메뉴 건너뛰기




Volumn , Issue , 2006, Pages 241-246

Neuro-fuzzy ensemble approach for microarray cancer gene expression data analysis

Author keywords

[No Author keywords available]

Indexed keywords

CANCER GENE EXPRESSION DATA; HUMAN UNDERSTANDABLE TERMS; MICROARRAY EXPERIMENTS; NEURO-FUZZY ENSEMBLE MODEL (NFE);

EID: 34250773981     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISEFS.2006.251144     Document Type: Conference Paper
Times cited : (73)

References (21)
  • 1
    • 23944451661 scopus 로고    scopus 로고
    • Microarray data mining: Facing the challenges
    • P.-S. Gregory and T. Pablo, "Microarray data mining: facing the challenges," SIGKDD Explorations, vol. 5, no. 2, pp. 1-5, 2003.
    • (2003) SIGKDD Explorations , vol.5 , Issue.2 , pp. 1-5
    • Gregory, P.-S.1    Pablo, T.2
  • 2
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • U. Alon, N. Barkai, D. Notterman, K. Gish, S. Ybarra, D. Mack, and A. Levine, "Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays," Proc. Natnl. Acad. Sci. USA., vol. 96, no. 12, pp. 6745-6750, 1999.
    • (1999) Proc. Natnl. Acad. Sci. USA , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.7
  • 4
  • 5
    • 0032005769 scopus 로고    scopus 로고
    • Quantification in functional magnetic resonance imaging: Fuzzy clustering vs. correlation analysis
    • R. Baumgartner, C. Windischberger, and E. Moser, "Quantification in functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis." Magn Reson Imaging, vol. 16, no. 2, pp. 115-125, 1998.
    • (1998) Magn Reson Imaging , vol.16 , Issue.2 , pp. 115-125
    • Baumgartner, R.1    Windischberger, C.2    Moser, E.3
  • 6
    • 0003410791 scopus 로고    scopus 로고
    • T. Kohonen, Ed, Secaucus, NJ, USA: Springer-Verlag New York, Inc
    • T. Kohonen, Ed., Self-organizing maps. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1997.
    • (1997) Self-organizing maps
  • 7
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haussler, "Support vector machine classification and validation of cancer tissue samples using microarray expression data," Bioinformatics, vol. 16, pp. 906-914, 2000.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 9
    • 84856999267 scopus 로고    scopus 로고
    • Feature dimension reduction for microarray data analysis using locally linear embedding
    • C. Shi and L. Chen, "Feature dimension reduction for microarray data analysis using locally linear embedding," in APBC, 2005, pp. 211-217.
    • (2005) APBC , pp. 211-217
    • Shi, C.1    Chen, L.2
  • 10
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the ga/knn method
    • L. Li, C. R. Weinberg, T. A. Darden, and L. G. Pedersen, "Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the ga/knn method," Bioinformatics, vol. 17, pp. 1131-1142, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 1131-1142
    • Li, L.1    Weinberg, C.R.2    Darden, T.A.3    Pedersen, L.G.4
  • 11
    • 25444528447 scopus 로고    scopus 로고
    • Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes
    • T. Jirapech-Umpai and S. Aitken, "Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes," Bioinformatics, vol. 6, pp. 168-174, 2005.
    • (2005) Bioinformatics , vol.6 , pp. 168-174
    • Jirapech-Umpai, T.1    Aitken, S.2
  • 12
    • 10644265284 scopus 로고    scopus 로고
    • Microarray gene expression data association rules mining based on bsc-tree and fis-tree
    • X.-R. Jiang and L. Gruenwald, "Microarray gene expression data association rules mining based on bsc-tree and fis-tree," Data Knowl. Eng., vol. 53, no. 1, pp. 3-29, 2005.
    • (2005) Data Knowl. Eng , vol.53 , Issue.1 , pp. 3-29
    • Jiang, X.-R.1    Gruenwald, L.2
  • 13
    • 0037505696 scopus 로고    scopus 로고
    • Increasing the efficiency of fuzzy logic-based gene expression data analysis
    • H. Ressom, R. Reynolds, and R. S. Varghese, "Increasing the efficiency of fuzzy logic-based gene expression data analysis," Physiol. Genomics, vol. 13, pp. 107-117, 2003.
    • (2003) Physiol. Genomics , vol.13 , pp. 107-117
    • Ressom, H.1    Reynolds, R.2    Varghese, R.S.3
  • 14
    • 84960463485 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • C. H. Q. Ding and H. Peng, "Minimum redundancy feature selection from microarray gene expression data." in CSB, 2003, pp. 523-529.
    • (2003) CSB , pp. 523-529
    • Ding, C.H.Q.1    Peng, H.2
  • 16
    • 34250765223 scopus 로고    scopus 로고
    • L. Yu and H. Liu, Redundancy based feature selection for microarray data, Department of Computer Science and Engineering Arizona State University, Technical Report, 2004.
    • L. Yu and H. Liu, "Redundancy based feature selection for microarray data," Department of Computer Science and Engineering Arizona State University," Technical Report, 2004.
  • 18
    • 0036161338 scopus 로고    scopus 로고
    • Automatic detection of distorted plethysmogram pulses in neonates and paediatric patients using an adaptive-network-based fuzzy inference system
    • S. Y. Belal, A. Taktak, A. Nevill, S. Spencer, D. Roden, and S. Bevan, "Automatic detection of distorted plethysmogram pulses in neonates and paediatric patients using an adaptive-network-based fuzzy inference system," Artificial Intelligence in Medicine, no. 24, pp. 149-165, 2002.
    • (2002) Artificial Intelligence in Medicine , Issue.24 , pp. 149-165
    • Belal, S.Y.1    Taktak, A.2    Nevill, A.3    Spencer, S.4    Roden, D.5    Bevan, S.6
  • 19
  • 20
    • 4043104782 scopus 로고    scopus 로고
    • Machine learning in dna microarray analysis for cancer classification
    • S. Cho and H. Won, "Machine learning in dna microarray analysis for cancer classification," in APBC, vol. 34, 2003, pp. 189-198.
    • (2003) APBC , vol.34 , pp. 189-198
    • Cho, S.1    Won, H.2
  • 21
    • 0034730186 scopus 로고    scopus 로고
    • Ongoing immunoglobulin somatic mutation in germinal center b cell-like but not in activated b cell-like diffuse large cell lymphomas
    • I. S. Lossos, A. A. Alizadeh, M. B. Eisen, W. C. Chan, P. O. Brown, D. Bostein, L. M. Staudt, , and R. Levy, "Ongoing immunoglobulin somatic mutation in germinal center b cell-like but not in activated b cell-like diffuse large cell lymphomas," in Proc. of the Natl. Acad. of Sci. USA, vol. 97, 2000, pp. 10209-10213.
    • (2000) Proc. of the Natl. Acad. of Sci. USA , vol.97 , pp. 10209-10213
    • Lossos, I.S.1    Alizadeh, A.A.2    Eisen, M.B.3    Chan, W.C.4    Brown, P.O.5    Bostein, D.6    Staudt, L.M.7    Levy, R.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.