메뉴 건너뛰기




Volumn 26, Issue , 2015, Pages 483-496

Improving the prediction of petroleum reservoir characterization with a stacked generalization ensemble model of support vector machines

Author keywords

Permeability; Porosity; Regularization parameter; Stacked generalization ensemble; Support vector machines

Indexed keywords

DECISION TREES; FORECASTING; GASOLINE; LEARNING SYSTEMS; MECHANICAL PERMEABILITY; PARAMETERIZATION; PETROLEUM INDUSTRY; PETROLEUM PROSPECTING; PETROLEUM RESERVOIR ENGINEERING; POROSITY; PREDICTIVE ANALYTICS; SUPPORT VECTOR MACHINES;

EID: 84912062615     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2014.10.017     Document Type: Article
Times cited : (132)

References (87)
  • 1
    • 79952821145 scopus 로고    scopus 로고
    • Simple ensemble methods are competitive with state-of-the-art data integration methods for gene function prediction
    • Mach. Learn. Syst. Biol.
    • M. Re, and G. Valentini Simple ensemble methods are competitive with state-of-the-art data integration methods for gene function prediction JMLR: Workshop and Conference Proceedings Mach. Learn. Syst. Biol. 8 2010 98 111
    • (2010) JMLR: Workshop and Conference Proceedings , vol.8 , pp. 98-111
    • Re, M.1    Valentini, G.2
  • 2
    • 32544431928 scopus 로고    scopus 로고
    • Evolving hybrid ensembles of learning machines for better generalisation
    • A. Chandra, and X. Yao Evolving hybrid ensembles of learning machines for better generalisation Neurocomputing 69 2006 686 700
    • (2006) Neurocomputing , vol.69 , pp. 686-700
    • Chandra, A.1    Yao, X.2
  • 3
    • 60249083742 scopus 로고    scopus 로고
    • An ensemble of support vector machines for predicting virulent proteins
    • L. Nanni, and A. Lumini An ensemble of support vector machines for predicting virulent proteins Expert Syst. Appl. 36 2009 7458 7462
    • (2009) Expert Syst. Appl. , vol.36 , pp. 7458-7462
    • Nanni, L.1    Lumini, A.2
  • 4
    • 84755160678 scopus 로고    scopus 로고
    • Evaluation of an ensemble precipitation prediction system over the Western Mediterranean area
    • M.L. Martin, D. Santos-Muñoz, F. Valero, and A. Morata Evaluation of an ensemble precipitation prediction system over the Western Mediterranean area Atmos. Res. 98 2010 163 175
    • (2010) Atmos. Res. , vol.98 , pp. 163-175
    • Martin, M.L.1    Santos-Muñoz, D.2    Valero, F.3    Morata, A.4
  • 5
    • 77549086197 scopus 로고    scopus 로고
    • Estimation of ice thickness on lakes using artificial neural network ensembles
    • I. Zaier, C. Shu, T.B.M.J. Ouarda, O. Seidou, and F. Chebana Estimation of ice thickness on lakes using artificial neural network ensembles J. Hydrol. 383 3-4 2010 330 340
    • (2010) J. Hydrol. , vol.383 , Issue.34 , pp. 330-340
    • Zaier, I.1    Shu, C.2    Ouarda, T.B.M.J.3    Seidou, O.4    Chebana, F.5
  • 6
    • 84861845698 scopus 로고    scopus 로고
    • Financial distress prediction using support vector machines: Ensemble vs individual
    • J. Sun, and H. Li Financial distress prediction using support vector machines: ensemble vs. individual Appl. Soft Comput. 12 8 2012 2254 2265
    • (2012) Appl. Soft Comput. , vol.12 , Issue.8 , pp. 2254-2265
    • Sun, J.1    Li, H.2
  • 9
    • 29544449323 scopus 로고    scopus 로고
    • Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea
    • L. Jong-Se Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea J. Pet. Sci. Eng. 49 2005 182 192
    • (2005) J. Pet. Sci. Eng. , vol.49 , pp. 182-192
    • Jong-Se, L.1
  • 11
    • 48749124544 scopus 로고    scopus 로고
    • The application of artificial intelligence neural networks with small data sets: An example for analysis of fracture spacing in the Lisbourne formation, northeastern Alaska
    • D. Kaviani, T.D. Bui, J.L. Jensen, and C.L. Hanks The application of artificial intelligence neural networks with small data sets: an example for analysis of fracture spacing in the Lisbourne formation, northeastern Alaska SPE J. Reserv. Eval. Eng. 11 3 2008 598 605
    • (2008) SPE J. Reserv. Eval. Eng. , vol.11 , Issue.3 , pp. 598-605
