메뉴 건너뛰기




Volumn 383, Issue 3-4, 2010, Pages 330-340

Estimation of ice thickness on lakes using artificial neural network ensembles

Author keywords

Artificial neural networks; Bagging; Boosting; Ice thickness; Lake ice growth; Neural network ensemble

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BAGGING; ICE GROWTH; ICE THICKNESS; NEURAL NETWORK ENSEMBLES;

EID: 77549086197     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2010.01.006     Document Type: Article
Times cited : (75)

References (68)
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 24 (1996) 123-140
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • Breiman L. Stacked regressions. Mach. Learn. 24 (1996) 49-64
    • (1996) Mach. Learn. , vol.24 , pp. 49-64
    • Breiman, L.1
  • 7
    • 0036499322 scopus 로고    scopus 로고
    • Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models
    • Cannon A.J., and Whitfield P.H. Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models. J. Hydrol. 259 (2002) 136-151
    • (2002) J. Hydrol. , vol.259 , pp. 136-151
    • Cannon, A.J.1    Whitfield, P.H.2
  • 8
    • 84972539015 scopus 로고
    • Neural network a review from a statistical perspective
    • Cheng B., and Titterington D.M. Neural network a review from a statistical perspective. Stat. Sci. l (1994) 2-54
    • (1994) Stat. Sci. , Issue.l , pp. 2-54
    • Cheng, B.1    Titterington, D.M.2
  • 9
    • 38349000857 scopus 로고    scopus 로고
    • Comparison of ice-affected streamflow estimates computed using artificial neural networks and multiple regression techniques
    • Chokmani K., Ouarda T.B.M.J., Hamilton S., Ghedira M.H., and Ginras H. Comparison of ice-affected streamflow estimates computed using artificial neural networks and multiple regression techniques. J. Hydrol. 349 (2008) 383-396
    • (2008) J. Hydrol. , vol.349 , pp. 383-396
    • Chokmani, K.1    Ouarda, T.B.M.J.2    Hamilton, S.3    Ghedira, M.H.4    Ginras, H.5
  • 10
    • 0024861871 scopus 로고
    • Approximation by superposition of as sigmoidal function
    • Cybenko G. Approximation by superposition of as sigmoidal function. Math. Control Signals Syst. 2 (1989) 303-314
    • (1989) Math. Control Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 12
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
    • Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40 2 (2000) 139-157
    • (2000) Mach. Learn. , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 15
    • 0347517462 scopus 로고    scopus 로고
    • Ice covers variability on shallow lakes at high altitudes: model simulation and observations
    • Duguay C.R., Flato G.M., Heffries M.O., Ménard P., Morris K., and Rouse W.R. Ice covers variability on shallow lakes at high altitudes: model simulation and observations. Hydrol. Process. 17 (2003) 3465-3483
    • (2003) Hydrol. Process. , vol.17 , pp. 3465-3483
    • Duguay, C.R.1    Flato, G.M.2    Heffries, M.O.3    Ménard, P.4    Morris, K.5    Rouse, W.R.6
  • 16
    • 0000801110 scopus 로고
    • Computers and the theory of statistics: thinking the unthinkable
    • Efron B. Computers and the theory of statistics: thinking the unthinkable. SIAM Rev. (1979) 21-460
    • (1979) SIAM Rev. , pp. 21-460
    • Efron, B.1
  • 18
    • 0029663491 scopus 로고    scopus 로고
    • Stacked generalization and simulated evolution
    • English T.M. Stacked generalization and simulated evolution. Biosystems 39 1 (1996) 3-18
    • (1996) Biosystems , vol.39 , Issue.1 , pp. 3-18
    • English, T.M.1
  • 19
    • 0030425317 scopus 로고    scopus 로고
    • Variability and climate sensitivity of land fast arctic sea ice
    • Flato G.M., and Brown R. Variability and climate sensitivity of land fast arctic sea ice. J. Geophys. Res. 101 (1996) 25767-25777
    • (1996) J. Geophys. Res. , vol.101 , pp. 25767-25777
