-
1
-
-
79952821145
-
Simple ensemble methods are competitive with state-of-the-art data integration methods for gene function prediction
-
Mach. Learn. Syst. Biol.
-
M. Re, and G. Valentini Simple ensemble methods are competitive with state-of-the-art data integration methods for gene function prediction JMLR: Workshop and Conference Proceedings Mach. Learn. Syst. Biol. 8 2010 98 111
-
(2010)
JMLR: Workshop and Conference Proceedings
, vol.8
, pp. 98-111
-
-
Re, M.1
Valentini, G.2
-
2
-
-
32544431928
-
Evolving hybrid ensembles of learning machines for better generalisation
-
A. Chandra, and X. Yao Evolving hybrid ensembles of learning machines for better generalisation Neurocomputing 69 2006 686 700
-
(2006)
Neurocomputing
, vol.69
, pp. 686-700
-
-
Chandra, A.1
Yao, X.2
-
3
-
-
60249083742
-
An ensemble of support vector machines for predicting virulent proteins
-
L. Nanni, and A. Lumini An ensemble of support vector machines for predicting virulent proteins Expert Syst. Appl. 36 2009 7458 7462
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 7458-7462
-
-
Nanni, L.1
Lumini, A.2
-
4
-
-
84755160678
-
Evaluation of an ensemble precipitation prediction system over the Western Mediterranean area
-
M.L. Martin, D. Santos-Muñoz, F. Valero, and A. Morata Evaluation of an ensemble precipitation prediction system over the Western Mediterranean area Atmos. Res. 98 2010 163 175
-
(2010)
Atmos. Res.
, vol.98
, pp. 163-175
-
-
Martin, M.L.1
Santos-Muñoz, D.2
Valero, F.3
Morata, A.4
-
5
-
-
77549086197
-
Estimation of ice thickness on lakes using artificial neural network ensembles
-
I. Zaier, C. Shu, T.B.M.J. Ouarda, O. Seidou, and F. Chebana Estimation of ice thickness on lakes using artificial neural network ensembles J. Hydrol. 383 3-4 2010 330 340
-
(2010)
J. Hydrol.
, vol.383
, Issue.34
, pp. 330-340
-
-
Zaier, I.1
Shu, C.2
Ouarda, T.B.M.J.3
Seidou, O.4
Chebana, F.5
-
6
-
-
84861845698
-
Financial distress prediction using support vector machines: Ensemble vs individual
-
J. Sun, and H. Li Financial distress prediction using support vector machines: ensemble vs. individual Appl. Soft Comput. 12 8 2012 2254 2265
-
(2012)
Appl. Soft Comput.
, vol.12
, Issue.8
, pp. 2254-2265
-
-
Sun, J.1
Li, H.2
-
9
-
-
29544449323
-
Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea
-
L. Jong-Se Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea J. Pet. Sci. Eng. 49 2005 182 192
-
(2005)
J. Pet. Sci. Eng.
, vol.49
, pp. 182-192
-
-
Jong-Se, L.1
-
10
-
-
34250846059
-
Estimation of permeability from wireline logs in a middle eastern carbonate reservoir using fuzzy logic
-
Bahrain, 11-14 March
-
A. Abdulraheem, E. Sabakhi, M. Ahmed, A. Vantala, I. Raharja, and G. Korvin Estimation of permeability from wireline logs in a middle eastern carbonate reservoir using fuzzy logic Proceedings The 15th SPE Middle East Oil and Gas Show and Conference Bahrain, 11-14 March 2007
-
(2007)
Proceedings the 15th SPE Middle East Oil and Gas Show and Conference
-
-
Abdulraheem, A.1
Sabakhi, E.2
Ahmed, M.3
Vantala, A.4
Raharja, I.5
Korvin, G.6
-
11
-
-
48749124544
-
The application of artificial intelligence neural networks with small data sets: An example for analysis of fracture spacing in the Lisbourne formation, northeastern Alaska
-
D. Kaviani, T.D. Bui, J.L. Jensen, and C.L. Hanks The application of artificial intelligence neural networks with small data sets: an example for analysis of fracture spacing in the Lisbourne formation, northeastern Alaska SPE J. Reserv. Eval. Eng. 11 3 2008 598 605
-
(2008)
SPE J. Reserv. Eval. Eng.
