-
1
-
-
84857506068
-
A microRNA guide for clinicians and basic scientists: Background and experimental techniques
-
Bernardo BC, Charchar FJ, Lin RCY, McMullen JR. A microRNA guide for clinicians and basic scientists: Background and experimental techniques. Heart Lung Circ. 2012; 21: 131-42.
-
(2012)
Heart Lung Circ.
, vol.21
, pp. 131-142
-
-
Bernardo, B.C.1
Charchar, F.J.2
Lin, R.C.Y.3
McMullen, J.R.4
-
2
-
-
84873661316
-
Functions of microRNAs in cardiovascular biology and disease
-
Hata A. Functions of microRNAs in cardiovascular biology and disease. Annu. Rev. Physiol. 2013; 75: 69-93.
-
(2013)
Annu. Rev. Physiol.
, vol.75
, pp. 69-93
-
-
Hata, A.1
-
4
-
-
71549165765
-
A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance
-
van Rooij E, Quiat D, Johnson BA et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev. Cell 2009; 17: 662-73.
-
(2009)
Dev. Cell
, vol.17
, pp. 662-673
-
-
van Rooij, E.1
Quiat, D.2
Johnson, B.A.3
-
5
-
-
33745032991
-
Myogenic factors that regulate expression of muscle-specific microRNAs
-
Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc. Natl Acad. Sci. USA 2006; 103: 8721-6.
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, pp. 8721-8726
-
-
Rao, P.K.1
Kumar, R.M.2
Farkhondeh, M.3
Baskerville, S.4
Lodish, H.F.5
-
6
-
-
33749557894
-
MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206
-
Rosenberg MI, Georges SA, Asawachaicharn A, Analau E, Tapscott SJ. MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J. Cell Biol. 2006; 175: 77-85.
-
(2006)
J. Cell Biol.
, vol.175
, pp. 77-85
-
-
Rosenberg, M.I.1
Georges, S.A.2
Asawachaicharn, A.3
Analau, E.4
Tapscott, S.J.5
-
7
-
-
51449101459
-
Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133
-
Sweetman D, Goljanek K, Rathjen T et al. Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133. Dev. Biol. 2008; 321: 491-9.
-
(2008)
Dev. Biol.
, vol.321
, pp. 491-499
-
-
Sweetman, D.1
Goljanek, K.2
Rathjen, T.3
-
8
-
-
84882814499
-
An introduction to muscle
-
Hill JA, Olson EN (eds). Academic Press, Waltham
-
Hill JA, Olson EN. An introduction to muscle. In: Hill JA, Olson EN (eds). Muscle. Academic Press, Waltham. 2012; 3-9.
-
(2012)
Muscle
, pp. 3-9
-
-
Hill, J.A.1
Olson, E.N.2
-
9
-
-
78650121847
-
Molecular distinction between physiological and pathological cardiac hypertrophy. Experimental findings and therapeutic strategies
-
Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy. Experimental findings and therapeutic strategies. Pharmacol. Ther. 2010; 128: 191-227.
-
(2010)
Pharmacol. Ther.
, vol.128
, pp. 191-227
-
-
Bernardo, B.C.1
Weeks, K.L.2
Pretorius, L.3
McMullen, J.R.4
-
10
-
-
84892679130
-
Mechanisms of muscle growth and atrophy in mammals and Drosophila
-
Piccirillo R, Demontis F, Perrimon N, Goldberg AL. Mechanisms of muscle growth and atrophy in mammals and Drosophila. Dev. Dyn. 2014; 243: 201-15.
-
(2014)
Dev. Dyn.
, vol.243
, pp. 201-215
-
-
Piccirillo, R.1
Demontis, F.2
Perrimon, N.3
Goldberg, A.L.4
-
11
-
-
23944456384
-
Skeletal muscle hypertrophy and atrophy signaling pathways
-
Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int. J. Biochem. Cell Biol. 2005; 37: 1974-84.
-
(2005)
Int. J. Biochem. Cell Biol.
, vol.37
, pp. 1974-1984
-
-
Glass, D.J.1
-
12
-
-
0030840359
-
Double muscling in cattle due to mutations in the myostatin gene
-
McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl Acad. Sci. USA 1997; 94: 12457-61.
-
(1997)
Proc. Natl Acad. Sci. USA
, vol.94
, pp. 12457-12461
-
-
McPherron, A.C.1
Lee, S.J.2
-
13
-
-
70350658270
-
Myostatin represses physiological hypertrophy of the heart and excitation-contraction coupling
-
Rodgers BD, Interlichia JP, Garikipati DK et al. Myostatin represses physiological hypertrophy of the heart and excitation-contraction coupling. J. Physiol. 2009; 587: 4873-86.
-
(2009)
J. Physiol.
, vol.587
, pp. 4873-4886
-
-
Rodgers, B.D.1
Interlichia, J.P.2
Garikipati, D.K.3
-
14
-
-
41549084155
-
Transforming growth factor-beta and myostatin signaling in skeletal muscle
-
Kollias HD, McDermott JC. Transforming growth factor-beta and myostatin signaling in skeletal muscle. J. Appl. Physiol. (1985) 2008; 104: 579-87.
-
(2008)
J. Appl. Physiol. (1985)
, vol.104
, pp. 579-587
-
-
Kollias, H.D.1
McDermott, J.C.2
-
16
-
-
0024550144
-
Alpha 1-adrenergic receptor stimulation of sarcomeric actin isogene transcription in hypertrophy of cultured rat heart muscle cells
-
Long CS, Ordahl CP, Simpson PC. Alpha 1-adrenergic receptor stimulation of sarcomeric actin isogene transcription in hypertrophy of cultured rat heart muscle cells. J. Clin. Invest. 1989; 83: 1078-82.
