메뉴 건너뛰기




Volumn 117, Issue 12, 2007, Pages 3890-3899

STAT1 promotes megakaryopoiesis downstream of GATA-1 in mice

Author keywords

[No Author keywords available]

Indexed keywords

GAMMA INTERFERON; INTERFERON REGULATORY FACTOR 1; STAT1 PROTEIN; STAT3 PROTEIN; STAT5 PROTEIN; TRANSCRIPTION FACTOR GATA 1;

EID: 36849016548     PISSN: 00219738     EISSN: 15588238     Source Type: Journal    
DOI: 10.1172/JCI33010     Document Type: Article
Times cited : (82)

References (54)
  • 1
    • 12344325677 scopus 로고    scopus 로고
    • GATA1 in normal and malignant hematopoiesis
    • Crispino, J.D. 2005. GATA1 in normal and malignant hematopoiesis. Semin. Cell Dev. Biol. 16:137-147.
    • (2005) Semin. Cell Dev. Biol , vol.16 , pp. 137-147
    • Crispino, J.D.1
  • 2
    • 0030926006 scopus 로고    scopus 로고
    • A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development
    • Shivdasani, R.A., Fujiwara, Y., McDevitt, M.A., and Orkin, S.H. 1997. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J. 16:3965-3973.
    • (1997) EMBO J , vol.16 , pp. 3965-3973
    • Shivdasani, R.A.1    Fujiwara, Y.2    McDevitt, M.A.3    Orkin, S.H.4
  • 3
    • 0033134831 scopus 로고    scopus 로고
    • Consequences of GATA-1 deficiency in megakaryocytes and platelets
    • Vyas, P., Ault, K., Jackson, C.W., Orkin, S.H., and Shivdasani, R.A. 1999. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood. 93:2867-2875.
    • (1999) Blood , vol.93 , pp. 2867-2875
    • Vyas, P.1    Ault, K.2    Jackson, C.W.3    Orkin, S.H.4    Shivdasani, R.A.5
  • 4
    • 23044499360 scopus 로고    scopus 로고
    • Differential requirements for the activation domain and FOG-interaction surface of GATA-1 in megakaryocyte gene expression and development
    • Muntean, A.G., and Crispino, J.D. 2005. Differential requirements for the activation domain and FOG-interaction surface of GATA-1 in megakaryocyte gene expression and development. Blood. 106:1223-1231.
    • (2005) Blood , vol.106 , pp. 1223-1231
    • Muntean, A.G.1    Crispino, J.D.2
  • 5
    • 0037103206 scopus 로고    scopus 로고
    • Development of myelofibrosis in mice genetically impaired for GATA-1 expression (GATA-1(low) mice)
    • Vannucchi, A.M., et al. 2002. Development of myelofibrosis in mice genetically impaired for GATA-1 expression (GATA-1(low) mice). Blood. 100:1123-1132.
    • (2002) Blood , vol.100 , pp. 1123-1132
    • Vannucchi, A.M.1
  • 6
    • 24044524612 scopus 로고    scopus 로고
    • Abnormalities of GATA-1 in megakaryocytes from patients with idiopathic myelofibrosis
    • Vannucchi, A.M., et al. 2005. Abnormalities of GATA-1 in megakaryocytes from patients with idiopathic myelofibrosis. Am. J. Pathol. 167:849-858.
    • (2005) Am. J. Pathol , vol.167 , pp. 849-858
    • Vannucchi, A.M.1
  • 7
    • 0036727413 scopus 로고    scopus 로고
    • Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome
    • Wechsler, J., et al. 2002. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat. Genet. 32:148-152.
    • (2002) Nat. Genet , vol.32 , pp. 148-152
    • Wechsler, J.1
  • 8
    • 20044381309 scopus 로고    scopus 로고
    • Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1
    • Li, Z., et al. 2005. Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nat. Genet. 37:613-619.