, vol.11
, Issue.3
, pp. 598-605
-
-
Kaviani, D.1
Bui, T.D.2
Jensen, J.L.3
Hanks, C.L.4
-
12
-
-
84906344071
-
Optimized adaptive neural networks for viscosity and gas/oil ratio curves prediction
-
Banff, Canada
-
A. Khoukhi, M. Oloso, A. Abdulraheem, and M. El-Shafei Optimized adaptive neural networks for viscosity and gas/oil ratio curves prediction Proceedings IASTED International Conference Banff, Canada 2010 14 17
-
(2010)
Proceedings IASTED International Conference
, pp. 14-17
-
-
Khoukhi, A.1
Oloso, M.2
Abdulraheem, A.3
El-Shafei, M.4
-
14
-
-
34548671418
-
Design of neural networks using genetic algorithm for the permeability estimation of the reservoir
-
S. Mohsen, A. Morteza, and Y.V. Ali Design of neural networks using genetic algorithm for the permeability estimation of the reservoir J. Pet. Sci. Eng. 59 2007 97 105
-
(2007)
J. Pet. Sci. Eng.
, vol.59
, pp. 97-105
-
-
Mohsen, S.1
Morteza, A.2
Ali, Y.V.3
-
15
-
-
77952360351
-
Incorporating fuzzy logic and artificial neural networks for building hydraulic unit-based model for permeability prediction of a heterogeneous carbonate reservoir
-
Doha, Qatar, 7-9 December
-
M.B. Shahvar, R. Kharrat, and R. Mahdavi Incorporating fuzzy logic and artificial neural networks for building hydraulic unit-based model for permeability prediction of a heterogeneous carbonate reservoir Proceedings International Petroleum Technology Conference Doha, Qatar, 7-9 December 2009
-
(2009)
Proceedings International Petroleum Technology Conference
-
-
Shahvar, M.B.1
Kharrat, R.2
Mahdavi, R.3
-
18
-
-
84891651782
-
Prediction of petroleum reservoir properties using different versions of adaptive neuro-fuzzy inference system hybrid models
-
F. Anifowose, J. Labadin, and A. Abdulraheem Prediction of petroleum reservoir properties using different versions of adaptive neuro-fuzzy inference system hybrid models Int. J. Comput. Inform. Syst. Ind. Manag. Appl. 5 2013 413 426
-
(2013)
Int. J. Comput. Inform. Syst. Ind. Manag. Appl.
, vol.5
, pp. 413-426
-
-
Anifowose, F.1
Labadin, J.2
Abdulraheem, A.3
-
20
-
-
38849163717
-
Glycosylation site prediction using ensembles of support vector machine classifiers
-
C. Caragea, J. Sinapov, A. Silvescu, D. Dobbs, and V. Honavar Glycosylation site prediction using ensembles of support vector machine classifiers BMC Bioinform. 8 438 2007 doi:10.1186/1471-2105-8-438
-
(2007)
BMC Bioinform.
, vol.8
, Issue.438
-
-
Caragea, C.1
Sinapov, J.2
Silvescu, A.3
Dobbs, D.4
Honavar, V.5
-
21
-
-
67349260139
-
Construct support vector machine ensemble to detect traffic incident
-
S. Chen, W. Wang, and H. Zuylen Construct support vector machine ensemble to detect traffic incident Exp. Syst. Appl. 36 2009 10976 10986
-
(2009)
Exp. Syst. Appl.
