-
1
-
-
77954419844
-
A biology-driven approach identifies the hypoxia gene signature as a predictor of the outcome of neuroblastoma patients
-
Fardin P, Barla A, Mosci S, Rosasco L, Verri A, Versteeg R, Caron HN, Molenaar JJ, Ora I, Eva A, et al: A biology-driven approach identifies the hypoxia gene signature as a predictor of the outcome of neuroblastoma patients. Molecular Cancer 2010, 9:185.
-
(2010)
Molecular Cancer
, vol.9
, pp. 185
-
-
Fardin, P.1
Barla, A.2
Mosci, S.3
Rosasco, L.4
Verri, A.5
Versteeg, R.6
Caron, H.N.7
Molenaar, J.J.8
Ora, I.9
Eva, A.10
-
2
-
-
0002749582
-
Neuroblastoma
-
London: Kluwer Academic; Master JRW, Palsson B
-
Thiele CJ: Neuroblastoma. In Human Cell Culture. London: Kluwer Academic; Master JRW, Palsson B 1999:21-22.
-
(1999)
Human Cell Culture
, pp. 21-22
-
-
Thiele, C.J.1
-
3
-
-
77952518375
-
Improved survival of children with neuroblastoma between 1979 and 2005: a report of the Italian Neuroblastoma Registry
-
Haupt R, Garaventa A, Gambini C, Parodi S, Cangemi G, Casale F, Viscardi E, Bianchi M, Prete A, Jenkner A, et al: Improved survival of children with neuroblastoma between 1979 and 2005: a report of the Italian Neuroblastoma Registry. J Clin Oncol 2010, 28:2331-2338.
-
(2010)
J Clin Oncol
, vol.28
, pp. 2331-2338
-
-
Haupt, R.1
Garaventa, A.2
Gambini, C.3
Parodi, S.4
Cangemi, G.5
Casale, F.6
Viscardi, E.7
Bianchi, M.8
Prete, A.9
Jenkner, A.10
-
4
-
-
79951897927
-
Selecting systemic cancer therapy one patient at a time: is there a role for molecular profiling of individual patients with advanced solid tumors?
-
Doroshow JH: Selecting systemic cancer therapy one patient at a time: is there a role for molecular profiling of individual patients with advanced solid tumors? J Clin Oncol 2010, 28:4869-4871.
-
(2010)
J Clin Oncol
, vol.28
, pp. 4869-4871
-
-
Doroshow, J.H.1
-
5
-
-
4944248113
-
Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma
-
Wei J, Greer B, Westermann F, Steinberg S, Son C, Chen Q, Whiteford C, Bilke S, Krasnoselsky A, Cenacchi N, et al: Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Cancer Res 2004, 64:6883-6891.
-
(2004)
Cancer Res
, vol.64
, pp. 6883-6891
-
-
Wei, J.1
Greer, B.2
Westermann, F.3
Steinberg, S.4
Son, C.5
Chen, Q.6
Whiteford, C.7
Bilke, S.8
Krasnoselsky, A.9
Cenacchi, N.10
-
6
-
-
28344437416
-
Prediction of clinical outcome and biological characterization of neuroblastoma by expression profiling
-
Schramm A, Schulte JH, Klein-Hitpass L, Havers W, Sieverts H, Berwanger B, Christiansen H, Warnat P, Brors B, Eils J, et al: Prediction of clinical outcome and biological characterization of neuroblastoma by expression profiling. Oncogene 2005, 24:7902-7912.
-
(2005)
Oncogene
, vol.24
, pp. 7902-7912
-
-
Schramm, A.1
Schulte, J.H.2
Klein-Hitpass, L.3
Havers, W.4
Sieverts, H.5
Berwanger, B.6
Christiansen, H.7
Warnat, P.8
Brors, B.9
Eils, J.10
-
7
-
-
20244385561
-
Expression profiling using a tumor-specific cDNA microarray predicts the prognosis of intermediate risk neuroblastomas
-
Ohira M, Oba S, Nakamura Y, Isogai E, Kaneko S, Nakagawa A, Hirata T, Kubo H, Goto T, Yamada S: Expression profiling using a tumor-specific cDNA microarray predicts the prognosis of intermediate risk neuroblastomas. Cancer Cell 2005, 7:337-350.