-
(1989)
J. Clin. Invest.
, vol.83
, pp. 1078-1082
-
-
Long, C.S.1
Ordahl, C.P.2
Simpson, P.C.3
-
18
-
-
0028916883
-
Muscle protein waste in tumor-bearing rats is effectively antagonized by a beta 2-adrenergic agonist (clenbuterol). Role of the ATP-ubiquitin-dependent proteolytic pathway
-
Costelli P, Garcia-Martinez C, Llovera M et al. Muscle protein waste in tumor-bearing rats is effectively antagonized by a beta 2-adrenergic agonist (clenbuterol). Role of the ATP-ubiquitin-dependent proteolytic pathway. J. Clin. Invest. 1995; 95: 2367-72.
-
(1995)
J. Clin. Invest.
, vol.95
, pp. 2367-2372
-
-
Costelli, P.1
Garcia-Martinez, C.2
Llovera, M.3
-
19
-
-
35148821068
-
Beta-adrenoceptor signaling in regenerating skeletal muscle after beta-agonist administration
-
Beitzel F, Sillence MN, Lynch GS. Beta-adrenoceptor signaling in regenerating skeletal muscle after beta-agonist administration. Am. J. Physiol. Endocrinol. Metab. 2007; 293: E932-40.
-
(2007)
Am. J. Physiol. Endocrinol. Metab.
, vol.293
, pp. E932-E940
-
-
Beitzel, F.1
Sillence, M.N.2
Lynch, G.S.3
-
20
-
-
77649106681
-
Novel role for β-adrenergic signalling in skeletal muscle growth, development and regeneration
-
Ryall JG, Church JE, Lynch GS. Novel role for β-adrenergic signalling in skeletal muscle growth, development and regeneration. Clin. Exp. Pharmacol. Physiol. 2010; 37: 397-401.
-
(2010)
Clin. Exp. Pharmacol. Physiol.
, vol.37
, pp. 397-401
-
-
Ryall, J.G.1
Church, J.E.2
Lynch, G.S.3
-
21
-
-
0030610854
-
Transgenic Galpha q overexpression induces cardiac contractile failure in mice
-
D'Angelo DD, Sakata Y, Lorenz JN et al. Transgenic Galpha q overexpression induces cardiac contractile failure in mice. Proc. Natl Acad. Sci. USA 1997; 94: 8121-6.
-
(1997)
Proc. Natl Acad. Sci. USA
, vol.94
, pp. 8121-8126
-
-
D'Angelo, D.D.1
Sakata, Y.2
Lorenz, J.N.3
-
22
-
-
79961032293
-
Angiotensin II, oxidative stress and skeletal muscle wasting
-
Sukhanov S, Semprun-Prieto L, Yoshida T et al. Angiotensin II, oxidative stress and skeletal muscle wasting. Am. J. Med. Sci. 2011; 342: 143-7.
-
(2011)
Am. J. Med. Sci.
, vol.342
, pp. 143-147
-
-
Sukhanov, S.1
Semprun-Prieto, L.2
Yoshida, T.3
-
23
-
-
84893197806
-
The therapeutic potential of microRNAs regulated in settings of physiological cardiac hypertrophy
-
Ooi JYY, Bernardo BC, McMullen JR. The therapeutic potential of microRNAs regulated in settings of physiological cardiac hypertrophy. Future Med. Chem. 2014; 6: 205-22.
-
(2014)
Future Med. Chem.
, vol.6
, pp. 205-222
-
-
Ooi, J.Y.Y.1
Bernardo, B.C.2
McMullen, J.R.3
-
24
-
-
34147153781
-
Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2
-
Zhao Y, Ransom JF, Li A et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 2007; 129: 303-17.
-
(2007)
Cell
, vol.129
, pp. 303-317
-
-
Zhao, Y.1
Ransom, J.F.2
Li, A.3
-
25
-
-
57749121689
-
microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart
-
Liu N, Bezprozvannaya S, Williams AH et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008; 22: 3242-54.
-
(2008)
Genes Dev.
, vol.22
, pp. 3242-3254
-
-
Liu, N.1
Bezprozvannaya, S.2
Williams, A.H.3
-
26
-
-
80052557916
-
MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes
-
Porrello ER, Johnson BA, Aurora AB et al. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ. Res. 2011; 109: 670-9.
-
(2011)
Circ. Res.
, vol.109
, pp. 670-679
-
-
Porrello, E.R.1
Johnson, B.A.2
Aurora, A.B.3
-
27
-
-
34247589595
-
Control of stress-dependent cardiac growth and gene expression by a microRNA
-
van Rooij E, Sutherland LB, Qi XX, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007; 316: 575-9.
-
(2007)
Science
, vol.316
, pp. 575-579
-
-
van Rooij, E.1
Sutherland, L.B.2
Qi, X.X.3
Richardson, J.A.4
Hill, J.5
Olson, E.N.6
-
29
-
-
84860623522
-
SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway
-
Kumarswamy R, Lyon AR, Volkmann I et al. SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur. Heart J. 2012; 33: 1067-75.
-
(2012)
Eur. Heart J.
, vol.33
, pp. 1067-1075
-
-
Kumarswamy, R.1
Lyon, A.R.2
Volkmann, I.3
-
30
-
-
70349202176
-
MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice
-
Callis TE, Pandya K, Seok HY et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 2009; 119: 2772-86.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 2772-2786
-
-
Callis, T.E.1
Pandya, K.2
Seok, H.Y.3
-
31
-
-
84899482237
-
Inhibition of miR-25 improves cardiac contractility in the failing heart
-
Wahlquist C, Jeong D, Rojas-Munoz A et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 2014; 508: 531-5.