    • (2005) Nat. Genet , vol.37 , pp. 613-619
    • Li, Z.1
  • 9
    • 31044439372 scopus 로고    scopus 로고
    • The molecular mechanisms that control thrombopoiesis
    • Kaushansky, K. 2005. The molecular mechanisms that control thrombopoiesis. J. Clin. Invest. 115:3339-3347.
    • (2005) J. Clin. Invest , vol.115 , pp. 3339-3347
    • Kaushansky, K.1
  • 10
    • 0029117375 scopus 로고
    • The thrombopoietin receptor c-MPL activates JAK2 and TYK2 tyrosine kinases
    • Sattler, M., et al. 1995. The thrombopoietin receptor c-MPL activates JAK2 and TYK2 tyrosine kinases. Exp. Hematol. 23:1040-1048.
    • (1995) Exp. Hematol , vol.23 , pp. 1040-1048
    • Sattler, M.1
  • 11
    • 0031028065 scopus 로고    scopus 로고
    • Thrombopoietin signal transduction in purified murine megakaryocytes
    • Drachman, J.G., Sabath, D.F., Fox, N.E., and Kaushansky, K. 1997. Thrombopoietin signal transduction in purified murine megakaryocytes. Blood. 89:483-492.
    • (1997) Blood , vol.89 , pp. 483-492
    • Drachman, J.G.1    Sabath, D.F.2    Fox, N.E.3    Kaushansky, K.4
  • 12
    • 0037071389 scopus 로고    scopus 로고
    • The molecular and cellular biology of thrombopoietin: The primary regulator of platelet production
    • Kaushansky, K., and Drachman, J.G. 2002. The molecular and cellular biology of thrombopoietin: the primary regulator of platelet production. Oncogene. 21:3359-3367.
    • (2002) Oncogene , vol.21 , pp. 3359-3367
    • Kaushansky, K.1    Drachman, J.G.2
  • 13
    • 33646756601 scopus 로고    scopus 로고
    • Transcriptional regulation of megakaryopoiesis: Thrombopoietin signaling and nuclear factors
    • Kirito, K., and Kaushansky, K. 2006. Transcriptional regulation of megakaryopoiesis: thrombopoietin signaling and nuclear factors. Curr. Opin. Hematol. 13:151-156.
    • (2006) Curr. Opin. Hematol , vol.13 , pp. 151-156
    • Kirito, K.1    Kaushansky, K.2
  • 14
    • 18244432009 scopus 로고    scopus 로고
    • Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis
    • Neubauer, H., et al. 1998. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 93:397-409.
    • (1998) Cell , vol.93 , pp. 397-409
    • Neubauer, H.1
  • 15
    • 0032076542 scopus 로고    scopus 로고
    • Jak2 is essential for signaling through a variety of cytokine receptors
    • Parganas, E., et al. 1998. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 93:385-395.
    • (1998) Cell , vol.93 , pp. 385-395
    • Parganas, E.1
  • 16
    • 0038820386 scopus 로고    scopus 로고
    • Signal transducer and activator of transcription proteins in leukemias
    • Benekli, M., Baer, M.R., Baumann, H., and Wetzler, M. 2003. Signal transducer and activator of transcription proteins in leukemias. Blood. 101:2940-2954.
    • (2003) Blood , vol.101 , pp. 2940-2954
    • Benekli, M.1    Baer, M.R.2    Baumann, H.3    Wetzler, M.4
  • 17
    • 33744500207 scopus 로고    scopus 로고
    • JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained
    • Steensma, D.P., et al. 2006. JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained. Leukemia. 20:971-978.
    • (2006) Leukemia , vol.20 , pp. 971-978
    • Steensma, D.P.1
  • 18
    • 0036098153 scopus 로고    scopus 로고
    • STAT5 promotes multi-lineage hematolymphoid development in vivo through effects on early hematopoietic progenitor cells
    • Snow, J.W., et al. 2002. STAT5 promotes multi-lineage hematolymphoid development in vivo through effects on early hematopoietic progenitor cells. Blood. 99:95-101.