-
(2005)
Cancer Cell
, vol.7
, pp. 337-350
-
-
Ohira, M.1
Oba, S.2
Nakamura, Y.3
Isogai, E.4
Kaneko, S.5
Nakagawa, A.6
Hirata, T.7
Kubo, H.8
Goto, T.9
Yamada, S.10
-
8
-
-
33750963337
-
Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification
-
Oberthuer A, Berthold F, Warnat P, Hero B, Kahlert Y, Spitz R, Ernestus K, Konig R, Haas S, Eils R, et al: Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J Clin Oncol 2006, 24:5070-5078.
-
(2006)
J Clin Oncol
, vol.24
, pp. 5070-5078
-
-
Oberthuer, A.1
Berthold, F.2
Warnat, P.3
Hero, B.4
Kahlert, Y.5
Spitz, R.6
Ernestus, K.7
Konig, R.8
Haas, S.9
Eils, R.10
-
9
-
-
33749028997
-
Differential expression of neuronal genes defines subtypes of disseminated neuroblastoma with favorable and unfavorable outcome
-
Fischer M, Oberthuer A, Brors B, Kahlert Y, Skowron M, Voth H, Warnat P, Ernestus K, Hero B, Berthold F: Differential expression of neuronal genes defines subtypes of disseminated neuroblastoma with favorable and unfavorable outcome. Clin Cancer Res 2006, 12:5118-5128.
-
(2006)
Clin Cancer Res
, vol.12
, pp. 5118-5128
-
-
Fischer, M.1
Oberthuer, A.2
Brors, B.3
Kahlert, Y.4
Skowron, M.5
Voth, H.6
Warnat, P.7
Ernestus, K.8
Hero, B.9
Berthold, F.10
-
10
-
-
67649372693
-
Predicting outcomes for children with neuroblastoma using a multigene-expression signature: a retrospective SIOPEN/COG/GPOH study
-
Vermeulen J, De Preter K, Naranjo A, Vercruysse L, Van Roy N, Hellemans J, Swerts K, Bravo S, Scaruffi P, Tonini GP, et al: Predicting outcomes for children with neuroblastoma using a multigene-expression signature: a retrospective SIOPEN/COG/GPOH study. Lancet Oncol 2009, 10:663-671.
-
(2009)
Lancet Oncol
, vol.10
, pp. 663-671
-
-
Vermeulen, J.1
De Preter, K.2
Naranjo, A.3
Vercruysse, L.4
Van Roy, N.5
Hellemans, J.6
Swerts, K.7
Bravo, S.8
Scaruffi, P.9
Tonini, G.P.10
-
11
-
-
77649159750
-
Accurate Outcome Prediction in Neuroblastoma across Independent Data Sets Using a Multigene Signature
-
De Preter K, Vermeulen J, Brors B, Delattre O, Eggert A, Fischer M, Janoueix-Lerosey I, Lavarino C, Maris JM, Mora J, et al: Accurate Outcome Prediction in Neuroblastoma across Independent Data Sets Using a Multigene Signature. Clin Cancer Res 2010, 16:1532-1541.
-
(2010)
Clin Cancer Res
, vol.16
, pp. 1532-1541
-
-
De Preter, K.1
Vermeulen, J.2
Brors, B.3
Delattre, O.4
Eggert, A.5
Fischer, M.6
Janoueix-Lerosey, I.7
Lavarino, C.8
Maris, J.M.9
Mora, J.10
-
12
-
-
77955287153
-
Prognostic Impact of Gene Expression-Based Classification for Neuroblastoma
-
Oberthuer A, Hero B, Berthold F, Juraeva D, Faldum A, Kahlert Y, Asgharzadeh S, Seeger R, Scaruffi P, Tonini GP, et al: Prognostic Impact of Gene Expression-Based Classification for Neuroblastoma. J Clin Oncol 2010, 28:3506-3515.