-
(2014)
Nature
, vol.508
, pp. 531-535
-
-
Wahlquist, C.1
Jeong, D.2
Rojas-Munoz, A.3
-
32
-
-
84855171399
-
IGF-1 deficiency resists cardiac hypertrophy and myocardial contractile dysfunction. Role of microRNA-1 and microRNA-133a
-
Hua Y, Zhang Y, Ren J. IGF-1 deficiency resists cardiac hypertrophy and myocardial contractile dysfunction. Role of microRNA-1 and microRNA-133a. J. Cell Mol. Med. 2012; 16: 83-95.
-
(2012)
J. Cell Mol. Med.
, vol.16
, pp. 83-95
-
-
Hua, Y.1
Zhang, Y.2
Ren, J.3
-
33
-
-
84859762591
-
A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor: Implications in postnatal cardiac remodeling and cell survival
-
Knezevic I, Patel A, Sundaresan NR et al. A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor: Implications in postnatal cardiac remodeling and cell survival. J. Biol. Chem. 2012; 287: 12913-26.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 12913-12926
-
-
Knezevic, I.1
Patel, A.2
Sundaresan, N.R.3
-
34
-
-
10744223902
-
The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase (p110alpha) pathway
-
McMullen JR, Shioi T, Huang W-Y et al. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase (p110alpha) pathway. J. Biol. Chem. 2004; 279: 4782-93.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 4782-4793
-
-
McMullen, J.R.1
Shioi, T.2
Huang, W.-Y.3
-
35
-
-
84864621624
-
Phosphoinositide 3-kinase p110alpha is a master regulator of exercise-induced cardioprotection and PI3K gene therapy rescues cardiac dysfunction
-
Weeks KL, Gao X, Du XJ et al. Phosphoinositide 3-kinase p110alpha is a master regulator of exercise-induced cardioprotection and PI3K gene therapy rescues cardiac dysfunction. Circ. Heart Fail. 2012; 5: 523-34.
-
(2012)
Circ. Heart Fail.
, vol.5
, pp. 523-534
-
-
Weeks, K.L.1
Gao, X.2
Du, X.J.3
-
36
-
-
77950871530
-
PI3K (p110a) protects against myocardial infarction-induced heart failure: Identification of PI3K-regulated miRNAs and mRNAs
-
Lin RCY, Weeks KL, Gao X-M et al. PI3K (p110a) protects against myocardial infarction-induced heart failure: Identification of PI3K-regulated miRNAs and mRNAs. Arterioscler. Thromb. Vasc. Biol. 2010; 30: 724-32.
-
(2010)
Arterioscler. Thromb. Vasc. Biol.
, vol.30
, pp. 724-732
-
-
Lin, R.C.Y.1
Weeks, K.L.2
Gao, X.-M.3
-
38
-
-
84883593177
-
Non-coding RNAs in cardiac remodeling and heart failure
-
Kumarswamy R, Thum T. Non-coding RNAs in cardiac remodeling and heart failure. Circ. Res. 2013; 113: 676-89.
-
(2013)
Circ. Res.
, vol.113
, pp. 676-689
-
-
Kumarswamy, R.1
Thum, T.2
-
39
-
-
33845317603
-
A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure
-
van Rooij E, Sutherland LB, Liu N et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl Acad. Sci. USA 2006; 103: 18255-60.
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, pp. 18255-18260
-
-
van Rooij, E.1
Sutherland, L.B.2
Liu, N.3
-
40
-
-
78751660177
-
Pervasive roles of microRNAs in cardiovascular biology
-
Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature 2011; 469: 336-42.
-
(2011)
Nature
, vol.469
, pp. 336-342
-
-
Small, E.M.1
Olson, E.N.2
-
41
-
-
34249279050
-
MicroRNA-133 controls cardiac hypertrophy
-
Care A, Catalucci D, Felicetti F et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 2007; 13: 613-8.
-
(2007)
Nat. Med.
, vol.13
, pp. 613-618
-
-
Care, A.1
Catalucci, D.2
Felicetti, F.3
-
42
-
-
33847038668
-
MicroRNAs play an essential role in the development of cardiac hypertrophy
-
Sayed D, Hong C, Chen I-Y, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res. 2007; 100: 416-24.
-
(2007)
Circ. Res.
, vol.100
, pp. 416-424
-
-
Sayed, D.1
Hong, C.2
Chen, I.-Y.3
Lypowy, J.4
Abdellatif, M.5
-
43
-
-
64649094112
-
MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes
-
Ikeda S, He A, Kong SW et al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol. Cell. Biol. 2009; 29: 2193-204.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 2193-2204
-
-
Ikeda, S.1
He, A.2
Kong, S.W.3
-
44
-
-
78651232227
-
miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1
-
Wang J-X, Jiao J-Q, Li Q et al. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat. Med. 2011; 17: 71-8.
-
(2011)
Nat. Med.
, vol.17
, pp. 71-78
-
-
Wang, J.-X.1
Jiao, J.-Q.2
Li, Q.3
-
46
-
-
84865527591
-
Direct and indirect involvement of microRNA-499 in clinical and experimental cardiomyopathy: Novelty and significance
-
Matkovich SJ, Hu Y, Eschenbacher WH, Dorn LE, Dorn GW. Direct and indirect involvement of microRNA-499 in clinical and experimental cardiomyopathy: Novelty and significance. Circ. Res. 2012; 111: 521-31.
-
(2012)
Circ. Res.
