thromb Haemost. 2011;9:2477–85
-
(2011)
J Thromb Haemost
, vol.9
, pp. 2477-2485
-
-
Negrotto, S.1
-
55
-
-
36849016548
-
STAT1 promotes megakaryopoiesis downstream of GATA-1 in mice
-
Huang Z, et al. STAT1 promotes megakaryopoiesis downstream of GATA-1 in mice. J Clin Invest. 2007;117:3890–9
-
(2007)
J Clin Invest
, vol.117
, pp. 3890-3899
-
-
Huang, Z.1
-
56
-
-
38949096839
-
Congenital disorders associated with platelet dysfunctions
-
Nurden P, Nurden AT. Congenital disorders associated with platelet dysfunctions. Thromb Haemost. 2008;99:253–63
-
(2008)
Thromb Haemost
, vol.99
, pp. 253-263
-
-
Nurden, P.1
Nurden, A.T.2
-
57
-
-
12344294485
-
Engagement of integrin alpha4beta1 enhances thrombopoietininduced megakaryopoiesis
-
Fox NE, Kaushansky K. Engagement of integrin alpha4beta1 enhances thrombopoietininduced megakaryopoiesis. Exp Hematol. 2005;33:94–9
-
(2005)
Exp Hematol
, vol.33
, pp. 94-99
-
-
Fox, N.E.1
Kaushansky, K.2
-
58
-
-
33748189345
-
Regulation of proplatelet formation and platelet release by integrin alpha IIb beta3
-
Larson MK, Watson SP. Regulation of proplatelet formation and platelet release by integrin alpha IIb beta3. Blood. 2006;108:1509–14
-
(2006)
Blood
, vol.108
, pp. 1509-1514
-
-
Larson, M.K.1
Watson, S.P.2
-
60
-
-
79959261897
-
Collagen stimulation of platelets induces a rapid spatial response of cAMP and cGMP signaling scaffolds
-
Margarucci L, et al. Collagen stimulation of platelets induces a rapid spatial response of cAMP and cGMP signaling scaffolds. Mol Biosyst. 2011;7:2311–9
-
(2011)
Mol Biosyst
, vol.7
, pp. 2311-2319
-
-
Margarucci, L.1
-
62
-
-
79960567744
-
Gene targeting implicates Cdc42 GTPase in GPVI and non-GPVI mediated platelet filopodia formation, secretion and aggregation
-
Akbar H, et al. Gene targeting implicates Cdc42 GTPase in GPVI and non-GPVI mediated platelet filopodia formation, secretion and aggregation. PLoS ONE. 2011;6:e22117
-
(2011)
Plos ONE
, vol.6
-
-
Akbar, H.1
-
63
-
-
34147140066
-
Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins
-
Macaulay IC, et al. Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins. Blood. 2007;109:3260–9
-
(2007)
Blood
, vol.109
, pp. 3260-3269
-
-
Macaulay, I.C.1
-
64
-
-
34147183885
-
A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel immunoreceptor tyrosine-based inhibitory motif protein
-
Senis YA, et al. A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel immunoreceptor tyrosine-based inhibitory motif protein. Mol Cell Proteomics. 2007;6:548–64
-
(2007)
Mol Cell Proteomics
, vol.6
, pp. 548-564
-
-
Senis, Y.A.1
-
65
-
-
58149086489
-
G6b-B inhibits constitutive and agonist-induced signaling by glycoprotein VI and CLEC-2
-
Mori J, et al. G6b-B inhibits constitutive and agonist-induced signaling by glycoprotein VI and CLEC-2. J Biol Chem. 2008;283:35419–27
-
(2008)
J Biol Chem
, vol.283
, pp. 35419-35427
-
-
Mori, J.1
-
66
-
-
33646756601
-
Transcriptional regulation of megakaryopoiesis: Thrombopoietin signaling and nuclear factors
-
Kirito K, Kaushansky K. Transcriptional regulation of megakaryopoiesis: thrombopoietin signaling and nuclear factors. Curr Opin Hematol. 2006;13:151–6
-
(2006)
Curr Opin Hematol
, vol.13
, pp. 151-156
-
-
Kirito, K.1
Kaushansky, K.2
-
67
-
-
0036566621
-
A functional role of Stat3 in in vivo megakaryopoiesis
-
Kirito K, et al. A functional role of Stat3 in in vivo megakaryopoiesis. Blood. 2002;99: 3220–27
-
(2002)
Blood
, vol.99
, pp. 3220-3227
-
-
Kirito, K.1
-
68
-
-
0029794641
-