, vol.36
, pp. 10976-10986
-
-
Chen, S.1
Wang, W.2
Zuylen, H.3
-
22
-
-
84912074117
-
Object detection
-
C. Zhang, Y. Ma, Springer Science+Business Media, LLC 10.1007/978-1-4419-9326-7 8
-
J. Wu, and J.M. Rehg Object detection C. Zhang, Y. Ma, Ensemble Machine Learning: Methods and Applications 2012 Springer Science+Business Media, LLC 10.1007/978-1-4419-9326-7 8
-
(2012)
Ensemble Machine Learning: Methods and Applications
-
-
Wu, J.1
Rehg, J.M.2
-
23
-
-
72749118515
-
Neural network ensembles for time series forecasting
-
Montréal Québec, Canada
-
V. Landassuri-Moreno, and J.A. Bullinaria Neural network ensembles for time series forecasting Proceedings of GECCO'09 Montréal Québec, Canada 2009 8 12
-
(2009)
Proceedings of GECCO'09
, pp. 8-12
-
-
Landassuri-Moreno, V.1
Bullinaria, J.A.2
-
24
-
-
48049095703
-
Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm
-
L. Yu, S. Wang, and K.K. Lai Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm Energy Econ. 30 2008 2623 2635
-
(2008)
Energy Econ.
, vol.30
, pp. 2623-2635
-
-
Yu, L.1
Wang, S.2
Lai, K.K.3
-
25
-
-
0030211964
-
Bagging predictors
-
L. Breiman Bagging predictors Mach. Learn. 24 2 1996 123 140
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
26
-
-
80055031666
-
An empirical study of bagging predictors for different learning algorithms
-
San Francisco, California, USA
-
G. Liang, X. Zhu, and C. Zhang An empirical study of bagging predictors for different learning algorithms Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence San Francisco, California, USA 2011 1802 1803
-
(2011)
Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence
, pp. 1802-1803
-
-
Liang, G.1
Zhu, X.2
Zhang, C.3
-
27
-
-
77950300963
-
Hybrid computational models for the characterization of oil and gas reservoirs
-
T. Helmy, F. Anifowose, and K. Faisal Hybrid computational models for the characterization of oil and gas reservoirs Int. J. Exp. Syst. Appl. 37 2010 5353 5363
-
(2010)
Int. J. Exp. Syst. Appl.
, vol.37
, pp. 5353-5363
-
-
Helmy, T.1
Anifowose, F.2
Faisal, K.3
-
30
-
-
79960435554
-
Fuzzy logic-driven and SVM-driven hybrid computational intelligence models applied to oil and gas reservoir characterization
-
F. Anifowose, and A. Abdulraheem Fuzzy logic-driven and SVM-driven hybrid computational intelligence models applied to oil and gas reservoir characterization J. Nat. Gas Sci. Eng. 3 3 2011 505 517
-
(2011)
J. Nat. Gas Sci. Eng.
, vol.3
, Issue.3
, pp. 505-517
-
-
Anifowose, F.1
Abdulraheem, A.2
-
31
-
-
0142025124
-
Constructing support vector machine ensemble
-
H. Kim, S. Pang, H. Je, D. Kim, and S.Y. Bang Constructing support vector machine ensemble Pattern Recognit. 36 2003 2757 2767
-
(2003)
Pattern Recognit.
, vol.36
, pp. 2757-2767
-
-
Kim, H.1
Pang, S.2
Je, H.3
Kim, D.4
Bang, S.Y.5
-
32
-
-
33646181069
-
A novel ensemble machine learning for robust microarray data classification
-
Y. Peng A novel ensemble machine learning for robust microarray data classification Comput. Biol. Med. 36 2006 553 573
-
(2006)
Comput. Biol. Med.
, vol.36
, pp. 553-573
-
-
Peng, Y.1
-
33
-
-
50149086080
-
A novel ensemble of classifiers for microarray data classification
-
Y. Chen, and Y. Zhao A novel ensemble of classifiers for microarray data classification Appl. Soft Comput. 8 2008 1664 1669
-
(2008)
Appl. Soft Comput.