    • Kaviani, D.1    Bui, T.D.2    Jensen, J.L.3    Hanks, C.L.4
  • 14
    • 34548671418 scopus 로고    scopus 로고
    • Design of neural networks using genetic algorithm for the permeability estimation of the reservoir
    • S. Mohsen, A. Morteza, and Y.V. Ali Design of neural networks using genetic algorithm for the permeability estimation of the reservoir J. Pet. Sci. Eng. 59 2007 97 105
    • (2007) J. Pet. Sci. Eng. , vol.59 , pp. 97-105
    • Mohsen, S.1    Morteza, A.2    Ali, Y.V.3
  • 15
    • 77952360351 scopus 로고    scopus 로고
    • Incorporating fuzzy logic and artificial neural networks for building hydraulic unit-based model for permeability prediction of a heterogeneous carbonate reservoir
    • Doha, Qatar, 7-9 December
    • M.B. Shahvar, R. Kharrat, and R. Mahdavi Incorporating fuzzy logic and artificial neural networks for building hydraulic unit-based model for permeability prediction of a heterogeneous carbonate reservoir Proceedings International Petroleum Technology Conference Doha, Qatar, 7-9 December 2009
    • (2009) Proceedings International Petroleum Technology Conference
    • Shahvar, M.B.1    Kharrat, R.2    Mahdavi, R.3
  • 18
    • 84891651782 scopus 로고    scopus 로고
    • Prediction of petroleum reservoir properties using different versions of adaptive neuro-fuzzy inference system hybrid models
    • F. Anifowose, J. Labadin, and A. Abdulraheem Prediction of petroleum reservoir properties using different versions of adaptive neuro-fuzzy inference system hybrid models Int. J. Comput. Inform. Syst. Ind. Manag. Appl. 5 2013 413 426
    • (2013) Int. J. Comput. Inform. Syst. Ind. Manag. Appl. , vol.5 , pp. 413-426
    • Anifowose, F.1    Labadin, J.2    Abdulraheem, A.3
  • 20
    • 38849163717 scopus 로고    scopus 로고
    • Glycosylation site prediction using ensembles of support vector machine classifiers
    • C. Caragea, J. Sinapov, A. Silvescu, D. Dobbs, and V. Honavar Glycosylation site prediction using ensembles of support vector machine classifiers BMC Bioinform. 8 438 2007 doi:10.1186/1471-2105-8-438
    • (2007) BMC Bioinform. , vol.8 , Issue.438
    • Caragea, C.1    Sinapov, J.2    Silvescu, A.3    Dobbs, D.4    Honavar, V.5
  • 21
    • 67349260139 scopus 로고    scopus 로고
    • Construct support vector machine ensemble to detect traffic incident
    • S. Chen, W. Wang, and H. Zuylen Construct support vector machine ensemble to detect traffic incident Exp. Syst. Appl. 36 2009 10976 10986
    • (2009) Exp. Syst. Appl. , vol.36 , pp. 10976-10986
    • Chen, S.1    Wang, W.2    Zuylen, H.3
  • 22
    • 84912074117 scopus 로고    scopus 로고
    • Object detection
    • C. Zhang, Y. Ma, Springer Science+Business Media, LLC 10.1007/978-1-4419-9326-7 8
    • J. Wu, and J.M. Rehg Object detection C. Zhang, Y. Ma, Ensemble Machine Learning: Methods and Applications 2012 Springer Science+Business Media, LLC 10.1007/978-1-4419-9326-7 8
    • (2012) Ensemble Machine Learning: Methods and Applications
    • Wu, J.1    Rehg, J.M.2
  • 23
    • 72749118515 scopus 로고    scopus 로고
    • Neural network ensembles for time series forecasting
    • Montréal Québec, Canada
    • V. Landassuri-Moreno, and J.A. Bullinaria Neural network ensembles for time series forecasting Proceedings of GECCO'09 Montréal Québec, Canada 2009 8 12
    • (2009) Proceedings of GECCO'09 , pp. 8-12
    • Landassuri-Moreno, V.1    Bullinaria, J.A.2
  • 24
    • 48049095703 scopus 로고    scopus 로고
    • Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm
    • L. Yu, S. Wang, and K.K. Lai Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm Energy Econ. 30 2008 2623 2635
    • (2008) Energy Econ. , vol.30 , pp. 2623-2635
    • Yu, L.1    Wang, S.2    Lai, K.K.3
  • 25
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Mach. Learn. 24 2 1996 123 140
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 27
    • 77950300963 scopus 로고    scopus 로고
    • Hybrid computational models for the characterization of oil and gas reservoirs
    • T. Helmy, F. Anifowose, and K. Faisal Hybrid computational models for the characterization of oil and gas reservoirs Int. J. Exp. Syst. Appl. 37 2010 5353 5363