Erythropoietin can promote erythroid progenitor survival by repressing apoptosis through Bcl-XL and Bcl-2
-
Silva M, et al. Erythropoietin can promote erythroid progenitor survival by repressing apoptosis through Bcl-XL and Bcl-2. Blood. 1996;88:1576–82
-
(1996)
Blood
, vol.88
, pp. 1576-1582
-
-
Silva, M.1
-
69
-
-
0033566712
-
Thrombopoietin-induced activation of the mitogen-activated protein kinase (MAPK) pathway in normal megakaryocytes: Role in endomitosis
-
Rojnuckarin P, Drachman JG, Kaushansky K. Thrombopoietin-induced activation of the mitogen-activated protein kinase (MAPK) pathway in normal megakaryocytes: role in endomitosis. Blood. 1999;94:1273–82
-
(1999)
Blood
, vol.94
, pp. 1273-1282
-
-
Rojnuckarin, P.1
Drachman, J.G.2
Kaushansky, K.3
-
70
-
-
33645743257
-
Thrombopoietin regulates IEX-1 gene expression through ERK-induced AML1 phosphorylation
-
Hamelin V, Letourneux C, Romeo PH, Porteu F, Gaudry M. Thrombopoietin regulates IEX-1 gene expression through ERK-induced AML1 phosphorylation. Blood. 2006;107:3106–13
-
(2006)
Blood
, vol.107
, pp. 3106-3113
-
-
Hamelin, V.1
Letourneux, C.2
Romeo, P.H.3
Porteu, F.4
Gaudry, M.5
-
71
-
-
0035860718
-
Phosphatidylinositol 3-kinase is necessary but not sufficient for thrombopoietin-induced proliferation in engineered Mpl-bearing cell lines as well as in primary megakaryocytic progenitors
-
Geddis AE, Fox NE, Kaushansky K. Phosphatidylinositol 3-kinase is necessary but not sufficient for thrombopoietin-induced proliferation in engineered Mpl-bearing cell lines as well as in primary megakaryocytic progenitors. J Biol Chem. 2001;276:34473–9
-
(2001)
J Biol Chem
, vol.276
, pp. 34473-34479
-
-
Geddis, A.E.1
Fox, N.E.2
Kaushansky, K.3
-
72
-
-
40549087266
-
PI3K/Akt/FOXO3a pathway contributes to thrombopoietin-induced proliferation of primary megakaryocytes in vitro and in vivo via modulation of p27(Kip1)
-
Nakao T, Geddis AE, Fox NE, Kaushansky K. PI3K/Akt/FOXO3a pathway contributes to thrombopoietin-induced proliferation of primary megakaryocytes in vitro and in vivo via modulation of p27(Kip1). Cell Cycle. 2008;7:257–66
-
(2008)
Cell Cycle
, vol.7
, pp. 257-266
-
-
Nakao, T.1
Geddis, A.E.2
Fox, N.E.3
Kaushansky, K.4
-
73
-
-
4544277651
-
Lnk inhibits Tpo-mpl signaling and Tpo-mediated megakaryocytopoiesis
-
Tong W, Lodish HF. Lnk inhibits Tpo-mpl signaling and Tpo-mediated megakaryocytopoiesis. J Exp Med. 2004;200:569–80
-
(2004)
J Exp Med
, vol.200
, pp. 569-580
-
-
Tong, W.1
Lodish, H.F.2
-
74
-
-
52449135483
-
Growth and maturation of megakaryocytes is regulated by Lnk/Sh2b3 adaptor protein through crosstalk between cytokine- and integrin-mediated signals
-
Takizawa H, et al. Growth and maturation of megakaryocytes is regulated by Lnk/Sh2b3 adaptor protein through crosstalk between cytokine- and integrin-mediated signals. Exp Hematol. 2008;36:897–906
-
(2008)
Exp Hematol
, vol.36
, pp. 897-906
-
-
Takizawa, H.1
-
75
-
-
84856068314
-
Calcium- and integrin-binding protein 1 regulates megakaryocyte ploidy, adhesion, and migration
-
Kostyak JC, Naik MU, Naik UP. Calcium- and integrin-binding protein 1 regulates megakaryocyte ploidy, adhesion, and migration. Blood. 2012;119:838–46
-
(2012)
Blood
, vol.119
, pp. 838-846
-
-
Kostyak, J.C.1
Naik, M.U.2
Naik, U.P.3
-
76
-
-
79953725710
-
Deciphering the molecular and biologic processes that mediate histone deacetylase inhibitor-induced thrombocytopenia
-
Bishton MJ, et al. Deciphering the molecular and biologic processes that mediate histone deacetylase inhibitor-induced thrombocytopenia. Blood. 2011;117:3658–68