, vol.8
, pp. 1664-1669
-
-
Chen, Y.1
Zhao, Y.2
-
34
-
-
0742271707
-
Cancer recognition with bagged ensembles of support vector machines
-
G. Valentini, M. Muselli, and F. Ruffino Cancer recognition with bagged ensembles of support vector machines Neurocomputing 56 2004 461 466
-
(2004)
Neurocomputing
, vol.56
, pp. 461-466
-
-
Valentini, G.1
Muselli, M.2
Ruffino, F.3
-
35
-
-
79551553504
-
Ensembles of probability estimation trees for customer churn prediction
-
N. GarcIa-Pedrajas, al. et, Springer-Verlag
-
K.W.D. Bock, and D.V. Poel Ensembles of probability estimation trees for customer churn prediction N. GarcIa-Pedrajas, al. et, IEA/AIE 2010, Part II, LNAI 6097 2010 Springer-Verlag 57 66
-
(2010)
IEA/AIE 2010, Part II, LNAI 6097
, pp. 57-66
-
-
Bock, K.W.D.1
Poel, D.V.2
-
36
-
-
84912130498
-
Evolving neural network ensembles for control problems
-
Washington, DC, USA
-
D. Pardoe, M. Ryoo, and R. Miikkulainen Evolving neural network ensembles for control problems Proceedings of the GECCO'05 Washington, DC, USA 2005 25 29
-
(2005)
Proceedings of the GECCO'05
, pp. 25-29
-
-
Pardoe, D.1
Ryoo, M.2
Miikkulainen, R.3
-
37
-
-
39549091893
-
Optimisation of pedotransfer functions using an artificial neural network ensemble method
-
L. Baker, and D. Ellison Optimisation of pedotransfer functions using an artificial neural network ensemble method Geoderma 144 2006 212 224
-
(2006)
Geoderma
, vol.144
, pp. 212-224
-
-
Baker, L.1
Ellison, D.2
-
38
-
-
84857738059
-
DDD: A new ensemble approach for dealing with concept drift
-
L.L. Minku, and X. Yao DDD: a new ensemble approach for dealing with concept drift IEEE Trans. Knowl. Data Eng. 24 4 2012 619 633
-
(2012)
IEEE Trans. Knowl. Data Eng.
, vol.24
, Issue.4
, pp. 619-633
-
-
Minku, L.L.1
Yao, X.2
-
39
-
-
79960527815
-
Short-term load forecasting with neural network ensembles: A comparative study
-
M.D. Felice, and X. Yao Short-term load forecasting with neural network ensembles: a comparative study IEEE Comput. Intell. Mag. 6 3 2011 47 56
-
(2011)
IEEE Comput. Intell. Mag.
, vol.6
, Issue.3
, pp. 47-56
-
-
Felice, M.D.1
Yao, X.2
-
41
-
-
0038137315
-
Ensemble feature selection with the simple Bayesian classification
-
A. Tsymbal, S. Puuronen, and D.W. Patterson Ensemble feature selection with the simple Bayesian classification Inf. Fusion 4 2003 87 100
-
(2003)
Inf. Fusion
, vol.4
, pp. 87-100
-
-
Tsymbal, A.1
Puuronen, S.2
Patterson, D.W.3
-
42
-
-
26944481912
-
-
C. Jacob
-
P.D. Castro, G.P. Coelho, M.F. Caetano, and F.J.V. Zuben C. Jacob, ICARIS 2005, LNCS 3627 2005 469 482
-
(2005)
ICARIS 2005, LNCS 3627
, pp. 469-482
-
-
Castro, P.D.1
Coelho, G.P.2
Caetano, M.F.3
Zuben, F.J.V.4
-
43
-
-
77955121188
-
Using ensembles of decision trees to automate repetitive tasks in web applications
-
Berlin, Germany, June 19-23
-
Z. Bray, and P.O. Kristensson Using ensembles of decision trees to automate repetitive tasks in web applications Proceeding of the EICS'10 Berlin, Germany, June 19-23 2010
-
(2010)
Proceeding of the EICS'10
-
-
Bray, Z.1
Kristensson, P.O.2
-
44
-
-
70450194207
-
Adaptive ensemble models of extreme learning machines for time series prediction
-
C. Alippi
-
M. Heeswijk, Y. Miche, T. Lindh-Knuutila, P.A.J. Hilbers, T. Honkela, E. Oja, and A. Lendasse Adaptive ensemble models of extreme learning machines for time series prediction C. Alippi, ICANN 2009, Part II, LNCS 5769 2009 305 314
-
(2009)
ICANN 2009, Part II, LNCS 5769
, pp. 305-314
-
-
Heeswijk, M.1
Miche, Y.2
Lindh-Knuutila, T.3
Hilbers, P.A.J.4
Honkela, T.5
Oja, E.6
Lendasse, A.7
-
45
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C.J. Burges A tutorial on support vector machines for pattern recognition Data Min. Knowl. Discov. 2 1998 121 167
-
(1998)
Data Min. Knowl. Discov.