    • Flato, G.M.1    Brown, R.2
  • 21
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi K. On the approximate realization of continuous mappings by neural networks. Neural Networks 2 (1989) 183-192
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 22
    • 0036027034 scopus 로고    scopus 로고
    • A comparison of index flood estimation procedures for ungauged catchments
    • Grover P.L., Burn D.H., and Cunderlik J.M. A comparison of index flood estimation procedures for ungauged catchments. Can. J. Civ. Eng. 29 5 (2002) 734-741
    • (2002) Can. J. Civ. Eng. , vol.29 , Issue.5 , pp. 734-741
    • Grover, P.L.1    Burn, D.H.2    Cunderlik, J.M.3
  • 24
    • 0024880831 scopus 로고
    • Multilayer feedforward neural networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feedforward neural networks are universal approximators. Neural Networks 2 (1989) 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 25
    • 0037401696 scopus 로고    scopus 로고
    • Explaining consumer choice through neural networks: the stacked generalization approach
    • Hu M.Y., and Tsoukalas C. Explaining consumer choice through neural networks: the stacked generalization approach. Eur. J. Oper. Res. 146 3 (2003) 650-660
    • (2003) Eur. J. Oper. Res. , vol.146 , Issue.3 , pp. 650-660
    • Hu, M.Y.1    Tsoukalas, C.2
  • 27
    • 0000262562 scopus 로고
    • Hierarchical mixture of experts and the EM algorithm
    • Jordan M.I., and Jacobs R.A. Hierarchical mixture of experts and the EM algorithm. Neural Comput. 6 (1994) 181-214
    • (1994) Neural Comput. , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 28
    • 85054435084 scopus 로고
    • Neural network ensembles, cross-validation and active learning
    • Tesauro G., Touretzky D.S., and Leen T.K. (Eds), The MIT Press, Cambridge, Massachusetts
    • Krogh A., and Vedelsby J. Neural network ensembles, cross-validation and active learning. In: Tesauro G., Touretzky D.S., and Leen T.K. (Eds). Advances in Neural Information Processing Systems vol. 7 (1995), The MIT Press, Cambridge, Massachusetts 231-238
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 29
    • 0028513178 scopus 로고
    • Scheduling of hydroelectric generation using artificial neural networks
    • Liang R.H., and Hsu Y. Scheduling of hydroelectric generation using artificial neural networks. IEE Proc., C 145 (1994) 452-458
    • (1994) IEE Proc., C , vol.145 , pp. 452-458
    • Liang, R.H.1    Hsu, Y.2
  • 31
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay D.J.C. A practical Bayesian framework for backpropagation networks. Neural Comput. 4 3 (1992) 448-472
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.J.C.1
  • 32
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier H.R., and Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model. Softw. 15 (2000) 101-123
    • (2000) Environ. Model. Softw. , vol.15 , pp. 101-123
    • Maier, H.R.1    Dandy, G.C.2
  • 33
    • 77549083732 scopus 로고    scopus 로고
    • Matousek, V., 1984. Regularity of the freezing up of the water surface and heat exchange between water body and water surface. In: Int. Assoc. Hydraul. Eng. and Res. Hamburg, Germany.
    • Matousek, V., 1984. Regularity of the freezing up of the water surface and heat exchange between water body and water surface. In: Int. Assoc. Hydraul. Eng. and Res. Hamburg, Germany.
  • 34
    • 0347664058 scopus 로고    scopus 로고
    • Simulation of ice phenology on Great Slave Lake, Northwest Territories, Canada
    • Ménard P., Duguay C.R., Flato G.M., and Rouse W.R. Simulation of ice phenology on Great Slave Lake, Northwest Territories, Canada. Hydrol. Process. 16 (2002) 3691-3706
    • (2002) Hydrol. Process. , vol.16 , pp. 3691-3706
    • Ménard, P.1    Duguay, C.R.2    Flato, G.M.3    Rouse, W.R.4
