메뉴 건너뛰기




Volumn 6097 LNAI, Issue PART 2, 2010, Pages 57-66

Ensembles of probability estimation trees for customer churn prediction

Author keywords

churn prediction; CRM; database marketing; ensemble classification; lift; PETs; probability estimation trees

Indexed keywords

CHURN PREDICTION; CRM; DATABASE MARKETING; ENSEMBLE CLASSIFICATION; PETS; PROBABILITY ESTIMATION TREES;

EID: 79551553504     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-13025-0_7     Document Type: Conference Paper
Times cited : (12)

References (23)
  • 1
    • 0036636299 scopus 로고    scopus 로고
    • The mismanagement of customer loyalty
    • Reinartz, W., Kumar, V.: The mismanagement of customer loyalty. Harvard Bus. Rev. 80, 86-94 (2002)
    • (2002) Harvard Bus. Rev. , vol.80 , pp. 86-94
    • Reinartz, W.1    Kumar, V.2
  • 3
    • 29144445856 scopus 로고    scopus 로고
    • Toward a successful CRM: Variable selection, sampling, and ensemble
    • Kim, Y.S.: Toward a successful CRM: variable selection, sampling, and ensemble. Decis. Support Syst. 41, 542-553 (2006)
    • (2006) Decis. Support Syst. , vol.41 , pp. 542-553
    • Kim, Y.S.1
  • 4
    • 22144481002 scopus 로고    scopus 로고
    • Predicting customer retention and profitability by using random forests and regression forests techniques
    • Larivière, B., Van den Poel, D.: Predicting customer retention and profitability by using random forests and regression forests techniques. Expert Syst. Appl. 29, 472-484 (2005)
    • (2005) Expert Syst. Appl. , vol.29 , pp. 472-484
    • Larivière, B.1    Van Den Poel, D.2
  • 6
    • 59649108544 scopus 로고    scopus 로고
    • Modeling churn using customer lifetime value
    • Glady, N., Baesens, B., Croux, C.: Modeling churn using customer lifetime value. Eur. J. Oper. Res. 197, 402-411 (2009)
    • (2009) Eur. J. Oper. Res. , vol.197 , pp. 402-411
    • Glady, N.1    Baesens, B.2    Croux, C.3
  • 7
    • 33744526493 scopus 로고    scopus 로고
    • Bagging and boosting classification trees to predict churn
    • DOI 10.1509/jmkr.43.2.276
    • Lemmens, A., Croux, C.: Bagging and boosting classification trees to predict churn. J. Marketing Res. 43, 276-286 (2006) (Pubitemid 43813059)
    • (2006) Journal of Marketing Research , vol.43 , Issue.2 , pp. 276-286
    • Lemmens, A.1    Croux, C.2
  • 8
    • 58349098976 scopus 로고    scopus 로고
    • Handling class imbalance in customer churn prediction
    • Burez, J., Van den Poel, D.: Handling class imbalance in customer churn prediction. Expert Syst. Appl. 36, 4626-4636 (2009)
    • (2009) Expert Syst. Appl. , vol.36 , pp. 4626-4636
    • Burez, J.1    Van Den Poel, D.2
  • 9
    • 0042346121 scopus 로고    scopus 로고
    • Tree induction for probability-based ranking
    • Provost, F., Domingos, P.: Tree induction for probability-based ranking. Mach. Learn. 52, 199-215 (2003)
    • (2003) Mach. Learn. , vol.52 , pp. 199-215
    • Provost, F.1    Domingos, P.2
  • 11
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L.: Bagging predictors. Mach. Learn. 24, 123-140 (1996)
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 12
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho, T.K.: The random subspace method for constructing decision forests. IEEE T. Pattern Anal. 20, 832-844 (1998)
    • (1998) IEEE T. Pattern Anal. , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 13
    • 38049036817 scopus 로고    scopus 로고
    • Combining bagging and random subspaces to create better ensembles
    • Berthold, M.R., ShaweTaylor, J., Lavrac, N. (eds.) IDA 2007. Springer, Heidelberg
    • Panov, P., Dzeroski, S.: Combining bagging and random subspaces to create better ensembles. In: Berthold, M.R., ShaweTaylor, J., Lavrac, N. (eds.) IDA 2007. LNCS, vol. 4723, pp. 86-94. Springer, Heidelberg (2007)
    • (2007) LNCS , vol.4723 , pp. 86-94
    • Panov, P.1    Dzeroski, S.2
  • 14
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119-139 (1997)
    • (1997) J. Comput. Syst. Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 17
    • 0002900357 scopus 로고    scopus 로고
    • The Case against Accuracy Estimation for Comparing Induction Algorithms
    • Shavlik, J. (ed.) Morgan Kaufman, San Francisco
    • Provost, F., Fawcett, T., Kohavi, R.: The Case against Accuracy Estimation for Comparing Induction Algorithms. In: Shavlik, J. (ed.) 15th International Conference on Machine Learning (ICML-1998), pp. 445-453. Morgan Kaufman, San Francisco (2000)
    • (2000) 15th International Conference on Machine Learning (ICML-1998) , pp. 445-453
    • Provost, F.1    Fawcett, T.2    Kohavi, R.3
  • 18
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Mach. Learn. 36, 105-139 (1999)
    • (1999) Mach. Learn. , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 20
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets
    • Bryll, R., Gutierrez-Osuna, R., Quek, F.: Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recogn. 36, 1291-1302 (2003)
    • (2003) Pattern Recogn. , vol.36 , pp. 1291-1302
    • Bryll, R.1    Gutierrez-Osuna, R.2    Quek, F.3
  • 21
    • 24144449551 scopus 로고    scopus 로고
    • Constrained optimization of data-mining problems to improve model performance: A direct-marketing application
    • Prinzie, A., Van den Poel, D.: Constrained optimization of data-mining problems to improve model performance: A direct-marketing application. Expert Syst. Appl. 29, 630-640 (2005)
    • (2005) Expert Syst. Appl. , vol.29 , pp. 630-640
    • Prinzie, A.1    Van Den Poel, D.2
  • 22
    • 44649133282 scopus 로고    scopus 로고
    • Analyzing PETs on imbalanced datasets when training and testing class distributions differ
    • Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. Springer, Heidelberg
    • Cieslak, D., Chawla, N.: Analyzing PETs on imbalanced datasets when training and testing class distributions differ. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 519-526. Springer, Heidelberg (2008)
    • (2008) LNCS (LNAI) , vol.5012 , pp. 519-526
    • Cieslak, D.1    Chawla, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.