, vol.2
, pp. 121-167
-
-
Burges, C.J.1
-
48
-
-
34047265152
-
Creating a quality map of a slate deposit using support vector machines
-
J. Taboada, J.M. Matías, C. Ordóñez, and P.J. García Creating a quality map of a slate deposit using support vector machines J. Comput. Appl. Maths. 20 4 2007 84 94
-
(2007)
J. Comput. Appl. Maths.
, vol.20
, Issue.4
, pp. 84-94
-
-
Taboada, J.1
Matías, J.M.2
Ordóñez, C.3
García, P.J.4
-
49
-
-
52449110753
-
Multiclass least squares auto-correlation wavelet support vector machines
-
Y. Xing, X. Wu, and Z. Xu Multiclass least squares auto-correlation wavelet support vector machines Int. J. Innov. Comput. Inf. Control Express Lett. 2 4 2008 345 350
-
(2008)
Int. J. Innov. Comput. Inf. Control Express Lett.
, vol.2
, Issue.4
, pp. 345-350
-
-
Xing, Y.1
Wu, X.2
Xu, Z.3
-
55
-
-
25444484657
-
Managing diversity in regression ensembles
-
G. Brown, J.L. Wyatt, and P. Tino Managing diversity in regression ensembles J. Mach. Learn. Res. 6 2005 1621 1650
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1621-1650
-
-
Brown, G.1
Wyatt, J.L.2
Tino, P.3
-
56
-
-
33748611921
-
Ensemble based systems in decision making
-
R. Polikar Ensemble based systems in decision making IEEE Circuits Syst. Mag. 3 2006 21 45
-
(2006)
IEEE Circuits Syst. Mag.
, vol.3
, pp. 21-45
-
-
Polikar, R.1
-
57
-
-
0345040873
-
Classification and regression by random forest
-
A. Liaw, and M. Wiener Classification and regression by random forest R News 2 3 2002 18 22
-
(2002)
R News
, vol.2
, Issue.3
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
59
-
-
0035478854
-
Random forests
-
L. Breiman Random forests Mach. Learn. 45 1 2001 5 32
-
(2001)
Mach. Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
61
-
-
0032139235
-
The random subspace method for constructing decision forests
-
T.K. Ho The random subspace method for constructing decision forests IEEE Trans. Pattern Anal. Mach. Intell. 20 8 1998 832 844
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.K.1
-
64
-
-
79952191666
-
Higher-order co-occurrences for exploratory point pattern analysis and decision tree clustering on spatial data
-
D.G. Leibovici, L. Bastin, and M. Jackson Higher-order co-occurrences for exploratory point pattern analysis and decision tree clustering on spatial data Comput. Geosci. 37 2011 382 389
-
(2011)
Comput. Geosci.