  • 36
    • 0000534999 scopus 로고
    • On supercooling and ice formation in turbulent seawater
    • Omstedt A. On supercooling and ice formation in turbulent seawater. J. Glaciol. 31 (1985) 272-280
    • (1985) J. Glaciol. , vol.31 , pp. 272-280
    • Omstedt, A.1
  • 37
    • 0022097637 scopus 로고
    • Modeling frazil ice and grease ice formation in the upper layers of the ocean
    • Omstedt A. Modeling frazil ice and grease ice formation in the upper layers of the ocean. Cold Reg. Sci. Technol. 11 (1985) 87-98
    • (1985) Cold Reg. Sci. Technol. , vol.11 , pp. 87-98
    • Omstedt, A.1
  • 38
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: an empirical study
    • Opitz D., and Maclin R. Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11 (1999) 169-198
    • (1999) J. Artif. Intell. Res. , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 40
    • 0033596117 scopus 로고    scopus 로고
    • A comparative study of regression based methods in regional flood frequency analysis
    • Pandey G.R., and Nguyen V.-T.-V. A comparative study of regression based methods in regional flood frequency analysis. J. Hydrol. 225 (1999) 92-101
    • (1999) J. Hydrol. , vol.225 , pp. 92-101
    • Pandey, G.R.1    Nguyen, V.-T.-V.2
  • 41
    • 0000926506 scopus 로고
    • When networks disagree: ensemble methods for hybrid neural networks
    • Mammone R.J. (Ed), Chapman and Hall, New York
    • Perrone M.P., and Cooper L.N. When networks disagree: ensemble methods for hybrid neural networks. In: Mammone R.J. (Ed). Artificial Neural Networks for Speech and Vision (1993), Chapman and Hall, New York 126-142
    • (1993) Artificial Neural Networks for Speech and Vision , pp. 126-142
    • Perrone, M.P.1    Cooper, L.N.2
  • 42
    • 0002983776 scopus 로고
    • Statistical aspect.6 of neural networks
    • Barndorff-Nielsen O.E., Jensen J.L., and Kendall W.S. (Eds), Chapman and Hell, London
    • Ripley B.D. Statistical aspect.6 of neural networks. In: Barndorff-Nielsen O.E., Jensen J.L., and Kendall W.S. (Eds). Networks and Chaos-Statistical and Probabilistic Aspects (1993), Chapman and Hell, London 40-123
    • (1993) Networks and Chaos-Statistical and Probabilistic Aspects , pp. 40-123
    • Ripley, B.D.1
  • 44
    • 0342506462 scopus 로고    scopus 로고
    • Application of neural network technique to rainfall-runoff modeling
    • Shamseldin A.Y. Application of neural network technique to rainfall-runoff modeling. J. Hydrol. 199 (1997) 272-294
    • (1997) J. Hydrol. , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 45
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R.E. The strength of weak learnability. Mach. Learn. 5 (1990) 197-227
    • (1990) Mach. Learn. , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 49
    • 0021641804 scopus 로고
    • Simulation of growth and decay of river ice cover
    • Shen H.T., and Chiang L.A. Simulation of growth and decay of river ice cover. J. Hydraul. Eng. 110 (1984) 958-971
    • (1984) J. Hydraul. Eng. , vol.110 , pp. 958-971
    • Shen, H.T.1    Chiang, L.A.2
  • 52
    • 0029414195 scopus 로고
    • Numerical simulation of river ice processes
    • Shen H.T., Wang D.S., and Lal A.M.W. Numerical simulation of river ice processes. J. Cold Reg. Eng. 107 (1995) 107-118
    • (1995) J. Cold Reg. Eng. , vol.107 , pp. 107-118
    • Shen, H.T.1    Wang, D.S.2    Lal, A.M.W.3
  • 53
    • 6344243351 scopus 로고    scopus 로고
    • Artificial neural network ensembles and their application in pooled flood frequency analysis
    • Shu C., and Burn D.H. Artificial neural network ensembles and their application in pooled flood frequency analysis. Water Resour. Res. 40 9 (2004)
    • (2004) Water Resour. Res. , vol.40 , Issue.9
    • Shu, C.1    Burn, D.H.2
  • 54
