메뉴 건너뛰기




Volumn 27, Issue 14, 2011, Pages 1986-1994

Classification with correlated features: Unreliability of feature ranking and solutions

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BIOLOGICAL MODEL; BLADDER TUMOR; BREAST TUMOR; CHEMICAL STRUCTURE; CLUSTER ANALYSIS; COMPARATIVE GENOMIC HYBRIDIZATION; FEMALE; GENETICS; GENOMICS; HUMAN; METHODOLOGY; NEOPLASM; SOLUTION AND SOLUBILITY; STATISTICAL MODEL; STATISTICS;

EID: 79960134528     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btr300     Document Type: Article
Times cited : (344)

References (28)
  • 1
    • 26444453688 scopus 로고    scopus 로고
    • Bladder cancer stage and outcome defined by array based comparative genomic hybridization
    • Blaveri,E. et al. (2005) Bladder cancer stage and outcome defined by array based comparative genomic hybridization. Clin. Cancer Res., 11 (19 Part ), 7012-7022.
    • (2005) Clin. Cancer Res. , vol.11 , Issue.19 PART 1 , pp. 7012-7022
    • Blaveri, E.1
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman,L. (2001) Random forests. Mach. Learn., 45, 5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 3
    • 33846678737 scopus 로고    scopus 로고
    • Deletion of chromosome 11q predicts response to anthracyclinebased chemotherapy in early breast cancer
    • Climent,J. et al. (2007) Deletion of chromosome 11q predicts response to anthracyclinebased chemotherapy in early breast cancer. Cancer Res., 67, 18-826.
    • (2007) Cancer Res. , vol.67 , pp. 818-826
    • Climent, J.1
  • 4
    • 4143134783 scopus 로고    scopus 로고
    • Finding predictive gene groups from microarray data
    • Dettling,M. and Bühlmann,P. (2004) Finding predictive gene groups from microarray data. J. Multivar. Anal., 90, 106-131.
    • (2004) J. Multivar. Anal. , vol.90 , pp. 106-131
    • Dettling, M.1    Bühlmann, P.2
  • 5
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Díaz-Uriarte,R. and Alvarez de Andrés,S. (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7, 3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Díaz-Uriarte, R.1    Alvarez de Andrés, S.2
  • 6
    • 0032403676 scopus 로고    scopus 로고
    • Mapping loss of heterozygozity at chromosome 13q: loss at 13q12-q13 is associated with breast tumor progression and poor prognosis
    • Eiriksdottir,G. (1998) Mapping loss of heterozygozity at chromosome 13q: loss at 13q12-q13 is associated with breast tumor progression and poor rognosis. Eur. J. Cancer, 34, 2076-2081.
    • (1998) Eur. J. Cancer , vol.34 , pp. 2076-2081
    • Eiriksdottir, G.1
  • 7
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultrahigh dimensional feature space
    • Fan,J. and Lv,J. (2008) Sure independence screening for ultrahigh dimensional feature space. J. R. Stat. Soc. Ser. B Stat. Methodol., 70, 849-911.
    • (2008) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 8
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman,J. et al. (2010) Regularization paths for generalized linear models via coordinate descent. J. Stat. Softwr., 33, 1-22.
    • (2010) J. Stat. Softwr. , vol.33 , pp. 1-22
    • Friedman, J.1
  • 9
    • 36849072045 scopus 로고    scopus 로고
    • Graph implementations for nonsmooth convex programs
    • Springer
    • Grant,M. and Boyd,S. (2008) Graph implementations for nonsmooth convex programs. Recent Advances in Learning and Control, Vol. 371, Springer, p. 95-110.
    • (2008) Recent Advances in Learning and Control , vol.371 , pp. 95-110
    • Grant, M.1    Boyd, S.2
  • 11
    • 33845291140 scopus 로고    scopus 로고
    • Novel patterns of genome rearrangement and their association with survival in breast cancer
    • Hicks,J. (2006) Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res., 16, 1465-1479.
    • (2006) Genome Res. , vol.16 , pp. 1465-1479
    • Hicks, J.1
  • 12
    • 0038244058 scopus 로고    scopus 로고
    • Gene expression predictors of breast cancer outcomes
    • Huang,E. et al. (2003a) Gene expression predictors of breast cancer outcomes. Lancet, 361, 1590-1596.
    • (2003) Lancet , vol.361 , pp. 1590-1596
    • Huang, E.1
  • 13
    • 0037941536 scopus 로고    scopus 로고
    • Gene expression phenotypic models that predict the activity of oncogenic pathways
    • Huang,E. et al. (2003b) Gene expression phenotypic models that predict the activity of oncogenic pathways. Nat. Genet., 34, 226-230.