, vol.111
, pp. 521-531
-
-
Matkovich, S.J.1
Hu, Y.2
Eschenbacher, W.H.3
Dorn, L.E.4
Dorn, G.W.5
-
47
-
-
33748102321
-
Muscle-specific microRNA miR-206 promotes muscle differentiation
-
Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A. Muscle-specific microRNA miR-206 promotes muscle differentiation. J. Cell Biol. 2006; 174: 677-87.
-
(2006)
J. Cell Biol.
, vol.174
, pp. 677-687
-
-
Kim, H.K.1
Lee, Y.S.2
Sivaprasad, U.3
Malhotra, A.4
Dutta, A.5
-
48
-
-
77958469790
-
MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3
-
Hirai H, Verma M, Watanabe S, Tastad C, Asakura Y, Asakura A. MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. J. Cell Biol. 2010; 191: 347-65.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 347-365
-
-
Hirai, H.1
Verma, M.2
Watanabe, S.3
Tastad, C.4
Asakura, Y.5
Asakura, A.6
-
49
-
-
77956370863
-
microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7
-
Chen JF, Tao Y, Li J et al. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J. Cell Biol. 2010; 190: 867-79.
-
(2010)
J. Cell Biol.
, vol.190
, pp. 867-879
-
-
Chen, J.F.1
Tao, Y.2
Li, J.3
-
50
-
-
33845677227
-
MIR-206 regulates connexin43 expression during skeletal muscle development
-
Anderson C, Catoe H, Werner R. MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res. 2006; 34: 5863-71.
-
(2006)
Nucleic Acids Res.
, vol.34
, pp. 5863-5871
-
-
Anderson, C.1
Catoe, H.2
Werner, R.3
-
51
-
-
31744432337
-
The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation
-
Chen J-F, Mandel EM, Thomson JM et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 2006; 38: 228-33.
-
(2006)
Nat. Genet.
, vol.38
, pp. 228-233
-
-
Chen, J.-F.1
Mandel, E.M.2
Thomson, J.M.3
-
52
-
-
77954413330
-
Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis
-
Sun Y, Ge Y, Drnevich J, Zhao Y, Band M, Chen J. Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. J. Cell Biol. 2010; 189: 1157-69.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 1157-1169
-
-
Sun, Y.1
Ge, Y.2
Drnevich, J.3
Zhao, Y.4
Band, M.5
Chen, J.6
-
53
-
-
84889579981
-
A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation
-
Feng Y, Niu LL, Wei W et al. A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation. Cell Death Dis. 2013; 4: e934.
-
(2013)
Cell Death Dis.
, vol.4
, pp. e934
-
-
Feng, Y.1
Niu, L.L.2
Wei, W.3
-
54
-
-
72149131804
-
MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice
-
Williams AH, Valdez G, Moresi V et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 2009; 326: 1549-54.
-
(2009)
Science
, vol.326
, pp. 1549-1554
-
-
Williams, A.H.1
Valdez, G.2
Moresi, V.3
-
56
-
-
79954623314
-
TGF-beta regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4
-
Winbanks CE, Wang B, Beyer C et al. TGF-beta regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4. J. Biol. Chem. 2011; 286: 13805-14.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 13805-13814
-
-
Winbanks, C.E.1
Wang, B.2
Beyer, C.3
-
57
-
-
43349091055
-
Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation
-
Sun Q, Zhang Y, Yang G et al. Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res. 2008; 36: 2690-9.
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 2690-2699
-
-
Sun, Q.1
Zhang, Y.2
Yang, G.3
-
58
-
-
33644779735
-
The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation
-
Naguibneva I, Ameyar-Zazoua M, Polesskaya A et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat. Cell Biol. 2006; 8: 278-84.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 278-284
-
-
Naguibneva, I.1
Ameyar-Zazoua, M.2
Polesskaya, A.3
-
59
-
-
70449558856
-
MicroRNA-221 and microRNA-222 modulate differentiation and maturation of skeletal muscle cells
-
Cardinali B, Castellani L, Fasanaro P et al. MicroRNA-221 and microRNA-222 modulate differentiation and maturation of skeletal muscle cells. PLoS ONE 2009; 4: e7607.
-
(2009)
PLoS ONE
, vol.4
, pp. e7607
-
-
Cardinali, B.1
Castellani, L.2
Fasanaro, P.3
-
60
-
-
79957626588
-
MicroRNA-378 targets the myogenic repressor MyoR during myoblast differentiation
-
Gagan J, Dey BK, Layer R, Yan Z, Dutta A. MicroRNA-378 targets the myogenic repressor MyoR during myoblast differentiation. J. Biol. Chem. 2011; 286: 19431-8.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 19431-19438
-
-
Gagan, J.1
Dey, B.K.2
Layer, R.3
Yan, Z.4
Dutta, A.5
-
61
-
-
70349764482
-
Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells
-
Juan AH, Kumar RM, Marx JG, Young RA, Sartorelli V. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol. Cell 2009; 36: 61-74.
-
(2009)
Mol. Cell
, vol.36
, pp. 61-74
-
-
Juan, A.H.1
Kumar, R.M.2
Marx, J.G.3
Young, R.A.4
Sartorelli, V.5
-
62
-
-
78751689243
-
MiR-206 and -486 induce myoblast differentiation by downregulating Pax7
-
Dey BK, Gagan J, Dutta A. MiR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol. Cell. Biol. 2011; 31: 203-14.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 203-214
-
-
Dey, B.K.1
Gagan, J.2
Dutta, A.3
-
63
-
-
77955642517
-
Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival
-
Zhou X, Wang JL, Lu J et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 2010; 142: 531-43.