, vol.37
, pp. 382-389
-
-
Leibovici, D.G.1
Bastin, L.2
Jackson, M.3
-
66
-
-
77952814988
-
Permutation importance: A corrected feature importance measure
-
A. Altmann, L. Tolosi, O. Sander, and T. Lengauer Permutation importance: a corrected feature importance measure Bioinformatics 26 10 2010 1340 1347
-
(2010)
Bioinformatics
, vol.26
, Issue.10
, pp. 1340-1347
-
-
Altmann, A.1
Tolosi, L.2
Sander, O.3
Lengauer, T.4
-
68
-
-
79960134528
-
Classification with correlated features: Unreliability of feature ranking and solutions
-
L. Tolosi, and T. Lengauer Classification with correlated features: unreliability of feature ranking and solutions Bioinformatics 27 2011 1986 1994
-
(2011)
Bioinformatics
, vol.27
, pp. 1986-1994
-
-
Tolosi, L.1
Lengauer, T.2
-
69
-
-
10444238133
-
Diversity in search strategies for ensemble feature selection
-
Special issue on diversity in multiple classifier Systems
-
A. Tsymbal, M. Pechenizkiy, and P. Cunningham Diversity in search strategies for ensemble feature selection Information Fusion 6 1 2005 83 98 Special issue on diversity in multiple classifier Systems
-
(2005)
Information Fusion
, vol.6
, Issue.1
, pp. 83-98
-
-
Tsymbal, A.1
Pechenizkiy, M.2
Cunningham, P.3
-
70
-
-
77949913486
-
The impact of diversity on online ensemble learning in the presence of concept drift
-
L.L. Minku, A.P. White, and X. Yao The impact of diversity on online ensemble learning in the presence of concept drift IEEE Trans. Knowl. Data Eng. 22 5 2010 730 742
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.5
, pp. 730-742
-
-
Minku, L.L.1
White, A.P.2
Yao, X.3
-
73
-
-
84864119523
-
Relationships between diversity of classification ensembles and single-class performance measures
-
S. Wang, and X. Yao Relationships between diversity of classification ensembles and single-class performance measures IEEE Trans. Knowl. Data Eng. 25 1 2013 206 219
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.25
, Issue.1
, pp. 206-219
-
-
Wang, S.1
Yao, X.2
-
74
-
-
80053894086
-
Measuring diversity in regression ensembles
-
B. Prasad, P. Lingras, A. Ram, Tumkur, Karnataka, India, 16-18 December
-
H. Dutta Measuring diversity in regression ensembles B. Prasad, P. Lingras, A. Ram, Proceedings of the 4th Indian International Conference on Artificial Intelligence (IICAI 2009) Tumkur, Karnataka, India, 16-18 December 2009 2220 2236
-
(2009)
Proceedings of the 4th Indian International Conference on Artificial Intelligence (IICAI 2009)
, pp. 2220-2236
-
-
Dutta, H.1
-
77
-
-
84912084680
-
Psychometric methods of latent variable modeling
-
N. Ye, Lawrence Erlbaum Associates
-
E. Ip, I. Cadez, and P. Smyth Psychometric methods of latent variable modeling N. Ye, The Handbook of Data Mining 2003 Lawrence Erlbaum Associates 238
-
(2003)
The Handbook of Data Mining
, pp. 238
-
-
Ip, E.1
Cadez, I.2
Smyth, P.3
-
78
-
-
78650738487
-
PVT properties prediction using hybrid genetic neuro-fuzzy systems
-
A. Khoukhi, and S. Albukhitan PVT properties prediction using hybrid genetic neuro-fuzzy systems Int. J. Oil Gas Coal Technol. 4 1 2011 47 63
-
(2011)
Int. J. Oil Gas Coal Technol.