-
(2010)
J Clin Oncol
, vol.28
, pp. 3506-3515
-
-
Oberthuer, A.1
Hero, B.2
Berthold, F.3
Juraeva, D.4
Faldum, A.5
Kahlert, Y.6
Asgharzadeh, S.7
Seeger, R.8
Scaruffi, P.9
Tonini, G.P.10
-
13
-
-
84864951415
-
Design of a multi-signature ensemble classifier predicting neuroblastoma patients' outcome
-
Cornero A, Acquaviva M, Fardin P, Versteeg R, Schramm A, Eva A, Bosco MC, Blengio F, Barzaghi S, Varesio L: Design of a multi-signature ensemble classifier predicting neuroblastoma patients' outcome. BMC Bioinformatics 2012, 13(Suppl 4):S13.
-
(2012)
BMC Bioinformatics
, vol.13
, pp. S13
-
-
Cornero, A.1
Acquaviva, M.2
Fardin, P.3
Versteeg, R.4
Schramm, A.5
Eva, A.6
Bosco, M.C.7
Blengio, F.8
Barzaghi, S.9
Varesio, L.10
-
14
-
-
70449726777
-
The l1-l2 regularization framework unmasks the hypoxia signature hidden in the transcriptome of a set of heterogeneous neuroblastoma cell lines
-
Fardin P, Barla A, Mosci S, Rosasco L, Verri A, Varesio L: The l1-l2 regularization framework unmasks the hypoxia signature hidden in the transcriptome of a set of heterogeneous neuroblastoma cell lines. BMC Genomics 2009, 10:474.
-
(2009)
BMC Genomics
, vol.10
, pp. 474
-
-
Fardin, P.1
Barla, A.2
Mosci, S.3
Rosasco, L.4
Verri, A.5
Varesio, L.6
-
15
-
-
84887170976
-
Logic Learning Machine creates explicit and stable rules stratifying neuroblastoma patients
-
Cangelosi D, Blengio F, Versteeg R, Eggert A, Garaventa A, Gambini C, Conte M, Eva A, Muselli M, Varesio L: Logic Learning Machine creates explicit and stable rules stratifying neuroblastoma patients. BMC Bioinformatics 2013, 14(Suppl 7):S12.
-
(2013)
BMC Bioinformatics
, vol.14
, pp. S12
-
-
Cangelosi, D.1
Blengio, F.2
Versteeg, R.3
Eggert, A.4
Garaventa, A.5
Gambini, C.6
Conte, M.7
Eva, A.8
Muselli, M.9
Varesio, L.10
-
16
-
-
78349283042
-
The HIF-2alpha-driven pseudo-hypoxic phenotype in tumor aggressiveness, differentiation, and vascularization
-
Pietras A, Johnsson AS, Pahlman S: The HIF-2alpha-driven pseudo-hypoxic phenotype in tumor aggressiveness, differentiation, and vascularization. Curr Top Microbiol Immunol 2010, 345:1-20.
-
(2010)
Curr Top Microbiol Immunol
, vol.345
, pp. 1-20
-
-
Pietras, A.1
Johnsson, A.S.2
Pahlman, S.3
-
17
-
-
60549083256
-
Regulation of cancer cell metabolism by hypoxia-inducible factor 1
-
Semenza GL: Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol 2009, 19:12-16.
-
(2009)
Semin Cancer Biol
, vol.19
, pp. 12-16
-
-
Semenza, G.L.1
-
18
-
-
0032581277
-
Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis
-
Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, et al: Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998, 394:485-490.
-
(1998)
Nature
, vol.394
, pp. 485-490
-
-
Carmeliet, P.1
Dor, Y.2
Herbert, J.M.3
Fukumura, D.4
Brusselmans, K.5
Dewerchin, M.6
Neeman, M.7
Bono, F.8
Abramovitch, R.9
Maxwell, P.10
-
19
-
-
77954414428
-
Impact of the hypoxic tumor microenvironment on the regulation of cancer stem cell characteristics
-
Lin Q, Yun Z: Impact of the hypoxic tumor microenvironment on the regulation of cancer stem cell characteristics. Cancer Biol Ther 2010, 9:949-956.
-
(2010)
Cancer Biol Ther
, vol.9
, pp. 949-956
-
-
Lin, Q.1
Yun, Z.2
-
20
-
-
78650373860
-
Hypoxia and hypoxia-inducible factors: master regulators of metastasis
-
Lu X, Kang Y: Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 2010, 16:5928-5935.