-
(2010)
Cell
, vol.142
, pp. 531-543
-
-
Zhou, X.1
Wang, J.L.2
Lu, J.3
-
64
-
-
84863758115
-
Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin
-
Winbanks CE, Weeks KL, Thomson RE et al. Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. J. Cell Biol. 2012; 197: 997-1008.
-
(2012)
J. Cell Biol.
, vol.197
, pp. 997-1008
-
-
Winbanks, C.E.1
Weeks, K.L.2
Thomson, R.E.3
-
65
-
-
84891538950
-
Myostatin signaling regulates Akt activity via the regulation of miR-486 expression
-
Hitachi K, Nakatani M, Tsuchida K. Myostatin signaling regulates Akt activity via the regulation of miR-486 expression. Int. J. Biochem. Cell Biol. 2014; 47: 93-103.
-
(2014)
Int. J. Biochem. Cell Biol.
, vol.47
, pp. 93-103
-
-
Hitachi, K.1
Nakatani, M.2
Tsuchida, K.3
-
66
-
-
78651353542
-
Posttranscriptional mechanisms involving microRNA-27a and b contribute to fast-specific and glucocorticoid-mediated myostatin expression in skeletal muscle
-
Allen DL, Loh AS. Posttranscriptional mechanisms involving microRNA-27a and b contribute to fast-specific and glucocorticoid-mediated myostatin expression in skeletal muscle. Am. J. Physiol. Cell Physiol. 2011; 300: C124-37.
-
(2011)
Am. J. Physiol. Cell Physiol.
, vol.300
, pp. C124-C137
-
-
Allen, D.L.1
Loh, A.S.2
-
67
-
-
77950658339
-
Uncoupling of expression of an intronic microRNA and its myosin host gene by exon skipping
-
Bell ML, Buvoli M, Leinwand LA. Uncoupling of expression of an intronic microRNA and its myosin host gene by exon skipping. Mol. Cell. Biol. 2010; 30: 1937-45.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 1937-1945
-
-
Bell, M.L.1
Buvoli, M.2
Leinwand, L.A.3
-
68
-
-
72249095824
-
Essential amino acids increase microRNA-499-208b, and -23a and downregulate myostatin and myocyte enhancer factor 2C mRNA expression in human skeletal muscle
-
Drummond MJ, Glynn EL, Fry CS, Dhanani S, Volpi E, Rasmussen BB. Essential amino acids increase microRNA-499-208b, and -23a and downregulate myostatin and myocyte enhancer factor 2C mRNA expression in human skeletal muscle. J. Nutr. 2009; 139: 2279-84.
-
(2009)
J. Nutr.
, vol.139
, pp. 2279-2284
-
-
Drummond, M.J.1
Glynn, E.L.2
Fry, C.S.3
Dhanani, S.4
Volpi, E.5
Rasmussen, B.B.6
-
69
-
-
33745577150
-
A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep
-
Clop A, Marcq F, Takeda H et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 2006; 38: 813-8.
-
(2006)
Nat. Genet.
, vol.38
, pp. 813-818
-
-
Clop, A.1
Marcq, F.2
Takeda, H.3
-
70
-
-
84893502563
-
Expression changes in human skeletal muscle miRNAs following 10 days of bed rest in young healthy males
-
Rezen T, Kovanda A, Eiken O, Mekjavic IB, Rogelj B. Expression changes in human skeletal muscle miRNAs following 10 days of bed rest in young healthy males. Acta Physiol. 2014; 210: 655-66.
-
(2014)
Acta Physiol.
, vol.210
, pp. 655-666
-
-
Rezen, T.1
Kovanda, A.2
Eiken, O.3
Mekjavic, I.B.4
Rogelj, B.5
-
71
-
-
84891554347
-
MiR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4
-
Winbanks CE, Beyer C, Hagg A, Qian H, Sepulveda PV, Gregorevic P. MiR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4. PLoS ONE 2013; 8: e73589.
-
(2013)
PLoS ONE
, vol.8
, pp. e73589
-
-
Winbanks, C.E.1
Beyer, C.2
Hagg, A.3
Qian, H.4
Sepulveda, P.V.5
Gregorevic, P.6
-
72
-
-
84876135351
-
MiR-206 regulates the growth of the teleost tilapia (Oreochromis niloticus) through the modulation of IGF-1 gene expression
-
Yan B, Zhu CD, Guo JT, Zhao LH, Zhao JL. MiR-206 regulates the growth of the teleost tilapia (Oreochromis niloticus) through the modulation of IGF-1 gene expression. J. Exp. Biol. 2013; 216: 1265-9.
-
(2013)
J. Exp. Biol.
, vol.216
, pp. 1265-1269
-
-
Yan, B.1
Zhu, C.D.2
Guo, J.T.3
Zhao, L.H.4
Zhao, J.L.5
-
73
-
-
33846153786
-
MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy
-
McCarthy JJ, Esser KA. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J. Appl. Physiol. (1985) 2007; 102: 306-13.
-
(2007)
J. Appl. Physiol. (1985)
, vol.102
, pp. 306-313
-
-
McCarthy, J.J.1
Esser, K.A.2
-
74
-
-
84882684639
-
Identification of microRNAs involved in dexamethasone-induced muscle atrophy
-
Shen H, Liu T, Fu L et al. Identification of microRNAs involved in dexamethasone-induced muscle atrophy. Mol. Cell. Biochem. 2013; 381: 105-13.
-
(2013)
Mol. Cell. Biochem.
, vol.381
, pp. 105-113
-
-
Shen, H.1
Liu, T.2
Fu, L.3
-
76
-
-
83455168935
-
Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis
-
Huang M-B, Xu H, Xie S-J, Zhou H, Qu L-H. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS ONE 2011; 6: e29173.