, vol.4
, Issue.1
, pp. 47-63
-
-
Khoukhi, A.1
Albukhitan, S.2
-
79
-
-
84902200562
-
Selection of meta-parameters for support vector regression
-
V. Cherkassky, and Y. Ma Selection of Meta-Parameters for Support Vector Regression Proceedings of the ICANN 2002 687 693
-
(2002)
Proceedings of the ICANN
, pp. 687-693
-
-
Cherkassky, V.1
Ma, Y.2
-
80
-
-
33646409254
-
Occam's bonus
-
A. Zellner, H.A. Keuzenkamp, M. McAleer, Cambridge University Press UK
-
A.W.F. Edwards Occam's bonus A. Zellner, H.A. Keuzenkamp, M. McAleer, Simplicity, Inference and Modeling: Keeping it Sophisticatedly Simple 2004 Cambridge University Press UK 128 132
-
(2004)
Simplicity, Inference and Modeling: Keeping It Sophisticatedly Simple
, pp. 128-132
-
-
Edwards, A.W.F.1
-
81
-
-
84912095676
-
What explains complexity?
-
A. Zellner, H.A. Keuzenkamp, M. McAleer, Cambridge University Press UK
-
B. Hamming What explains complexity? A. Zellner, H.A. Keuzenkamp, M. McAleer, Simplicity, Inference and Modeling: Keeping it Sophisticatedly Simple 2004 Cambridge University Press UK 120 127
-
(2004)
Simplicity, Inference and Modeling: Keeping It Sophisticatedly Simple
, pp. 120-127
-
-
Hamming, B.1
-
82
-
-
84912070699
-
The enigma of simplicity
-
A. Zellner, H.A. Keuzenkamp, M. McAleer, Cambridge University Press UK
-
H.A. Keuzenkamp, M. Mcaleer, and A. Zellner The enigma of simplicity A. Zellner, H.A. Keuzenkamp, M. McAleer, Simplicity, Inference and Modeling: Keeping it Sophisticatedly Simple 2004 Cambridge University Press UK 1 10
-
(2004)
Simplicity, Inference and Modeling: Keeping It Sophisticatedly Simple
, pp. 1-10
-
-
Keuzenkamp, H.A.1
McAleer, M.2
Zellner, A.3
-
83
-
-
84912084679
-
-
Least Squares SVM (LS-SVM) (accessed 25.12.12)
-
Least Squares SVM (LS-SVM), Basic Version available online, http://www.esat.kuleuven.be/sista/lssvmlab/ (accessed 25.12.12)
-
Basic Version Available Online
-
-
-
84
-
-
69249212288
-
A normal least squares support vector machine (NLS-SVM) and its learning algorithm
-
X. Peng, and Y. Wang A normal least squares support vector machine (NLS-SVM) and its learning algorithm Neurocomputing 72 2009 3734 3741
-
(2009)
Neurocomputing
, vol.72
, pp. 3734-3741
-
-
Peng, X.1
Wang, Y.2
-
85
-
-
84912128248
-
-
Bailer-Jones C.A.L., Statistical Methods, A Computer Course (accessed 21.12.12).
-
Bailer-Jones C.A.L., Statistical Methods, A Computer Course, Available from: http://www.mpiahd.mpg.de/~calj/statistical-methods-ss2011/lectures/05-regressi on.pdf (accessed 21.12.12).
-
-
-
-
86
-
-
0041382385
-
-
MATLAB CENTRAL (accessed 04.12.12)
-
MATLAB CENTRAL, Random Forest, Available at: http://www.mathworks.com/matlabcentral/fileexchange/31036-random-forest (accessed 04.12.12).
-
Random Forest
-
-
-
87
-
-
84912062765
-
-
Aston University Birmingham, United Kingdom Available from: (accessed 11.12.12)
-
Netlab Toolbox Neural Computing Research Group, Information Engineering 2012 Aston University Birmingham, United Kingdom Available from: http://www.ncrg.aston.ac.uk/netlab (accessed 11.12.12)
-
(2012)
Neural Computing Research Group, Information Engineering
-
-
Toolbox, N.1
|