    • (2003) Nat. Genet. , vol.34 , pp. 226-230
    • Huang, E.1
  • 14
    • 0037976550 scopus 로고    scopus 로고
    • Improved gene selection for classification of microarrays
    • Jäger,J. et al. (2003) Improved gene selection for classification of microarrays. Pac. Sympos. Biocomput., 8, 53-64.
    • (2003) Pac. Sympos. Biocomput. , vol.8 , pp. 53-64
    • Jäger, J.1
  • 15
    • 85089829151 scopus 로고    scopus 로고
    • Stability of feature selection algorithms
    • Kalousis,A. et al. (2005) Stability of feature selection algorithms. In ICDM '05 Proceedings, pp. 218-225.
    • (2005) ICDM '05 Proceedings , pp. 218-225
    • Kalousis, A.1
  • 16
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw,A. andWiener,M. (2002) Classification and regression by randomForest. R News, 2, 18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 17
    • 33947425580 scopus 로고    scopus 로고
    • Supervised group Lasso with applications to microarray data analysis
    • Ma,S. et al. (2007) Supervised group Lasso with applications to microarray data analysis. BMC Bioinformatics, 8, 60.
    • (2007) BMC Bioinformatics , vol.8 , pp. 60
    • Ma, S.1
  • 18
    • 37849035696 scopus 로고    scopus 로고
    • The group lasso for logistic regression
    • Meier,L. et al. (2008) The group lasso for logistic regression. J. R. Stat. Soc. B, 70, 53-71.
    • (2008) J. R. Stat. Soc. B , vol.70 , pp. 53-71
    • Meier, L.1
  • 19
    • 34548147443 scopus 로고    scopus 로고
    • Optimization of quantitative MGMT promoter methylation analysis using pyrosequencing and combined bisulfite restriction analysis
    • Mikeska,T. et al. (2007) Optimization of quantitative MGMT promoter methylation analysis using pyrosequencing and combined bisulfite restriction nalysis. J. Mol. Diagn., 9, 368-381.
    • (2007) J. Mol. Diagn. , vol.9 , pp. 368-381
    • Mikeska, T.1
  • 20
    • 41449107306 scopus 로고    scopus 로고
    • Building pathway clusters from Random Forests classification using class votes
    • Pang,H.et al. (2008) Building pathway clusters from Random Forests classification using class votes. BMC Bioinformatics, 9, 87.
    • (2008) BMC Bioinformatics , vol.9 , pp. 87
    • Pang, H.1
  • 21
    • 34147177060 scopus 로고    scopus 로고
    • Averaged gene expression for regression
    • Park,M.Y. et al. (2007) Averaged gene expression for regression. Biostatistics, 8, 212-227.
    • (2007) Biostatistics , vol.8 , pp. 212-227
    • Park, M.Y.1
  • 22
    • 46249091578 scopus 로고    scopus 로고
    • Classification of arrayCGH data using fused SVM
    • Rapaport,F. et al. (2008) Classification of arrayCGH data using fused SVM. Bioinformatics, 24, i375-i382.
    • (2008) Bioinformatics , vol.24
    • Rapaport, F.1
  • 23
    • 0023453329 scopus 로고
    • Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw,P. (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., 20, 53-65.
    • (1987) J. Comput. Appl. Math. , vol.20 , pp. 53-65
    • Rousseeuw, P.1
  • 24
    • 48549095457 scopus 로고    scopus 로고
    • Conditional variable importance for random forests
    • Strobl,C. et al. (2008) Conditional variable importance for random forests. BMC Bioinformatics, 9, 307.
    • (2008) BMC Bioinformatics , vol.9 , pp. 307
    • Strobl, C.1
  • 25
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani,R. (1996) Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B, 58, 267-288.
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 26
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • van't Veer,L.J. (2001) Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415, 530-536.
    • (2001) Nature , vol.415 , pp. 530-536
    • van't Veer, L.J.1
  • 27
    • 79960125853 scopus 로고    scopus 로고
    • Stable feature selection via dense feature groups
    • Yu,L. et al. (2008) Stable feature selection via dense feature groups. In Proceedings of the 14th ACM KDD'08.
    • (2008) Proceedings of the 14th ACM KDD'08
    • Yu, L.1
  • 28
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models
    • Zou,H. and Li,R. (2008) One-step sparse estimates in nonconcave penalized likelihood models. Ann. Stat., 36, 1509-1533.
    • (2008) Ann. Stat. , vol.36 , pp. 1509-1533
    • Zou, H.1    Li, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.