-
(2011)
Blood
, vol.117
, pp. 3658-3668
-
-
Bishton, M.J.1
-
77
-
-
0347093460
-
Inhibitors of cytokine signal transduction
-
Wormald S, Hilton DJ. Inhibitors of cytokine signal transduction. J Biol Chem. 2004;279: 821–4
-
(2004)
J Biol Chem
, vol.279
, pp. 821-824
-
-
Wormald, S.1
Hilton, D.J.2
-
78
-
-
0034665904
-
Interferon-alpha directly represses megakaryopoiesis by inhibiting thrombopoietin-induced signaling through induction of SOCS-1
-
Wang Q, Miyakawa Y, Fox N, Kaushansky K. Interferon-alpha directly represses megakaryopoiesis by inhibiting thrombopoietin-induced signaling through induction of SOCS-1. Blood. 2000;96:2093–9
-
(2000)
Blood
, vol.96
, pp. 2093-2099
-
-
Wang, Q.1
Miyakawa, Y.2
Fox, N.3
Kaushansky, K.4
-
80
-
-
38349102225
-
Roles of focal adhesion kinase (FAK) in megakaryopoiesis and platelet function: Studies using a megakaryocyte lineage specific FAK knockout
-
Hitchcock IS, et al. Roles of focal adhesion kinase (FAK) in megakaryopoiesis and platelet function: studies using a megakaryocyte lineage specific FAK knockout. Blood. 2008;111:596–604
-
(2008)
Blood
, vol.111
, pp. 596-604
-
-
Hitchcock, I.S.1
-
81
-
-
55249126914
-
YRRL motifs in the cytoplasmic domain of the thrombopoietin receptor regulate receptor internalization and degradation
-
Hitchcock IS, Chen MM, King JR, Kaushansky K. YRRL motifs in the cytoplasmic domain of the thrombopoietin receptor regulate receptor internalization and degradation. Blood. 2008;112:2222–31
-
(2008)
Blood
, vol.112
, pp. 2222-2231
-
-
Hitchcock, I.S.1
Chen, M.M.2
King, J.R.3
Kaushansky, K.4
-
82
-
-
0037123766
-
Molecular architecture and functional model of the endocytic AP2 complex
-
Collins BM, McCoy AJ, Kent HM, Evans PR, Owen DJ. Molecular architecture and functional model of the endocytic AP2 complex. Cell. 2002;109:523–35
-
(2002)
Cell
, vol.109
, pp. 523-535
-
-
Collins, B.M.1
McCoy, A.J.2
Kent, H.M.3
Evans, P.R.4
Owen, D.J.5
-
83
-
-
0030900247
-
Dissecting the thrombopoietin receptor: Functional elements of the Mpl cytoplasmic domain
-
Drachman JG, Kaushansky K. Dissecting the thrombopoietin receptor: functional elements of the Mpl cytoplasmic domain. Proc Natl Acad Sci U S A. 1997;94:2350–5
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 2350-2355
-
-
Drachman, J.G.1
Kaushansky, K.2
-
84
-
-
0033957407
-
Role of the distal half of the c-Mpl intracellular domain in control of platelet production by thrombopoietin in vivo
-
Luoh SM, et al. Role of the distal half of the c-Mpl intracellular domain in control of platelet production by thrombopoietin in vivo. Mol Cell Biol. 2000;20:507–15
-
(2000)
Mol Cell Biol
, vol.20
, pp. 507-515
-
-
Luoh, S.M.1
-
86
-
-
19344362958
-
On the molecular origins of the chronic myeloproliferative disorders: It all makes sense
-
Kaushansky K. On the molecular origins of the chronic myeloproliferative disorders: it all makes sense. Blood. 2005;105:4187–90
-
(2005)
Blood
, vol.105
, pp. 4187-4190
-
-
Kaushansky, K.1
-
87
-
-
55549099206
-
Expression profiling of apoptosis-related genes in megakaryocytes: BNIP3 is downregulated in primary myelofibrosis
-
Theophile K, Hussein K, Kreipe H, Bock O. Expression profiling of apoptosis-related genes in megakaryocytes: BNIP3 is downregulated in primary myelofibrosis. Exp Hematol. 2008;36:1728–38
-
(2008)
Exp Hematol
, vol.36
, pp. 1728-1738
-
-
Theophile, K.1
Hussein, K.2
Kreipe, H.3
Bock, O.4
-
88
-
-
78249256979