    • (2002) Blood , vol.99 , pp. 95-101
    • Snow, J.W.1
  • 19
    • 0036566621 scopus 로고    scopus 로고
    • A functional role of Stat3 in in vivo megakaryopoiesis
    • Kirito, K., et al. 2002. A functional role of Stat3 in in vivo megakaryopoiesis. Blood. 99:3220-3227.
    • (2002) Blood , vol.99 , pp. 3220-3227
    • Kirito, K.1
  • 20
    • 20144389473 scopus 로고    scopus 로고
    • GATA transcription factors inhibit cytokine-dependent growth and survival of a hematopoietic cell line through the inhibition of STAT3 activity
    • Ezoe, S., et al. 2005. GATA transcription factors inhibit cytokine-dependent growth and survival of a hematopoietic cell line through the inhibition of STAT3 activity. J. Biol. Chem. 280:13163-13170.
    • (2005) J. Biol. Chem , vol.280 , pp. 13163-13170
    • Ezoe, S.1
  • 21
    • 0037138370 scopus 로고    scopus 로고
    • Signaling through the JAK/STAT pathway, recent advances and future challenges
    • Kisseleva, T., Bhattacharya, S., Braunstein, J., and Schindler, C.W. 2002. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 285:1-24.
    • (2002) Gene , vol.285 , pp. 1-24
    • Kisseleva, T.1    Bhattacharya, S.2    Braunstein, J.3    Schindler, C.W.4
  • 22
    • 0029934460 scopus 로고    scopus 로고
    • IFN-gamma in combination with IL-3 accelerates platelet recovery in mice with 5-fluorouracil-induced marrow aplasia
    • Tsuji-Takayama, K., et al. 1996. IFN-gamma in combination with IL-3 accelerates platelet recovery in mice with 5-fluorouracil-induced marrow aplasia. J. Interferon Cytokine Res. 16:447-451.
    • (1996) J. Interferon Cytokine Res , vol.16 , pp. 447-451
    • Tsuji-Takayama, K.1
  • 23
    • 0029782218 scopus 로고    scopus 로고
    • Interferon-gamma enhances megakaryocyte colony-stimulating activity in murine bone marrow cells
    • Tsuji-Takayama, K., et al. 1996. Interferon-gamma enhances megakaryocyte colony-stimulating activity in murine bone marrow cells. J. Interferon Cytokine Res. 16:701-708.
    • (1996) J. Interferon Cytokine Res , vol.16 , pp. 701-708
    • Tsuji-Takayama, K.1
  • 24
    • 0030754918 scopus 로고    scopus 로고
    • Thrombopoietin-independent effect of interferon-gamma on the proliferation of human megakaryocyte progenitors
    • Muraoka, K., et al. 1997. Thrombopoietin-independent effect of interferon-gamma on the proliferation of human megakaryocyte progenitors. Br. J. Haematol. 98:265-273.
    • (1997) Br. J. Haematol , vol.98 , pp. 265-273
    • Muraoka, K.1
  • 25
    • 30144433626 scopus 로고    scopus 로고
    • Early block to erythromegakaryocytic development conferred by loss of transcription factor GATA-1
    • Stachura, D.L., Chou, S.T., and Weiss, M.J. 2006. Early block to erythromegakaryocytic development conferred by loss of transcription factor GATA-1. Blood. 107:87-97.
    • (2006) Blood , vol.107 , pp. 87-97
    • Stachura, D.L.1    Chou, S.T.2    Weiss, M.J.3
  • 26
    • 0842266786 scopus 로고    scopus 로고
    • Interferon-gamma: An overview of signals, mechanisms and functions
    • Schroder, K., Hertzog, P.J., Ravasi, T., and Hume, D.A. 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75:163-189.