-
(2010)
Clin Cancer Res
, vol.16
, pp. 5928-5935
-
-
Lu, X.1
Kang, Y.2
-
21
-
-
34547125574
-
Hypoxia, gene expression, and metastasis
-
Chan DA, Giaccia AJ: Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev 2007, 26:333-339.
-
(2007)
Cancer Metastasis Rev
, vol.26
, pp. 333-339
-
-
Chan, D.A.1
Giaccia, A.J.2
-
22
-
-
0036359548
-
Hypoxia-a key regulatory factor in tumour growth
-
Harris AL: Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer 2002, 2:38-47.
-
(2002)
Nat Rev Cancer
, vol.2
, pp. 38-47
-
-
Harris, A.L.1
-
23
-
-
40949142209
-
The role of hypoxia-inducible factors in tumorigenesis
-
Rankin EB, Giaccia AJ: The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ 2008, 15:678-685.
-
(2008)
Cell Death Differ
, vol.15
, pp. 678-685
-
-
Rankin, E.B.1
Giaccia, A.J.2
-
24
-
-
77955364492
-
Identification of Multiple Hypoxia Signatures in Neuroblastoma Cell Lines by l(1)-l(2) Regularization and Data Reduction
-
Fardin P, Cornero A, Barla A, Mosci S, Acquaviva M, Rosasco L, Gambini C, Verri A, Varesio L: Identification of Multiple Hypoxia Signatures in Neuroblastoma Cell Lines by l(1)-l(2) Regularization and Data Reduction. Journal of Biomedicine and Biotechnology 2010.
-
(2010)
Journal of Biomedicine and Biotechnology
-
-
Fardin, P.1
Cornero, A.2
Barla, A.3
Mosci, S.4
Acquaviva, M.5
Rosasco, L.6
Gambini, C.7
Verri, A.8
Varesio, L.9
-
25
-
-
38349031393
-
Machine learning: a review of classification and combining techniques
-
Kotsiantis SB, Zaharakis ID, Pintelas PE: Machine learning: a review of classification and combining techniques. Artif Intell Rev 2006, 26:159-190.
-
(2006)
Artif Intell Rev
, vol.26
, pp. 159-190
-
-
Kotsiantis, S.B.1
Zaharakis, I.D.2
Pintelas, P.E.3
-
26
-
-
27544451127
-
Simple decision rules for classifying human cancers from gene expression profiles
-
Tan AC, Naiman DQ, Xu LF, Winslow RL, Geman D: Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 2005, 21:3896-3904.
-
(2005)
Bioinformatics
, vol.21
, pp. 3896-3904
-
-
Tan, A.C.1
Naiman, D.Q.2
Xu, L.F.3
Winslow, R.L.4
Geman, D.5
-
28
-
-
78649424137
-
Coupling Logical Analysis of Data and Shadow Clustering for Partially Defined Positive Boolean Function Reconstruction
-
Muselli M, Ferrari E: Coupling Logical Analysis of Data and Shadow Clustering for Partially Defined Positive Boolean Function Reconstruction. IEEE Transactions on Knowledge and Data Engineering 2011, 23:37-50.
-
(2011)
IEEE Transactions on Knowledge and Data Engineering
, vol.23
, pp. 37-50
-
-
Muselli, M.1
Ferrari, E.2
-
30
-
-
0033722102
-
An implementation of logical analysis of data
-
Boros E, Hammer P, Ibaraki T, Kogan A, Muchnik I: An implementation of logical analysis of data. IEEE Transactions on Knowledge and Data Engineering 2000, 12:292-306.
-
(2000)
IEEE Transactions on Knowledge and Data Engineering
, vol.12
, pp. 292-306
-
-
Boros, E.1
Hammer, P.2
Ibaraki, T.3
Kogan, A.4
Muchnik, I.5
-
31
-
-
61449090610
-
Evaluating switching neural networks through artificial and real gene expression data
-
Muselli M, Costacurta M, Ruffino F: Evaluating switching neural networks through artificial and real gene expression data. Artif Intell Med 2009, 45:163-171.