-
Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling
-
Chen E, et al. Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling. Cancer Cell. 2010;18:524–35
-
(2010)
Cancer Cell
, vol.18
, pp. 524-535
-
-
Chen, E.1
-
89
-
-
54049102271
-
Downregulation of signal transducer and activator of transcription 5 (STAT5) in CD34+ cells promotes megakaryocytic development, whereas activation of STAT5 drives erythropoiesis
-
Olthof SG, et al. Downregulation of signal transducer and activator of transcription 5 (STAT5) in CD34+ cells promotes megakaryocytic development, whereas activation of STAT5 drives erythropoiesis. Stem Cells. 2008;26:1732–42
-
(2008)
Stem Cells
, vol.26
, pp. 1732-1742
-
-
Olthof, S.G.1
-
90
-
-
79955423696
-
In silico protein interaction analysis using the global proteome machine database
-
Zhang CC, et al. In silico protein interaction analysis using the global proteome machine database. J Proteome Res. 2011;10:656–68
-
(2011)
J Proteome Res
, vol.10
, pp. 656-668
-
-
Zhang, C.C.1
-
91
-
-
83055161438
-
New gene functions in megakaryopoiesis and platelet formation
-
Gieger C, et al. New gene functions in megakaryopoiesis and platelet formation. Nature. 2011;480:201–8
-
(2011)
Nature
, vol.480
, pp. 201-208
-
-
Gieger, C.1
-
92
-
-
0032830638
-
Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia
-
Song WJ, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 1999;23:166–75
-
(1999)
Nat Genet
, vol.23
, pp. 166-175
-
-
Song, W.J.1
-
93
-
-
2342451948
-
AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis
-
Ichikawa M, et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med. 2004;10:299–304
-
(2004)
Nat Med
, vol.10
, pp. 299-304
-
-
Ichikawa, M.1
-
94
-
-
43249121384
-
P19INK4D links endomitotic arrest and megakaryocyte maturation and is regulated by AML-1
-
Gilles L, et al. P19INK4D links endomitotic arrest and megakaryocyte maturation and is regulated by AML-1. Blood. 2008;111:4081–91
-
(2008)
Blood
, vol.111
, pp. 4081-4091
-
-
Gilles, L.1
-
95
-
-
0030014681
-
The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells
-
Sitnicka E, et al. The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood. 1996;87:4998–5005
-
(1996)
Blood
, vol.87
, pp. 4998-5005
-
-
Sitnicka, E.1
-
96
-
-
0032857035
-
Enhanced in vivo regenerative potential of HOXB4-transduced hematopoietic stem cells with regulation of their pool size
-
Thorsteinsdottir U, Sauvageau G, Humphries RK. Enhanced in vivo regenerative potential of HOXB4-transduced hematopoietic stem cells with regulation of their pool size. Blood. 1999;94:2605–12
-
(1999)
Blood
, vol.94
, pp. 2605-2612
-
-
Thorsteinsdottir, U.1
Sauvageau, G.2
Humphries, R.K.3
-
97
-
-
0142214646
-
Thrombopoietin stimulates Hoxb4 expression: An explanation for the favorable effects of TPO on hematopoietic stem cells
-
Kirito K, Fox N, Kaushansky K. Thrombopoietin stimulates Hoxb4 expression: an explanation for the favorable effects of TPO on hematopoietic stem cells. Blood. 2003;102:3172–8
-
(2003)
Blood
, vol.102
, pp. 3172-3178
-
-
Kirito, K.1
Fox, N.2
Kaushansky, K.3
-
98
-
-
0036090290
-
Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion
-
Thorsteinsdottir U, et al. Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood. 2002;99:121–9
-
(2002)
Blood
, vol.99
, pp. 121-129
-
-
Thorsteinsdottir, U.1
-
99
-
-
3242665129
-
Thrombopoietin induces HOXA9 nuclear transport in immature hematopoietic cells: Potential mechanism by which the hormone favorably affects hematopoietic stem cells