    • 36649031026 scopus 로고    scopus 로고
    • Flood frequency analysis at ungauged sites using artificial neural networks in canonical correlation analysis physiographic space
    • Shu C., and Ouarda T.B.M.J. Flood frequency analysis at ungauged sites using artificial neural networks in canonical correlation analysis physiographic space. Water Resour. Res. 7 (2007) 43
    • (2007) Water Resour. Res. , vol.7 , pp. 43
    • Shu, C.1    Ouarda, T.B.M.J.2
  • 55
    • 37548999007 scopus 로고    scopus 로고
    • Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system
    • Shu C., and Ouarda T.B.M.J. Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system. J. Hydrol. 349 1-2 (2008) 31-43
    • (2008) J. Hydrol. , vol.349 , Issue.1-2 , pp. 31-43
    • Shu, C.1    Ouarda, T.B.M.J.2
  • 56
    • 33846360538 scopus 로고    scopus 로고
    • Solar Radiation Monitoring Laboratory, Univ. of Oreg, Corvallis
    • Solar Radiation Monitoring Laboratory, 2004. Solar Radiation Basics, Report, Univ. of Oreg., Corvallis. .
    • (2004) Solar Radiation Basics, Report
  • 57
    • 0030243055 scopus 로고    scopus 로고
    • Process modelling using stacked neural networks
    • Sridhar D.V., Seagrave R.C., and Bartlett E.B. Process modelling using stacked neural networks. AIChE J. 42 (1996) 2529-2539
    • (1996) AIChE J. , vol.42 , pp. 2529-2539
    • Sridhar, D.V.1    Seagrave, R.C.2    Bartlett, E.B.3
  • 58
    • 0028666179 scopus 로고
    • Simulation of supercooling and size distribution of frazil ice dynamics
    • Svensson U., and Omstedt A. Simulation of supercooling and size distribution of frazil ice dynamics. Cold Reg. Sci. Technol. 22 (1994) 221-233
    • (1994) Cold Reg. Sci. Technol. , vol.22 , pp. 221-233
    • Svensson, U.1    Omstedt, A.2
  • 59
    • 0024470957 scopus 로고
    • A mathematical model of border-ice formation in rivers
    • Svensson U., Billfalk L., and Hammar L. A mathematical model of border-ice formation in rivers. Cold Reg. Sci. Technol. 16 (1989) 179-189
    • (1989) Cold Reg. Sci. Technol. , vol.16 , pp. 179-189
    • Svensson, U.1    Billfalk, L.2    Hammar, L.3
  • 60
    • 0031777214 scopus 로고    scopus 로고
    • Forecasting ENSO events-a neural network-extended EOF approach
    • Tangang F.T., Tang B., Monahan A.H., and Hsieh W.W. Forecasting ENSO events-a neural network-extended EOF approach. J. Climate 11 (1998) 29-41
    • (1998) J. Climate , vol.11 , pp. 29-41
    • Tangang, F.T.1    Tang, B.2    Monahan, A.H.3    Hsieh, W.W.4
  • 63
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: a statistical perspective
    • White H. Learning in artificial neural networks: a statistical perspective. Neural Comput. 1 (1989) 425-464
    • (1989) Neural Comput. , vol.1 , pp. 425-464
    • White, H.1
  • 65
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Networks 5 (1992) 241-259
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 66
    • 0030784223 scopus 로고    scopus 로고
    • Development of a neural network based algorithm for rainfall estimation from radar observation
    • Xiao R., and Chandrasekar V. Development of a neural network based algorithm for rainfall estimation from radar observation. IEEE Trans. Geosci. Remote Sens. 35 (1997) 160-171
    • (1997) IEEE Trans. Geosci. Remote Sens. , vol.35 , pp. 160-171
    • Xiao, R.1    Chandrasekar, V.2
  • 67
    • 0001650974 scopus 로고    scopus 로고
    • Inferential estimation of polymer quality using stacked neural networks
    • Zhang J., Martin E.B., Morris A.J., and Kiparissides C. Inferential estimation of polymer quality using stacked neural networks. Comput. Chem. Eng. 21 (1997) s1025-s1030
    • (1997) Comput. Chem. Eng. , vol.21
    • Zhang, J.1    Martin, E.B.2    Morris, A.J.3    Kiparissides, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.