    • (2010) Int. J. Exp. Syst. Appl. , vol.37 , pp. 5353-5363
    • Helmy, T.1    Anifowose, F.2    Faisal, K.3
  • 30
    • 79960435554 scopus 로고    scopus 로고
    • Fuzzy logic-driven and SVM-driven hybrid computational intelligence models applied to oil and gas reservoir characterization
    • F. Anifowose, and A. Abdulraheem Fuzzy logic-driven and SVM-driven hybrid computational intelligence models applied to oil and gas reservoir characterization J. Nat. Gas Sci. Eng. 3 3 2011 505 517
    • (2011) J. Nat. Gas Sci. Eng. , vol.3 , Issue.3 , pp. 505-517
    • Anifowose, F.1    Abdulraheem, A.2
  • 31
  • 32
    • 33646181069 scopus 로고    scopus 로고
    • A novel ensemble machine learning for robust microarray data classification
    • Y. Peng A novel ensemble machine learning for robust microarray data classification Comput. Biol. Med. 36 2006 553 573
    • (2006) Comput. Biol. Med. , vol.36 , pp. 553-573
    • Peng, Y.1
  • 33
    • 50149086080 scopus 로고    scopus 로고
    • A novel ensemble of classifiers for microarray data classification
    • Y. Chen, and Y. Zhao A novel ensemble of classifiers for microarray data classification Appl. Soft Comput. 8 2008 1664 1669
    • (2008) Appl. Soft Comput. , vol.8 , pp. 1664-1669
    • Chen, Y.1    Zhao, Y.2
  • 34
    • 0742271707 scopus 로고    scopus 로고
    • Cancer recognition with bagged ensembles of support vector machines
    • G. Valentini, M. Muselli, and F. Ruffino Cancer recognition with bagged ensembles of support vector machines Neurocomputing 56 2004 461 466
    • (2004) Neurocomputing , vol.56 , pp. 461-466
    • Valentini, G.1    Muselli, M.2    Ruffino, F.3
  • 35
    • 79551553504 scopus 로고    scopus 로고
    • Ensembles of probability estimation trees for customer churn prediction
    • N. GarcIa-Pedrajas, al. et, Springer-Verlag
    • K.W.D. Bock, and D.V. Poel Ensembles of probability estimation trees for customer churn prediction N. GarcIa-Pedrajas, al. et, IEA/AIE 2010, Part II, LNAI 6097 2010 Springer-Verlag 57 66
    • (2010) IEA/AIE 2010, Part II, LNAI 6097 , pp. 57-66
    • Bock, K.W.D.1    Poel, D.V.2
  • 36
    • 84912130498 scopus 로고    scopus 로고
    • Evolving neural network ensembles for control problems
    • Washington, DC, USA
    • D. Pardoe, M. Ryoo, and R. Miikkulainen Evolving neural network ensembles for control problems Proceedings of the GECCO'05 Washington, DC, USA 2005 25 29
    • (2005) Proceedings of the GECCO'05 , pp. 25-29
    • Pardoe, D.1    Ryoo, M.2    Miikkulainen, R.3
  • 37
    • 39549091893 scopus 로고    scopus 로고
    • Optimisation of pedotransfer functions using an artificial neural network ensemble method
    • L. Baker, and D. Ellison Optimisation of pedotransfer functions using an artificial neural network ensemble method Geoderma 144 2006 212 224
    • (2006) Geoderma , vol.144 , pp. 212-224
    • Baker, L.1    Ellison, D.2
  • 38
    • 84857738059 scopus 로고    scopus 로고
    • DDD: A new ensemble approach for dealing with concept drift
    • L.L. Minku, and X. Yao DDD: a new ensemble approach for dealing with concept drift IEEE Trans. Knowl. Data Eng. 24 4 2012 619 633
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , Issue.4 , pp. 619-633
    • Minku, L.L.1    Yao, X.2
  • 39
    • 79960527815 scopus 로고    scopus 로고
    • Short-term load forecasting with neural network ensembles: A comparative study
    • M.D. Felice, and X. Yao Short-term load forecasting with neural network ensembles: a comparative study IEEE Comput. Intell. Mag. 6 3 2011 47 56
    • (2011) IEEE Comput. Intell. Mag. , vol.6 , Issue.3 , pp. 47-56
    • Felice, M.D.1    Yao, X.2
  • 41
    • 0038137315 scopus 로고    scopus 로고
    • Ensemble feature selection with the simple Bayesian classification
    • A. Tsymbal, S. Puuronen, and D.W. Patterson Ensemble feature selection with the simple Bayesian classification Inf. Fusion 4 2003 87 100
    • (2003) Inf. Fusion , vol.4 , pp. 87-100
    • Tsymbal, A.1    Puuronen, S.2    Patterson, D.W.3
  • 43
    • 77955121188 scopus 로고    scopus 로고