-
Kirito K, Fox N, Kaushansky K. Thrombopoietin induces HOXA9 nuclear transport in immature hematopoietic cells: potential mechanism by which the hormone favorably affects hematopoietic stem cells. Mol Cell Biol. 2004;24:6751–62
-
(2004)
Mol Cell Biol
, vol.24
, pp. 6751-6762
-
-
Kirito, K.1
Fox, N.2
Kaushansky, K.3
-
100
-
-
0037182861
-
VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism
-
Gerber HP, et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature. 2002;417:954–8
-
(2002)
Nature
, vol.417
, pp. 954-958
-
-
Gerber, H.P.1
-
101
-
-
29244469967
-
Thrombopoietin stimulates vascular endothelial cell growth factor (VEGF) production in hematopoietic stem cells
-
Kirito K, Kaushansky K. Thrombopoietin stimulates vascular endothelial cell growth factor (VEGF) production in hematopoietic stem cells. Cell Cycle. 2005;4:1729–31
-
(2005)
Cell Cycle
, vol.4
, pp. 1729-1731
-
-
Kirito, K.1
Kaushansky, K.2
-
102
-
-
0037438378
-
Megakaryocyte polyploidization is associated with a functional gene amplification
-
Raslova H, et al. Megakaryocyte polyploidization is associated with a functional gene amplification. Blood. 2003;101:541–4
-
(2003)
Blood
, vol.101
, pp. 541-544
-
-
Raslova, H.1
-
103
-
-
34147179036
-
Interrelation between polyploidization and megakaryocyte differentiation: A gene profiling approach
-
Raslova H, et al. Interrelation between polyploidization and megakaryocyte differentiation: a gene profiling approach. Blood. 2007;109:3225–34
-
(2007)
Blood
, vol.109
, pp. 3225-3234
-
-
Raslova, H.1
-
104
-
-
79957895032
-
Tensin2 is a novel mediator in thrombopoietin (TPO)-induced cellular proliferation by promoting Akt signaling
-
Jung AS, Kaushansky A, Macbeath G, Kaushansky K. Tensin2 is a novel mediator in thrombopoietin (TPO)-induced cellular proliferation by promoting Akt signaling. Cell Cycle. 2011;10:1838–44
-
(2011)
Cell Cycle
, vol.10
, pp. 1838-1844
-
-
Jung, A.S.1
Kaushansky, A.2
Macbeath, G.3
Kaushansky, K.4
-
105
-
-
25444482793
-
Simultaneous measurement of 25 inflammatory markers and neurotrophins in neonatal dried blood spots by immunoassay with xMAP technology
-
Skogstrand K, et al. Simultaneous measurement of 25 inflammatory markers and neurotrophins in neonatal dried blood spots by immunoassay with xMAP technology. Clin Chem. 2005;51:1854–66
-
(2005)
Clin Chem
, vol.51
, pp. 1854-1866
-
-
Skogstrand, K.1
-
106
-
-
70349156763
-
Dissecting protein function and signaling using protein microarrays
-
Wolf-Yadlin A, Sevecka M, MacBeath G. Dissecting protein function and signaling using protein microarrays. Curr Opin Chem Biol. 2009;13:398–405
-
(2009)
Curr Opin Chem Biol
, vol.13
, pp. 398-405
-
-
Wolf-Yadlin, A.1
Sevecka, M.2
Macbeath, G.3
-
107
-
-
34447542504
-
Cellular image analysis and imaging by flow cytometry
-
Basiji DA, Ortyn WE, Liang L, Venkatachalam V, Morrissey P. Cellular image analysis and imaging by flow cytometry. Clin Lab Med. 2007;27:653–70
-
(2007)
Clin Lab Med
, vol.27
, pp. 653-670
-
-
Basiji, D.A.1
Ortyn, W.E.2
Liang, L.3
Venkatachalam, V.4
Morrissey, P.5
-
108
-
-
33646096984
-
Quantitative measurement of nuclear translocation events using similarity analysis of multispectral cellular images obtained in flow
-
George TC, et al. Quantitative measurement of nuclear translocation events using similarity analysis of multispectral cellular images obtained in flow. J Immunol Methods. 2006;311: 117–29.
-
(2006)
J Immunol Methods
, vol.311
, pp. 117-129
-
-
George, T.C.1
|