-
(2011)
PLoS ONE
, vol.6
, pp. e29173
-
-
Huang, M.-B.1
Xu, H.2
Xie, S.-J.3
Zhou, H.4
Qu, L.-H.5
-
77
-
-
73449086958
-
Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions
-
Elia L, Contu R, Quintavalle M et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 2009; 120: 2377-85.
-
(2009)
Circulation
, vol.120
, pp. 2377-2385
-
-
Elia, L.1
Contu, R.2
Quintavalle, M.3
-
78
-
-
84874781146
-
Muscle-specific microRNA1 (miR1) targets heat shock protein 70 (HSP70) during dexamethasone-mediated atrophy
-
Kukreti H, Amuthavalli K, Harikumar A et al. Muscle-specific microRNA1 (miR1) targets heat shock protein 70 (HSP70) during dexamethasone-mediated atrophy. J. Biol. Chem. 2013; 288: 6663-78.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 6663-6678
-
-
Kukreti, H.1
Amuthavalli, K.2
Harikumar, A.3
-
79
-
-
84879849847
-
Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis
-
Motohashi N, Alexander MS, Shimizu-Motohashi Y, Myers JA, Kawahara G, Kunkel LM. Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis. J. Cell Sci. 2013; 126: 2678-91.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 2678-2691
-
-
Motohashi, N.1
Alexander, M.S.2
Shimizu-Motohashi, Y.3
Myers, J.A.4
Kawahara, G.5
Kunkel, L.M.6
-
80
-
-
80055083727
-
Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy
-
Wada S, Kato Y, Okutsu M et al. Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. J. Biol. Chem. 2011; 286: 38456-65.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 38456-38465
-
-
Wada, S.1
Kato, Y.2
Okutsu, M.3
-
81
-
-
84899998574
-
MiR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export
-
Hudson MB, Woodworth-Hobbs ME, Zheng B et al. MiR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export. Am. J. Physiol. Cell Physiol. 2014; 306: 551-8.
-
(2014)
Am. J. Physiol. Cell Physiol.
, vol.306
, pp. 551-558
-
-
Hudson, M.B.1
Woodworth-Hobbs, M.E.2
Zheng, B.3
-
82
-
-
0035058846
-
Cardiac and skeletal muscle adaptations to voluntary wheel running in the mouse
-
Allen DL, Harrison BC, Maass A, Bell ML, Byrnes WC, Leinwand LA. Cardiac and skeletal muscle adaptations to voluntary wheel running in the mouse. J. Appl. Physiol. 2001; 90: 1900-8.
-
(2001)
J. Appl. Physiol.
, vol.90
, pp. 1900-1908
-
-
Allen, D.L.1
Harrison, B.C.2
Maass, A.3
Bell, M.L.4
Byrnes, W.C.5
Leinwand, L.A.6
-
83
-
-
79959312396
-
MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats
-
Soci UP, Fernandes T, Hashimoto NY et al. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol. Genomics 2011; 43: 665-73.
-
(2011)
Physiol. Genomics
, vol.43
, pp. 665-673
-
-
Soci, U.P.1
Fernandes, T.2
Hashimoto, N.Y.3
-
84
-
-
51349141401
-
Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis
-
van Rooij E, Sutherland LB, Thatcher JE et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl Acad. Sci. USA 2008; 105: 13027-32.
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 13027-13032
-
-
van Rooij, E.1
Sutherland, L.B.2
Thatcher, J.E.3
-
85
-
-
80051473367
-
Aerobic exercise training induced left ventricular hypertrophy involves regulatory microRNAs, decreased angiotensin-converting enzyme-angiotensin II, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1-7)
-
Fernandes T, Hashimoto NY, Magalhães F et al. Aerobic exercise training induced left ventricular hypertrophy involves regulatory microRNAs, decreased angiotensin-converting enzyme-angiotensin II, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1-7). Hypertension 2011; 58: 182-9.
-
(2011)
Hypertension
, vol.58
, pp. 182-189
-
-
Fernandes, T.1
Hashimoto, N.Y.2
Magalhães, F.3
-
86
-
-
84863981799
-
Swimming training in rats increases cardiac microRNA-126 expression and angiogenesis
-
Da Silva ND Jr, Fernandes T, Soci UP, Monteiro AW, Phillips MI, De Oliveira EM. Swimming training in rats increases cardiac microRNA-126 expression and angiogenesis. Med. Sci. Sports Exerc. 2012; 44: 1453-62.
-
(2012)
Med. Sci. Sports Exerc.
, vol.44
, pp. 1453-1462
-
-
Da Silva, N.D.1
Fernandes, T.2
Soci, U.P.3
Monteiro, A.W.4
Phillips, M.I.5
De Oliveira, E.M.6
-
87
-
-
84884675385
-
Swimming exercise training-induced left ventricular hypertrophy involves microRNAs and synergistic regulation of the PI3K/AKT/mTOR signaling pathway
-
Ma Z, Qi J, Meng S, Wen B, Zhang J. Swimming exercise training-induced left ventricular hypertrophy involves microRNAs and synergistic regulation of the PI3K/AKT/mTOR signaling pathway. Eur. J. Appl. Physiol. 2013; 113: 2473-86.
-
(2013)
Eur. J. Appl. Physiol.
