-
1
-
-
33845864967
-
Adipocytes as regulators of energy balance and glucose homeostasis
-
Rosen ED, Spiegelman BM. 2006. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444:847-853. http://dx.doi.org/10.1038/nature05483.
-
(2006)
Nature
, vol.444
, pp. 847-853
-
-
Rosen, E.D.1
Spiegelman, B.M.2
-
2
-
-
0347989317
-
Brown adipose tissue: function and physiological significance
-
Cannon B, Nedergaard J. 2004. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84:277-359. http://dx.doi.org/10.1152/physrev.00015.2003.
-
(2004)
Physiol. Rev
, vol.84
, pp. 277-359
-
-
Cannon, B.1
Nedergaard, J.2
-
3
-
-
64349105205
-
Identification and importance of brown adipose tissue in adult humans
-
Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. 2009. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360:1509-1517. http://dx.doi.org/10.1056/NEJMoa0810780.
-
(2009)
N. Engl. J. Med
, vol.360
, pp. 1509-1517
-
-
Cypess, A.M.1
Lehman, S.2
Williams, G.3
Tal, I.4
Rodman, D.5
Goldfine, A.B.6
Kuo, F.C.7
Palmer, E.L.8
Tseng, Y.H.9
Doria, A.10
Kolodny, G.M.11
Kahn, C.R.12
-
4
-
-
77950245008
-
Transcriptional control of brown fat development
-
Kajimura S, Seale P, Spiegelman BM. 2010. Transcriptional control of brown fat development. Cell Metab. 11:257-262. http://dx.doi.org/10.1016/j.cmet.2010.03.005.
-
(2010)
Cell Metab
, vol.11
, pp. 257-262
-
-
Kajimura, S.1
Seale, P.2
Spiegelman, B.M.3
-
5
-
-
84887431711
-
Brown and beige fat: development, function and therapeutic potential
-
Harms M, Seale P. 2013. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19:1252-1263. http://dx.doi.org/10.1038/nm.3361.
-
(2013)
Nat. Med
, vol.19
, pp. 1252-1263
-
-
Harms, M.1
Seale, P.2
-
6
-
-
84864287504
-
Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
-
Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM. 2012. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366-376. http://dx.doi.org/10.1016/j.cell.2012.05.016.
-
(2012)
Cell
, vol.150
, pp. 366-376
-
-
Wu, J.1
Bostrom, P.2
Sparks, L.M.3
Ye, L.4
Choi, J.H.5
Giang, A.H.6
Khandekar, M.7
Virtanen, K.A.8
Nuutila, P.9
Schaart, G.10
Huang, K.11
Tu, H.12
van Marken Lichtenbelt, W.D.13
Hoeks, J.14
Enerback, S.15
Schrauwen, P.16
Spiegelman, B.M.17
-
7
-
-
79952089254
-
Brown adipose tissue in morbidly obese subjects
-
Vijgen GH, Bouvy ND, Teule GJ, Brans B, Schrauwen P, van Marken Lichtenbelt WD. 2011. Brown adipose tissue in morbidly obese subjects. PLoS One 6:e17247. http://dx.doi.org/10.1371/journal.pone.0017247.
-
(2011)
PLoS One
, vol.6
, pp. e17247
-
-
Vijgen, G.H.1
Bouvy, N.D.2
Teule, G.J.3
Brans, B.4
Schrauwen, P.5
van Marken Lichtenbelt, W.D.6
-
8
-
-
78650945931
-
Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice
-
Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, Cohen P, Cinti S, Spiegelman BM. 2011. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest. 121:96-105. http://dx.doi.org/10.1172/JCI44271.
-
(2011)
J. Clin. Invest
, vol.121
, pp. 96-105
-
-
Seale, P.1
Conroe, H.M.2
Estall, J.3
Kajimura, S.4
Frontini, A.5
Ishibashi, J.6
Cohen, P.7
Cinti, S.8
Spiegelman, B.M.9
-
9
-
-
84858039282
-
PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein
-
Ohno H, Shinoda K, Spiegelman BM, Kajimura S. 2012. PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 15:395-404. http://dx.doi.org/10.1016/j.cmet.2012.01.019.