    • Using ensembles of decision trees to automate repetitive tasks in web applications
    • Berlin, Germany, June 19-23
    • Z. Bray, and P.O. Kristensson Using ensembles of decision trees to automate repetitive tasks in web applications Proceeding of the EICS'10 Berlin, Germany, June 19-23 2010
    • (2010) Proceeding of the EICS'10
    • Bray, Z.1    Kristensson, P.O.2
  • 45
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J. Burges A tutorial on support vector machines for pattern recognition Data Min. Knowl. Discov. 2 1998 121 167
    • (1998) Data Min. Knowl. Discov. , vol.2 , pp. 121-167
    • Burges, C.J.1
  • 48
    • 34047265152 scopus 로고    scopus 로고
    • Creating a quality map of a slate deposit using support vector machines
    • J. Taboada, J.M. Matías, C. Ordóñez, and P.J. García Creating a quality map of a slate deposit using support vector machines J. Comput. Appl. Maths. 20 4 2007 84 94
    • (2007) J. Comput. Appl. Maths. , vol.20 , Issue.4 , pp. 84-94
    • Taboada, J.1    Matías, J.M.2    Ordóñez, C.3    García, P.J.4
  • 49
    • 52449110753 scopus 로고    scopus 로고
    • Multiclass least squares auto-correlation wavelet support vector machines
    • Y. Xing, X. Wu, and Z. Xu Multiclass least squares auto-correlation wavelet support vector machines Int. J. Innov. Comput. Inf. Control Express Lett. 2 4 2008 345 350
    • (2008) Int. J. Innov. Comput. Inf. Control Express Lett. , vol.2 , Issue.4 , pp. 345-350
    • Xing, Y.1    Wu, X.2    Xu, Z.3
  • 55
    • 25444484657 scopus 로고    scopus 로고
    • Managing diversity in regression ensembles
    • G. Brown, J.L. Wyatt, and P. Tino Managing diversity in regression ensembles J. Mach. Learn. Res. 6 2005 1621 1650
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1621-1650
    • Brown, G.1    Wyatt, J.L.2    Tino, P.3
  • 56
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • R. Polikar Ensemble based systems in decision making IEEE Circuits Syst. Mag. 3 2006 21 45
    • (2006) IEEE Circuits Syst. Mag. , vol.3 , pp. 21-45
    • Polikar, R.1
  • 57
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • A. Liaw, and M. Wiener Classification and regression by random forest R News 2 3 2002 18 22
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 59
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Mach. Learn. 45 1 2001 5 32
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 61
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T.K. Ho The random subspace method for constructing decision forests IEEE Trans. Pattern Anal. Mach. Intell. 20 8 1998 832 844
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 64
    • 79952191666 scopus 로고    scopus 로고
    • Higher-order co-occurrences for exploratory point pattern analysis and decision tree clustering on spatial data
    • D.G. Leibovici, L. Bastin, and M. Jackson Higher-order co-occurrences for exploratory point pattern analysis and decision tree clustering on spatial data Comput. Geosci. 37 2011 382 389
    • (2011) Comput. Geosci. , vol.37 , pp. 382-389
    • Leibovici, D.G.1    Bastin, L.2    Jackson, M.3
  • 66
    • 77952814988 scopus 로고    scopus 로고
    • Permutation importance: A corrected feature importance measure
    • A. Altmann, L. Tolosi, O. Sander, and T. Lengauer Permutation importance: a corrected feature importance measure Bioinformatics 26 10 2010 1340 1347
    • (2010) Bioinformatics , vol.26 , Issue.10 , pp. 1340-1347
    • Altmann, A.1    Tolosi, L.2    Sander, O.3    Lengauer, T.4
  • 68
    • 79960134528 scopus 로고    scopus 로고
    • Classification with correlated features: Unreliability of feature ranking and solutions
    • L. Tolosi, and T. Lengauer Classification with correlated features: unreliability of feature ranking and solutions Bioinformatics 27 2011 1986 1994
    • (2011) Bioinformatics , vol.27 , pp. 1986-1994
    • Tolosi, L.1    Lengauer, T.2
  • 69
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • Special issue on diversity in multiple classifier Systems