    • (2004) J. Leukoc. Biol , vol.75 , pp. 163-189
    • Schroder, K.1    Hertzog, P.J.2    Ravasi, T.3    Hume, D.A.4
  • 28
    • 2342451948 scopus 로고    scopus 로고
    • AML-1 is required for mega-karyocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis
    • Ichikawa, M., et al. 2004. AML-1 is required for mega-karyocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat. Med. 10:299-304.
    • (2004) Nat. Med , vol.10 , pp. 299-304
    • Ichikawa, M.1
  • 29
    • 0038819114 scopus 로고    scopus 로고
    • RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation
    • Elagib, K.E., et al. 2003. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood. 101:4333-4341.
    • (2003) Blood , vol.101 , pp. 4333-4341
    • Elagib, K.E.1
  • 30
    • 34250006259 scopus 로고    scopus 로고
    • Cyclin D-Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization
    • Muntean, A.G., et al. 2007. Cyclin D-Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization. Blood. 109:5199-5207.
    • (2007) Blood , vol.109 , pp. 5199-5207
    • Muntean, A.G.1
  • 31
    • 0028845180 scopus 로고
    • Cyclin D3 is essential for megakaryocytopoiesis
    • Wang, Z., Zhang, Y., Kamen, D., Lees, E., and Ravid, K. 1995. Cyclin D3 is essential for megakaryocytopoiesis. Blood. 86:3783-3788.
    • (1995) Blood , vol.86 , pp. 3783-3788
    • Wang, Z.1    Zhang, Y.2    Kamen, D.3    Lees, E.4    Ravid, K.5
  • 32
    • 0034009498 scopus 로고    scopus 로고
    • Increased D-type cyclin expression together with decreased cdc2 activity confers megakaryocytic differentiation of a human thrombopoietin-dependent hematopoietic cell line
    • Matsumura, I., et al. 2000. Increased D-type cyclin expression together with decreased cdc2 activity confers megakaryocytic differentiation of a human thrombopoietin-dependent hematopoietic cell line. J. Biol. Chem. 275:5553-5559.
    • (2000) J. Biol. Chem , vol.275 , pp. 5553-5559
    • Matsumura, I.1
  • 33
    • 0042528364 scopus 로고    scopus 로고
    • Cyclin E ablation in the mouse
    • Geng, Y., et al. 2003. Cyclin E ablation in the mouse. Cell. 114:431-443.
    • (2003) Cell , vol.114 , pp. 431-443
    • Geng, Y.1
  • 34
    • 0037103295 scopus 로고    scopus 로고
    • Platelet formation is the consequence of caspase activation within megakaryocytes
    • De Botton, S., et al. 2002. Platelet formation is the consequence of caspase activation within megakaryocytes. Blood. 100:1310-1317.
    • (2002) Blood , vol.100 , pp. 1310-1317
    • De Botton, S.1
  • 35
    • 0033593038 scopus 로고    scopus 로고
    • Constitutive Bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival
    • Ogilvy, S., et al. 1999. Constitutive Bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival. Proc. Natl. Acad. Sci. U. S. A. 96:14943-14948.
    • (1999) Proc. Natl. Acad. Sci. U. S. A , vol.96 , pp. 14943-14948
    • Ogilvy, S.1
  • 36
    • 0036721472 scopus 로고    scopus 로고
    • BclxL overexpression in megakaryocytes leads to impaired platelet fragmentation
    • Kaluzhny, Y., et al. 2002. BclxL overexpression in megakaryocytes leads to impaired platelet fragmentation. Blood. 100:1670-1678.
    • (2002) Blood , vol.100 , pp. 1670-1678
    • Kaluzhny, Y.1
  • 37
    • 34548240698 scopus 로고    scopus 로고
    • Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders
    • Levine, R.L., Pardanani, A., Tefferi, A., and Gilliland, D.G. 2007. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat. Rev. Cancer. 7:673-683.