, vol.113
, pp. 2473-2486
-
-
Ma, Z.1
Qi, J.2
Meng, S.3
Wen, B.4
Zhang, J.5
-
88
-
-
84862552061
-
Regulated expression of pH sensing G protein-coupled receptor-68 identified through chemical biology defines a new drug target for ischemic heart disease
-
Russell JL, Goetsch SC, Aguilar HR et al. Regulated expression of pH sensing G protein-coupled receptor-68 identified through chemical biology defines a new drug target for ischemic heart disease. ACS Chem. Biol. 2012; 7: 1077-83.
-
(2012)
ACS Chem. Biol.
, vol.7
, pp. 1077-1083
-
-
Russell, J.L.1
Goetsch, S.C.2
Aguilar, H.R.3
-
89
-
-
77958199189
-
Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle
-
Nielsen S, Scheele C, Yfanti C et al. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J. Physiol. 2010; 588: 4029-37.
-
(2010)
J. Physiol.
, vol.588
, pp. 4029-4037
-
-
Nielsen, S.1
Scheele, C.2
Yfanti, C.3
-
90
-
-
57349198370
-
Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids
-
Drummond MJ, McCarthy JJ, Fry CS, Esser KA, Rasmussen BB. Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am. J. Physiol. Endocrinol. Metab. 2008; 295: E1333-40.
-
(2008)
Am. J. Physiol. Endocrinol. Metab.
, vol.295
, pp. E1333-E1340
-
-
Drummond, M.J.1
McCarthy, J.J.2
Fry, C.S.3
Esser, K.A.4
Rasmussen, B.B.5
-
91
-
-
79851485637
-
High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression
-
Davidsen PK, Gallagher IJ, Hartman JW et al. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J. Appl. Physiol. (1985) 2011; 110: 309-17.
-
(2011)
J. Appl. Physiol. (1985)
, vol.110
, pp. 309-317
-
-
Davidsen, P.K.1
Gallagher, I.J.2
Hartman, J.W.3
-
92
-
-
84880801754
-
Profiling of circulating microRNAs after a bout of acute resistance exercise in humans
-
Sawada S, Kon M, Wada S, Ushida T, Suzuki K, Akimoto T. Profiling of circulating microRNAs after a bout of acute resistance exercise in humans. PLoS ONE 2013; 8: e70823.
-
(2013)
PLoS ONE
, vol.8
, pp. e70823
-
-
Sawada, S.1
Kon, M.2
Wada, S.3
Ushida, T.4
Suzuki, K.5
Akimoto, T.6
-
93
-
-
84901276569
-
Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise
-
Baggish AL, Park J, Min PK et al. Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise. J. Appl. Physiol. (1985) 2014; 116: 522-31.
-
(2014)
J. Appl. Physiol. (1985)
, vol.116
, pp. 522-531
-
-
Baggish, A.L.1
Park, J.2
Min, P.K.3
-
95
-
-
84891848945
-
MicroRNA therapeutics in cardiovascular disease models
-
Dangwal S, Thum T. MicroRNA therapeutics in cardiovascular disease models. Annu. Rev. Pharmacol. Toxicol. 2014; 54: 185-203.
-
(2014)
Annu. Rev. Pharmacol. Toxicol.
, vol.54
, pp. 185-203
-
-
Dangwal, S.1
Thum, T.2
-
97
-
-
84867903854
-
Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function
-
Bernardo BC, Gao XM, Winbanks CE et al. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc. Natl Acad. Sci. USA 2012; 109: 17615-20.
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 17615-17620
-
-
Bernardo, B.C.1
Gao, X.M.2
Winbanks, C.E.3
-
98
-
-
84896339739
-
Silencing of miR-34a attenuates cardiac dysfunction in a setting of moderate, but not severe, hypertrophic cardiomyopathy
-
Bernardo BC, Gao X-M, Tham YK et al. Silencing of miR-34a attenuates cardiac dysfunction in a setting of moderate, but not severe, hypertrophic cardiomyopathy. PLoS ONE 2014; 9: e90337.
-
(2014)
PLoS ONE
, vol.9
, pp. e90337
-
-
Bernardo, B.C.1
Gao, X.-M.2
Tham, Y.K.3
-
99
-
-
84874700585
-
MicroRNA-34a regulates cardiac ageing and function
-
Boon RA, Iekushi K, Lechner S et al. MicroRNA-34a regulates cardiac ageing and function. Nature 2013; 495: 107-10.
-
(2013)
Nature
, vol.495
, pp. 107-110
-
-
Boon, R.A.1
Iekushi, K.2
Lechner, S.3
-
100
-
-
84860340270
-
A cardiac microRNA governs systemic energy homeostasis by regulation of MED13
-
Grueter CE, van Rooij E, Johnson BA et al. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell 2012; 149: 671-83.
-
(2012)
Cell
, vol.149
, pp. 671-683
-
-
Grueter, C.E.1
van Rooij, E.2
Johnson, B.A.3
-
101
-
-
84871992154
-
Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family
-
Porrello ER, Mahmoud AI, Simpson E et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl Acad. Sci. USA 2013; 110: 187-92.
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 187-192
-
-
Porrello, E.R.1
Mahmoud, A.I.2
Simpson, E.3
-
102
-
-
80053567152
-
Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure: Clinical perspective
-
Montgomery RL, Hullinger TG, Semus HM et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure: Clinical perspective. Circulation 2011; 124: 1537-47.
-
(2011)
Circulation
, vol.124
, pp. 1537-1547
-
-
Montgomery, R.L.1
Hullinger, T.G.2
Semus, H.M.3
-
103
-
-
84890387599
-
Pharmacological inhibition of a microRNA family in nonhuman primates by a seed-targeting 8-mer antimiR
-
212ra162
-
Rottiers V, Obad S, Petri A et al. Pharmacological inhibition of a microRNA family in nonhuman primates by a seed-targeting 8-mer antimiR. Sci. Transl. Med. 2013; 5: 212ra162.