-
(2012)
Cell Metab
, vol.15
, pp. 395-404
-
-
Ohno, H.1
Shinoda, K.2
Spiegelman, B.M.3
Kajimura, S.4
-
10
-
-
84862776702
-
A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis
-
Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Hojlund K, Gygi SP, Spiegelman BM. 2012. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463-468. http://dx.doi.org/10.1038/nature10777.
-
(2012)
Nature
, vol.481
, pp. 463-468
-
-
Bostrom, P.1
Wu, J.2
Jedrychowski, M.P.3
Korde, A.4
Ye, L.5
Lo, J.C.6
Rasbach, K.A.7
Bostrom, E.A.8
Choi, J.H.9
Long, J.Z.10
Kajimura, S.11
Zingaretti, M.C.12
Vind, B.F.13
Tu, H.14
Cinti, S.15
Hojlund, K.16
Gygi, S.P.17
Spiegelman, B.M.18
-
11
-
-
84864615516
-
Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma
-
Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y, Rosenbaum M, Zhao Y, Gu W, Farmer SR, Accili D. 2012. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell 150: 620-632. http://dx.doi.org/10.1016/j.cell.2012.06.027.
-
(2012)
Cell
, vol.150
, pp. 620-632
-
-
Qiang, L.1
Wang, L.2
Kon, N.3
Zhao, W.4
Lee, S.5
Zhang, Y.6
Rosenbaum, M.7
Zhao, Y.8
Gu, W.9
Farmer, S.R.10
Accili, D.11
-
12
-
-
34249686631
-
Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
-
Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA. 2007. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 5:415-425. http://dx.doi.org/10.1016/j.cmet.2007.05.003.
-
(2007)
Cell Metab
, vol.5
, pp. 415-425
-
-
Inagaki, T.1
Dutchak, P.2
Zhao, G.3
Ding, X.4
Gautron, L.5
Parameswara, V.6
Li, Y.7
Goetz, R.8
Mohammadi, M.9
Esser, V.10
Elmquist, J.K.11
Gerard, R.D.12
Burgess, S.C.13
Hammer, R.E.14
Mangelsdorf, D.J.15
Kliewer, S.A.16
-
13
-
-
34249711964
-
Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
-
Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. 2007. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 5:426-437. http://dx.doi.org/10.1016/j.cmet.2007.05.002.
-
(2007)
Cell Metab
, vol.5
, pp. 426-437
-
-
Badman, M.K.1
Pissios, P.2
Kennedy, A.R.3
Koukos, G.4
Flier, J.S.5
Maratos-Flier, E.6
-
14
-
-
84863012022
-
FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis
-
Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E, Spiegelman BM. 2012. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26:271-281. http://dx.doi.org/10.1101/gad.177857.111.
-
(2012)
Genes Dev
, vol.26
, pp. 271-281
-
-
Fisher, F.M.1
Kleiner, S.2
Douris, N.3
Fox, E.C.4
Mepani, R.J.5
Verdeguer, F.6
Wu, J.7
Kharitonenkov, A.8
Flier, J.S.9
Maratos-Flier, E.10
Spiegelman, B.M.11
-
15
-
-
84863012459
-
Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones
-
Dutchak PA, Katafuchi T, Bookout AL, Choi JH, Yu RT, Mangelsdorf DJ, Kliewer SA. 2012. Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell 148:556-567. http://dx.doi.org/10.1016/j.cell.2011.11.062.
-
(2012)
Cell
, vol.148
, pp. 556-567
-
-
Dutchak, P.A.1
Katafuchi, T.2
Bookout, A.L.3
Choi, J.H.4
Yu, R.T.5
Mangelsdorf, D.J.6
Kliewer, S.A.7
-
17
-
-
84893452569
-
Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans
-
Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, Perron RM, Werner CD, Phan GQ, Kammula US, Kebebew E, Pacak K, Chen KY, Celi FS. 2014. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 19:302-309. http://dx.doi.org/10.1016/j.cmet.2013.12.017.