    • (2007) Nat. Rev. Cancer , vol.7 , pp. 673-683
    • Levine, R.L.1    Pardanani, A.2    Tefferi, A.3    Gilliland, D.G.4
  • 38
    • 11244323820 scopus 로고    scopus 로고
    • A novel role for STAT1 in regulating murine erythropoiesis: Deletion of STAT1 results in overall reduction of erythroid progenitors and alters their distribution
    • Halupa, A., et al. 2005. A novel role for STAT1 in regulating murine erythropoiesis: deletion of STAT1 results in overall reduction of erythroid progenitors and alters their distribution. Blood. 105:552-561.
    • (2005) Blood , vol.105 , pp. 552-561
    • Halupa, A.1
  • 39
    • 0034665904 scopus 로고    scopus 로고
    • Interferon-alpha directly represses megakaryopoiesis by inhibiting thrombopoietin-induced signaling through induction of SOCS-1
    • Wang, Q., Miyakawa, Y., Fox, N., and Kaushansky, K. 2000. Interferon-alpha directly represses megakaryopoiesis by inhibiting thrombopoietin-induced signaling through induction of SOCS-1. Blood. 96:2093-2099.
    • (2000) Blood , vol.96 , pp. 2093-2099
    • Wang, Q.1    Miyakawa, Y.2    Fox, N.3    Kaushansky, K.4
  • 40
    • 0242298160 scopus 로고    scopus 로고
    • Intracellular signal transduction of interferon on the suppression of haematopoietic progenitor cell growth
    • Kato, K., et al. 2003. Intracellular signal transduction of interferon on the suppression of haematopoietic progenitor cell growth. Br. J. Haematol. 123:528-535.
    • (2003) Br. J. Haematol , vol.123 , pp. 528-535
    • Kato, K.1
  • 41
    • 0023638219 scopus 로고
    • Effect of recombinant interferons alpha and gamma on human bone marrow-derived megakaryocytic progenitor cells
    • Ganser, A., Carlo-Stella, C., Greher, J., Volkers, B., and Hoelzer, D. 1987. Effect of recombinant interferons alpha and gamma on human bone marrow-derived megakaryocytic progenitor cells. Blood. 70:1173-1179.
    • (1987) Blood , vol.70 , pp. 1173-1179
    • Ganser, A.1    Carlo-Stella, C.2    Greher, J.3    Volkers, B.4    Hoelzer, D.5
  • 42
    • 0025205099 scopus 로고
    • Effects of recombinant interferons on human megakaryocyte growth
    • Griffin, C.G., and Grant, B.W. 1990. Effects of recombinant interferons on human megakaryocyte growth. Exp. Hematol. 18:1013-1018.
    • (1990) Exp. Hematol , vol.18 , pp. 1013-1018
    • Griffin, C.G.1    Grant, B.W.2
  • 43
    • 0027453009 scopus 로고
    • Synergism of interferon-gamma and stem cell factor on the development of murine hematopoietic progenitors in serum-free culture
    • Shiohara, M., Koike, K., and Nakahata, T. 1993. Synergism of interferon-gamma and stem cell factor on the development of murine hematopoietic progenitors in serum-free culture. Blood. 81:1435-1441.
    • (1993) Blood , vol.81 , pp. 1435-1441
    • Shiohara, M.1    Koike, K.2    Nakahata, T.3
  • 44
    • 0032441063 scopus 로고    scopus 로고
    • Megakaryocytic differentiation of HIMeg-1 cells induced by interferon gamma and tumour necrosis factor alpha but not by thrombopoietin
    • Li, J., et al. 1998. Megakaryocytic differentiation of HIMeg-1 cells induced by interferon gamma and tumour necrosis factor alpha but not by thrombopoietin. Cytokine. 10:880-889.
    • (1998) Cytokine , vol.10 , pp. 880-889
    • Li, J.1
  • 45
    • 34147179036 scopus 로고    scopus 로고
    • Interrelation between polyploidization and megakaryocyte differentiation: A gene profiling approach
    • Raslova, H., et al. 2007. Interrelation between polyploidization and megakaryocyte differentiation: a gene profiling approach. Blood. 109:3225-3234.