-
(2013)
Sci. Transl. Med.
, vol.5
-
-
Rottiers, V.1
Obad, S.2
Petri, A.3
-
104
-
-
84855350458
-
Inhibition of miR-15 protects against cardiac ischemic injury: Novelty and significance
-
Hullinger TG, Montgomery RL, Seto AG et al. Inhibition of miR-15 protects against cardiac ischemic injury: Novelty and significance. Circ. Res. 2012; 110: 71-81.
-
(2012)
Circ. Res.
, vol.110
, pp. 71-81
-
-
Hullinger, T.G.1
Montgomery, R.L.2
Seto, A.G.3
-
106
-
-
84871442001
-
Functional screening identifies miRNAs inducing cardiac regeneration
-
Eulalio A, Mano M, Dal Ferro M et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 2012; 492: 376-81.
-
(2012)
Nature
, vol.492
, pp. 376-381
-
-
Eulalio, A.1
Mano, M.2
Dal Ferro, M.3
-
107
-
-
84891695147
-
MiR-203, a tumor suppressor frequently down-regulated by promoter hypermethylation in rhabdomyosarcoma
-
Diao Y, Guo X, Jiang L et al. MiR-203, a tumor suppressor frequently down-regulated by promoter hypermethylation in rhabdomyosarcoma. J. Biol. Chem. 2014; 289: 529-39.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 529-539
-
-
Diao, Y.1
Guo, X.2
Jiang, L.3
-
108
-
-
68849118992
-
The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation
-
Taulli R, Bersani F, Foglizzo V et al. The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation. J. Clin. Invest. 2009; 119: 2366-78.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 2366-2378
-
-
Taulli, R.1
Bersani, F.2
Foglizzo, V.3
-
109
-
-
54549119169
-
NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma
-
Wang H, Garzon R, Sun H et al. NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 2008; 14: 369-81.
-
(2008)
Cancer Cell
, vol.14
, pp. 369-381
-
-
Wang, H.1
Garzon, R.2
Sun, H.3
-
110
-
-
77958523334
-
Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model
-
Nakasa T, Ishikawa M, Shi M, Shibuya H, Adachi N, Ochi M. Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model. J. Cell Mol. Med. 2010; 14: 2495-505.
-
(2010)
J. Cell Mol. Med.
, vol.14
, pp. 2495-2505
-
-
Nakasa, T.1
Ishikawa, M.2
Shi, M.3
Shibuya, H.4
Adachi, N.5
Ochi, M.6
-
111
-
-
84867170366
-
miR-26a is required for skeletal muscle differentiation and regeneration in mice
-
Dey BK, Gagan J, Yan Z, Dutta A. miR-26a is required for skeletal muscle differentiation and regeneration in mice. Genes Dev. 2012; 26: 2180-91.
-
(2012)
Genes Dev.
, vol.26
, pp. 2180-2191
-
-
Dey, B.K.1
Gagan, J.2
Yan, Z.3
Dutta, A.4
-
112
-
-
84861807017
-
microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice
-
Liu N, Williams AH, Maxeiner JM et al. microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J. Clin. Invest. 2012; 122: 2054-65.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 2054-2065
-
-
Liu, N.1
Williams, A.H.2
Maxeiner, J.M.3
-
113
-
-
84862812760
-
Loss of miR-29 in myoblasts contributes to dystrophic muscle pathogenesis
-
Wang L, Zhou L, Jiang P et al. Loss of miR-29 in myoblasts contributes to dystrophic muscle pathogenesis. Mol. Ther. 2012; 20: 1222-33.
-
(2012)
Mol. Ther.
, vol.20
, pp. 1222-1233
-
-
Wang, L.1
Zhou, L.2
Jiang, P.3
-
114
-
-
79551594779
-
miR-31 modulates dystrophin expression: New implications for Duchenne muscular dystrophy therapy
-
Cacchiarelli D, Incitti T, Martone J et al. miR-31 modulates dystrophin expression: New implications for Duchenne muscular dystrophy therapy. EMBO Rep. 2011; 12: 136-41.
-
(2011)
EMBO Rep.
, vol.12
, pp. 136-141
-
-
Cacchiarelli, D.1
Incitti, T.2
Martone, J.3
-
115
-
-
84856695092
-
PAI-1-regulated miR-21 defines a novel age-associated fibrogenic pathway in muscular dystrophy
-
Ardite E, Perdiguero E, Vidal B, Gutarra S, Serrano AL, Munoz-Canoves P. PAI-1-regulated miR-21 defines a novel age-associated fibrogenic pathway in muscular dystrophy. J. Cell Biol. 2012; 196: 163-75.
-
(2012)
J. Cell Biol.
, vol.196
, pp. 163-175
-
-
Ardite, E.1
Perdiguero, E.2
Vidal, B.3
Gutarra, S.4
Serrano, A.L.5
Munoz-Canoves, P.6
-
117
-
-
84873864178
-
Potential of gene therapy as a treatment for heart failure
-
Hajjar RJ. Potential of gene therapy as a treatment for heart failure. J. Clin. Invest. 2013; 123: 53-61.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 53-61
-
-
Hajjar, R.J.1
-
118
-
-
84883268937
-
Immune responses to AAV vectors: Overcoming barriers to successful gene therapy
-
Mingozzi F, High KA. Immune responses to AAV vectors: Overcoming barriers to successful gene therapy. Blood 2013; 122: 23-36.
-
(2013)
Blood
, vol.122
, pp. 23-36
-
-
Mingozzi, F.1
High, K.A.2
|