-
(2014)
Cell Metab
, vol.19
, pp. 302-309
-
-
Lee, P.1
Linderman, J.D.2
Smith, S.3
Brychta, R.J.4
Wang, J.5
Idelson, C.6
Perron, R.M.7
Werner, C.D.8
Phan, G.Q.9
Kammula, U.S.10
Kebebew, E.11
Pacak, K.12
Chen, K.Y.13
Celi, F.S.14
-
18
-
-
84870595878
-
MyomiR-133 regulates brown fat differentiation through Prdm16
-
Trajkovski M, Ahmed K, Esau CC, Stoffel M. 2012. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat. Cell Biol. 14:1330-1335. http://dx.doi.org/10.1038/ncb2612.
-
(2012)
Nat. Cell Biol
, vol.14
, pp. 1330-1335
-
-
Trajkovski, M.1
Ahmed, K.2
Esau, C.C.3
Stoffel, M.4
-
19
-
-
84873327762
-
MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16
-
Yin H, Pasut A, Soleimani VD, Bentzinger CF, Antoun G, Thorn S, Seale P, Fernando P, van Ijcken W, Grosveld F, Dekemp RA, Boushel R, Harper ME, Rudnicki MA. 2013. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab. 17:210-224. http://dx.doi.org/10.1016/j.cmet.2013.01.004.
-
(2013)
Cell Metab
, vol.17
, pp. 210-224
-
-
Yin, H.1
Pasut, A.2
Soleimani, V.D.3
Bentzinger, C.F.4
Antoun, G.5
Thorn, S.6
Seale, P.7
Fernando, P.8
van Ijcken, W.9
Grosveld, F.10
Dekemp, R.A.11
Boushel, R.12
Harper, M.E.13
Rudnicki, M.A.14
-
20
-
-
84877747920
-
miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit
-
Chen Y, Siegel F, Kipschull S, Haas B, Frohlich H, Meister G, Pfeifer A. 2013. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat. Commun. 4:1769. http://dx.doi.org/10.1038/ncomms2742.
-
(2013)
Nat. Commun
, vol.4
, pp. 1769
-
-
Chen, Y.1
Siegel, F.2
Kipschull, S.3
Haas, B.4
Frohlich, H.5
Meister, G.6
Pfeifer, A.7
-
21
-
-
77749299066
-
MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation
-
Ortega FJ, Moreno-Navarrete JM, Pardo G, Sabater M, Hummel M, Ferrer A, Rodriguez-Hermosa JI, Ruiz B, Ricart W, Peral B, Fernandez-Real JM. 2010. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One 5:e9022. http://dx.doi.org/10.1371/journal.pone.0009022.
-
(2010)
PLoS One
, vol.5
, pp. e9022
-
-
Ortega, F.J.1
Moreno-Navarrete, J.M.2
Pardo, G.3
Sabater, M.4
Hummel, M.5
Ferrer, A.6
Rodriguez-Hermosa, J.I.7
Ruiz, B.8
Ricart, W.9
Peral, B.10
Fernandez-Real, J.M.11
-
22
-
-
84867068010
-
Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a membrane coreceptor beta-Klotho
-
Fu T, Choi SE, Kim DH, Seok S, Suino-Powell KM, Xu HE, Kemper JK. 2012. Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a membrane coreceptor beta-Klotho. Proc. Natl. Acad. Sci. U. S. A. 109:16137-16142. http://dx.doi.org/10.1073/pnas.1205951109.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A
, vol.109
, pp. 16137-16142
-
-
Fu, T.1
Choi, S.E.2
Kim, D.H.3
Seok, S.4
Suino-Powell, K.M.5
Xu, H.E.6
Kemper, J.K.7
-
23
-
-
84888131014
-
Elevated microRNA-34a in obesity reduces NAD levels and SIRT1 activity by directly targeting NAMPT
-
Choi SE, Fu T, Seok S, Kim DH, Yu E, Lee KW, Kang Y, Li X, Kemper B, Kemper JK. 2013. Elevated microRNA-34a in obesity reduces NAD levels and SIRT1 activity by directly targeting NAMPT. Aging Cell 12: 1062-1072. http://dx.doi.org/10.1111/acel.12135.