    • A. Tsymbal, M. Pechenizkiy, and P. Cunningham Diversity in search strategies for ensemble feature selection Information Fusion 6 1 2005 83 98 Special issue on diversity in multiple classifier Systems
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 70
    • 77949913486 scopus 로고    scopus 로고
    • The impact of diversity on online ensemble learning in the presence of concept drift
    • L.L. Minku, A.P. White, and X. Yao The impact of diversity on online ensemble learning in the presence of concept drift IEEE Trans. Knowl. Data Eng. 22 5 2010 730 742
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.5 , pp. 730-742
    • Minku, L.L.1    White, A.P.2    Yao, X.3
  • 71
    • 33749018252 scopus 로고    scopus 로고
    • An analysis of diversity measures
    • E.K. Tang, P.N. Suganthan, and X. Yao An analysis of diversity measures Mach. Learn. 65 2006 247 271
    • (2006) Mach. Learn. , vol.65 , pp. 247-271
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 73
    • 84864119523 scopus 로고    scopus 로고
    • Relationships between diversity of classification ensembles and single-class performance measures
    • S. Wang, and X. Yao Relationships between diversity of classification ensembles and single-class performance measures IEEE Trans. Knowl. Data Eng. 25 1 2013 206 219
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.1 , pp. 206-219
    • Wang, S.1    Yao, X.2
  • 77
    • 84912084680 scopus 로고    scopus 로고
    • Psychometric methods of latent variable modeling
    • N. Ye, Lawrence Erlbaum Associates
    • E. Ip, I. Cadez, and P. Smyth Psychometric methods of latent variable modeling N. Ye, The Handbook of Data Mining 2003 Lawrence Erlbaum Associates 238
    • (2003) The Handbook of Data Mining , pp. 238
    • Ip, E.1    Cadez, I.2    Smyth, P.3
  • 78
    • 78650738487 scopus 로고    scopus 로고
    • PVT properties prediction using hybrid genetic neuro-fuzzy systems
    • A. Khoukhi, and S. Albukhitan PVT properties prediction using hybrid genetic neuro-fuzzy systems Int. J. Oil Gas Coal Technol. 4 1 2011 47 63
    • (2011) Int. J. Oil Gas Coal Technol. , vol.4 , Issue.1 , pp. 47-63
    • Khoukhi, A.1    Albukhitan, S.2
  • 79
    • 84902200562 scopus 로고    scopus 로고
    • Selection of meta-parameters for support vector regression
    • V. Cherkassky, and Y. Ma Selection of Meta-Parameters for Support Vector Regression Proceedings of the ICANN 2002 687 693
    • (2002) Proceedings of the ICANN , pp. 687-693
    • Cherkassky, V.1    Ma, Y.2
  • 83
    • 84912084679 scopus 로고    scopus 로고
    • Least Squares SVM (LS-SVM) (accessed 25.12.12)
    • Least Squares SVM (LS-SVM), Basic Version available online, http://www.esat.kuleuven.be/sista/lssvmlab/ (accessed 25.12.12)
    • Basic Version Available Online
  • 84
    • 69249212288 scopus 로고    scopus 로고
    • A normal least squares support vector machine (NLS-SVM) and its learning algorithm
    • X. Peng, and Y. Wang A normal least squares support vector machine (NLS-SVM) and its learning algorithm Neurocomputing 72 2009 3734 3741
    • (2009) Neurocomputing , vol.72 , pp. 3734-3741
    • Peng, X.1    Wang, Y.2
  • 85
    • 84912128248 scopus 로고    scopus 로고
    • Bailer-Jones C.A.L., Statistical Methods, A Computer Course (accessed 21.12.12).
    • Bailer-Jones C.A.L., Statistical Methods, A Computer Course, Available from: http://www.mpiahd.mpg.de/~calj/statistical-methods-ss2011/lectures/05-regressi on.pdf (accessed 21.12.12).
  • 86
    • 0041382385 scopus 로고    scopus 로고
    • MATLAB CENTRAL (accessed 04.12.12)
    • MATLAB CENTRAL, Random Forest, Available at: http://www.mathworks.com/matlabcentral/fileexchange/31036-random-forest (accessed 04.12.12).
    • Random Forest
  • 87
    • 84912062765 scopus 로고    scopus 로고
    • Aston University Birmingham, United Kingdom Available from: (accessed 11.12.12)
    • Netlab Toolbox Neural Computing Research Group, Information Engineering 2012 Aston University Birmingham, United Kingdom Available from: http://www.ncrg.aston.ac.uk/netlab (accessed 11.12.12)
    • (2012) Neural Computing Research Group, Information Engineering
    • Toolbox, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.