    • (2007) Blood , vol.109 , pp. 3225-3234
    • Raslova, H.1
  • 46
    • 25844447519 scopus 로고    scopus 로고
    • JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia
    • Jelinek, J., et al. 2005. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood. 106:3370-3373.
    • (2005) Blood , vol.106 , pp. 3370-3373
    • Jelinek, J.1
  • 47
    • 33748592820 scopus 로고    scopus 로고
    • Steensma, D.P. 2006. JAK2 V617F in myeloid disorders: molecular diagnostic techniques and their clinical utility: a paper from the 2005 William Beaumont Hospital Symposium on Molecular Pathology. J. Mol. Diagn. 8:397-411; quiz 526.
    • Steensma, D.P. 2006. JAK2 V617F in myeloid disorders: molecular diagnostic techniques and their clinical utility: a paper from the 2005 William Beaumont Hospital Symposium on Molecular Pathology. J. Mol. Diagn. 8:397-411; quiz 526.
  • 48
    • 33745713168 scopus 로고    scopus 로고
    • Activating alleles of JAK3 in acute megakaryoblastic leukemia
    • Walters, D.K., et al. 2006. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell. 10:65-75.
    • (2006) Cancer Cell , vol.10 , pp. 65-75
    • Walters, D.K.1
  • 49
    • 1542615163 scopus 로고    scopus 로고
    • Thrombocytosis
    • Schafer, A.I. 2004. Thrombocytosis. N. Engl. J. Med. 350:1211-1219.
    • (2004) N. Engl. J. Med , vol.350 , pp. 1211-1219
    • Schafer, A.I.1
  • 50
    • 0033039333 scopus 로고    scopus 로고
    • Aetiology and clinical significance of thrombocytosis: Analysis of 732 patients with an elevated platelet count
    • Griesshammer, M., et al. 1999. Aetiology and clinical significance of thrombocytosis: analysis of 732 patients with an elevated platelet count. J. Intern. Med. 245:295-300.
    • (1999) J. Intern. Med , vol.245 , pp. 295-300
    • Griesshammer, M.1
  • 51
    • 0032479867 scopus 로고    scopus 로고
    • Transendothelial migration of megakaryocytes in response to stromal cell-derived factor 1 (SDF-1) enhances platelet formation
    • Hamada, T., et al. 1998. Transendothelial migration of megakaryocytes in response to stromal cell-derived factor 1 (SDF-1) enhances platelet formation. J. Exp. Med. 188:539-548.
    • (1998) J. Exp. Med , vol.188 , pp. 539-548
    • Hamada, T.1
  • 52
    • 0034142019 scopus 로고    scopus 로고
    • Stromal cell-derived factor-1 (SDF-1) acts together with thrombopoietin to enhance the development of megakaryocytic progenitor cells (CFU-MK)
    • Hodohara, K., Fujii, N., Yamamoto, N., and Kaushansky, K. 2000. Stromal cell-derived factor-1 (SDF-1) acts together with thrombopoietin to enhance the development of megakaryocytic progenitor cells (CFU-MK). Blood. 95:769-775.
    • (2000) Blood , vol.95 , pp. 769-775
    • Hodohara, K.1    Fujii, N.2    Yamamoto, N.3    Kaushansky, K.4
  • 53
    • 0034672371 scopus 로고    scopus 로고
    • Stromal-derived factor 1 and thrombopoietin regulate distinct aspects of human megakaryopoiesis
    • Majka, M., et al. 2000. Stromal-derived factor 1 and thrombopoietin regulate distinct aspects of human megakaryopoiesis. Blood. 96:4142-4151.
    • (2000) Blood , vol.96 , pp. 4142-4151
    • Majka, M.1
  • 54
    • 36849031838 scopus 로고    scopus 로고
    • Applied Biosystems. 1997. User Bulletin no. 2: ABI PRISM 7700 Sequence Detection System. docs. appliedbiosystems.com/pebiodocs/04303859.pdf.
    • (1997) User Bulletin
    • Biosystems, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.