-
(2013)
Aging Cell
, vol.12
, pp. 1062-1072
-
-
Choi, S.E.1
Fu, T.2
Seok, S.3
Kim, D.H.4
Yu, E.5
Lee, K.W.6
Kang, Y.7
Li, X.8
Kemper, B.9
Kemper, J.K.10
-
24
-
-
70350606061
-
FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states
-
Kemper JK, Xiao Z, Ponugoti B, Miao J, Fang S, Kanamaluru D, Tsang S, Wu S, Chiang CM, Veenstra TD. 2009. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 10:392-404. http://dx.doi.org/10.1016/j.cmet.2009.09.009.
-
(2009)
Cell Metab
, vol.10
, pp. 392-404
-
-
Kemper, J.K.1
Xiao, Z.2
Ponugoti, B.3
Miao, J.4
Fang, S.5
Kanamaluru, D.6
Tsang, S.7
Wu, S.8
Chiang, C.M.9
Veenstra, T.D.10
-
25
-
-
77951210885
-
A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition
-
Lee J, Padhye A, Sharma A, Song G, Miao J, Mo YY, Wang L, Kemper JK. 2010. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J. Biol. Chem. 285:12604-12611. http://dx.doi.org/10.1074/jbc.M109.094524.
-
(2010)
J. Biol. Chem
, vol.285
, pp. 12604-12611
-
-
Lee, J.1
Padhye, A.2
Sharma, A.3
Song, G.4
Miao, J.5
Mo, Y.Y.6
Wang, L.7
Kemper, J.K.8
-
26
-
-
84875358826
-
Adipose subtype-selective recruitment of TLE3 or Prdm16 by PPARgamma specifies lipid storage versus thermogenic gene programs
-
Villanueva CJ, Vergnes L, Wang J, Drew BG, Hong C, Tu Y, Hu Y, Peng X, Xu F, Saez E, Wroblewski K, Hevener AL, Reue K, Fong LG, Young SG, Tontonoz P. 2013. Adipose subtype-selective recruitment of TLE3 or Prdm16 by PPARgamma specifies lipid storage versus thermogenic gene programs. Cell Metab. 17:423-435. http://dx.doi.org/10.1016/j.cmet.2013.01.016.
-
(2013)
Cell Metab
, vol.17
, pp. 423-435
-
-
Villanueva, C.J.1
Vergnes, L.2
Wang, J.3
Drew, B.G.4
Hong, C.5
Tu, Y.6
Hu, Y.7
Peng, X.8
Xu, F.9
Saez, E.10
Wroblewski, K.11
Hevener, A.L.12
Reue, K.13
Fong, L.G.14
Young, S.G.15
Tontonoz, P.16
-
27
-
-
0024229140
-
Diet-induced type II diabetes in C57BL/6J mice
-
Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN. 1988. Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37:1163-1167.
-
(1988)
Diabetes
, vol.37
, pp. 1163-1167
-
-
Surwit, R.S.1
Kuhn, C.M.2
Cochrane, C.3
McCubbin, J.A.4
Feinglos, M.N.5
-
28
-
-
84876465920
-
Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding
-
Montgomery MK, Hallahan NL, Brown SH, Liu M, Mitchell TW, Cooney GJ, Turner N. 2013. Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 56:1129-1139. http://dx.doi.org/10.1007/s00125-013-2846-8.
-
(2013)
Diabetologia
, vol.56
, pp. 1129-1139
-
-
Montgomery, M.K.1
Hallahan, N.L.2
Brown, S.H.3
Liu, M.4
Mitchell, T.W.5
Cooney, G.J.6
Turner, N.7
-
29
-
-
84873518501
-
Adaptive thermogenesis in adipocytes: is beige the new brown?
-
Wu J, Cohen P, Spiegelman BM. 2013. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 27:234-250. http://dx.doi.org/10.1101/gad.211649.112.
-
(2013)
Genes Dev
, vol.27
, pp. 234-250
-
-
Wu, J.1
Cohen, P.2
Spiegelman, B.M.3
-
30
-
-
44149113548
-
Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex
-
Kajimura S, Seale P, Tomaru T, Erdjument-Bromage H, Cooper MP, Ruas JL, Chin S, Tempst P, Lazar MA, Spiegelman BM. 2008. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev. 22:1397-1409. http://dx.doi.org/10.1101/gad.1666108.
-
(2008)
Genes Dev
, vol.22
, pp. 1397-1409
-
-
Kajimura, S.1
Seale, P.2
Tomaru, T.3
Erdjument-Bromage, H.4
Cooper, M.P.5
Ruas, J.L.6
Chin, S.7
Tempst, P.8
Lazar, M.A.9
Spiegelman, B.M.10
-
31
-
-
34848869695
-
Tissuespecific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21
-
Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, Mohammadi M, Rosenblatt KP, Kliewer SA, Kuro-o M. 2007. Tissuespecific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J. Biol. Chem. 282:26687-26695. http://dx.doi.org/10.1074/jbc.M704165200.
-
(2007)
J. Biol. Chem
, vol.282
, pp. 26687-26695
-
-
Kurosu, H.1
Choi, M.2
Ogawa, Y.3
Dickson, A.S.4
Goetz, R.5
Eliseenkova, A.V.6
Mohammadi, M.7
Rosenblatt, K.P.8
Kliewer, S.A.9
Kuro-o, M.10
-
32
-
-
78049297991
-
Obesity is a fibroblast growth factor 21 (FGF21)-resistant state
-
Fisher FM, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS, Maratos-Flier E. 2010. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 59:2781-2789. http://dx.doi.org/10.2337/db10-0193.
-
(2010)
Diabetes
, vol.59
, pp. 2781-2789
-
-
Fisher, F.M.1
Chui, P.C.2
Antonellis, P.J.3
Bina, H.A.4
Kharitonenkov, A.5
Flier, J.S.6
Maratos-Flier, E.7
-
33
-
-
0032549811
-
A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
-
Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829-839. http://dx.doi.org/10.1016/S0092-8674 (00)81410-5.
-
(1998)
Cell
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
Wu, Z.2
Park, C.W.3
Graves, R.4
Wright, M.5
Spiegelman, B.M.6
-
34
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. 2005. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113-118. http://dx.doi.org/10.1038/nature03354.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
35
-
-
77955434383
-
Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway
-
Chau MD, Gao J, Yang Q, Wu Z, Gromada J. 2010. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc. Natl. Acad. Sci. U. S. A. 107:12553-12558. http://dx.doi.org/10.1073/pnas.1006962107.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A
, vol.107
, pp. 12553-12558
-
-
Chau, M.D.1
Gao, J.2
Yang, Q.3
Wu, Z.4
Gromada, J.5
-
36
-
-
84900423595
-
Regulation of SIRT1 by microRNAs
-
Choi SE, Kemper JK. 2013. Regulation of SIRT1 by microRNAs. Mol. Cells 36:385-392. http://dx.doi.org/10.1007/s10059-013-0297-1.
-
(2013)
Mol. Cells
, vol.36
, pp. 385-392
-
-
Choi, S.E.1
Kemper, J.K.2
-
37
-
-
63849189712
-
Serum concentrations and tissue expression of a novel endocrine regulator fibroblast growth factor-21 in patients with type 2 diabetes and obesity
-
Mraz M, Bartlova M, Lacinova Z, Michalsky D, Kasalicky M, Haluzikova D, Matoulek M, Dostalova I, Humenanska V, Haluzik M. 2009. Serum concentrations and tissue expression of a novel endocrine regulator fibroblast growth factor-21 in patients with type 2 diabetes and obesity. Clin. Endocrinol. (Oxford) 71:369-375. http://dx.doi.org/10.1111/j.1365-2265.2008.03502.x.
-
(2009)
Clin. Endocrinol. (Oxford)
, vol.71
, pp. 369-375
-
-
Mraz, M.1
Bartlova, M.2
Lacinova, Z.3
Michalsky, D.4
Kasalicky, M.5
Haluzikova, D.6
Matoulek, M.7
Dostalova, I.8
Humenanska, V.9
Haluzik, M.10
-
38
-
-
84455199475
-
Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance
-
Hale C, Chen MM, Stanislaus S, Chinookoswong N, Hager T, Wang M, Veniant MM, Xu J. 2012. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology 153:69-80. http://dx.doi.org/10.1210/en.2010-1262.
-
(2012)
Endocrinology
, vol.153
, pp. 69-80
-
-
Hale, C.1
Chen, M.M.2
Stanislaus, S.3
Chinookoswong, N.4
Hager, T.5
Wang, M.6
Veniant, M.M.7
Xu, J.8
-
39
-
-
84865422329
-
TNF-alpha represses beta-Klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway
-
Diaz-Delfin J, Hondares E, Iglesias R, Giralt M, Caelles C, Villarroya F. 2012. TNF-alpha represses beta-Klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway. Endocrinology 153:4238-4245. http://dx.doi.org/10.1210/en.2012-1193.
-
(2012)
Endocrinology
, vol.153
, pp. 4238-4245
-
-
Diaz-Delfin, J.1
Hondares, E.2
Iglesias, R.3
Giralt, M.4
Caelles, C.5
Villarroya, F.6
-
40
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
-
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J. 2006. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127: 1109-1122. http://dx.doi.org/10.1016/j.cell.2006.11.013.
-
(2006)
Cell
, vol.127
, pp. 1109-1122
-
-
Lagouge, M.1
Argmann, C.2
Gerhart-Hines, Z.3
Meziane, H.4
Lerin, C.5
Daussin, F.6
Messadeq, N.7
Milne, J.8
Lambert, P.9
Elliott, P.10
Geny, B.11
Laakso, M.12
Puigserver, P.13
Auwerx, J.14
-
41
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+metabolism and SIRT1 activity
-
Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J. 2009. AMPK regulates energy expenditure by modulating NAD+metabolism and SIRT1 activity. Nature 458: 1056-1060. http://dx.doi.org/10.1038/nature07813.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
Lagouge, M.4
Noriega, L.5
Milne, J.C.6
Elliott, P.J.7
Puigserver, P.8
Auwerx, J.9
-
42
-
-
77950190436
-
Distribution and development of brown adipocytes in the murine and human adipose organ
-
Frontini A, Cinti S. 2010. Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab. 11:253-256. http://dx.doi.org/10.1016/j.cmet.2010.03.004.
-
(2010)
Cell Metab
, vol.11
, pp. 253-256
-
-
Frontini, A.1
Cinti, S.2
-
43
-
-
84877340732
-
Evidence for two types of brown adipose tissue in humans
-
Lidell ME, Betz MJ, Dahlqvist Leinhard O, Heglind M, Elander L, Slawik M, Mussack T, Nilsson D, Romu T, Nuutila P, Virtanen KA, Beuschlein F, Persson A, Borga M, Enerback S. 2013. Evidence for two types of brown adipose tissue in humans. Nat. Med. 19:631-634. http://dx.doi.org/10.1038/nm.3017.
-
(2013)
Nat. Med
, vol.19
, pp. 631-634
-
-
Lidell, M.E.1
Betz, M.J.2
Dahlqvist Leinhard, O.3
Heglind, M.4
Elander, L.5
Slawik, M.6
Mussack, T.7
Nilsson, D.8
Romu, T.9
Nuutila, P.10
Virtanen, K.A.11
Beuschlein, F.12
Persson, A.13
Borga, M.14
Enerback, S.15
-
44
-
-
44849093847
-
Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk
-
Despres JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, Rodes-Cabau J, Bertrand OF, Poirier P. 2008. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler. Thromb. Vasc. Biol. 28:1039-1049. http://dx.doi.org/10.1161/ATVBAHA.107.159228.
-
(2008)
Arterioscler. Thromb. Vasc. Biol
, vol.28
, pp. 1039-1049
-
-
Despres, J.P.1
Lemieux, I.2
Bergeron, J.3
Pibarot, P.4
Mathieu, P.5
Larose, E.6
Rodes-Cabau, J.7
Bertrand, O.F.8
Poirier, P.9
|