-
(2009)
Artif Intell Med
, vol.45
, pp. 163-171
-
-
Muselli, M.1
Costacurta, M.2
Ruffino, F.3
-
32
-
-
80051549717
-
The application of atmospheric pressure matrixassisted laser desorption/ionization to the analysis of long-term cryopreserved serum peptidome
-
Mangerini R, Romano P, Facchiano A, Damonte G, Muselli M, Rocco M, Boccardo F, Profumo A: The application of atmospheric pressure matrixassisted laser desorption/ionization to the analysis of long-term cryopreserved serum peptidome. Anal Biochem 2011, 417:174-181.
-
(2011)
Anal Biochem
, vol.417
, pp. 174-181
-
-
Mangerini, R.1
Romano, P.2
Facchiano, A.3
Damonte, G.4
Muselli, M.5
Rocco, M.6
Boccardo, F.7
Profumo, A.8
-
33
-
-
33745773915
-
Switching Neural Networks: A New Connectionist Model for Classification
-
In WIRN/NAIS 2005 Volume 3931. Berlin:Springer-Verlag; Apolloni B, Marinaro M, Nicosia G, Tagliaferri R
-
Muselli M: Switching Neural Networks: A New Connectionist Model for Classification. In WIRN/NAIS 2005 Volume 3931. Berlin: Springer-Verlag; Apolloni B, Marinaro M, Nicosia G, Tagliaferri R 2006:23-30.
-
(2006)
, pp. 23-30
-
-
Muselli, M.1
-
34
-
-
15844418259
-
Approximate multi-state reliability expressions using a new machine learning technique
-
Rocco CM, Muselli M: Approximate multi-state reliability expressions using a new machine learning technique. Reliability Engineering and System Safety 2005, 89:261-270.
-
(2005)
Reliability Engineering and System Safety
, vol.89
, pp. 261-270
-
-
Rocco, C.M.1
Muselli, M.2
-
35
-
-
84887178867
-
Estimating female labor force participation through statistical and machine learning methods: A comparison
-
Springer-Verlag; Shu-Heng C, Paul P W, Tzu-Wen K
-
Zambrano O, Rocco CM, Muselli M: Estimating female labor force participation through statistical and machine learning methods: A comparison. In Computational Intelligence in Economics and Finance Volume Berlin: Springer-Verlag; Shu-Heng C, Paul P W, Tzu-Wen K 2007:93-106.
-
(2007)
Computational Intelligence in Economics and Finance Volume Berlin
, pp. 93-106
-
-
Zambrano, O.1
Rocco, C.M.2
Muselli, M.3
-
37
-
-
0034281914
-
Hamming clustering techniques for the identification of prognostic indices in patients with advanced head and neck cancer treated with radiation therapy
-
Paoli G, Muselli M, Bellazzi R, Corvo R, Liberati D, Foppiano F: Hamming clustering techniques for the identification of prognostic indices in patients with advanced head and neck cancer treated with radiation therapy. Med Biol Eng Comput 2000, 38:483-486.
-
(2000)
Med Biol Eng Comput
, vol.38
, pp. 483-486
-
-
Paoli, G.1
Muselli, M.2
Bellazzi, R.3
Corvo, R.4
Liberati, D.5
Foppiano, F.6
-
38
-
-
0642303089
-
Alternative splicing of the human estrogen receptor alpha primary transcript: mechanisms of exon skipping
-
Ferro P, Forlani A, Muselli M, Pfeffer U: Alternative splicing of the human estrogen receptor alpha primary transcript: mechanisms of exon skipping. Int J Mol Med 2003, 12:355-363.
-
(2003)
Int J Mol Med
, vol.12
, pp. 355-363
-
-
Ferro, P.1
Forlani, A.2
Muselli, M.3
Pfeffer, U.4
-
40
-
-
84988407136
-
-
Rulex software suite. [http://www.impara-ai.com].
-
-
-
-
41
-
-
47249097168
-
Sources of variation in baseline gene expression levels from toxicogenomics study control animals across multiple laboratories
-
Boedigheimer MJ, Wolfinger RD, Bass MB, Bushel PR, Chou JW, Cooper MF, et al: Sources of variation in baseline gene expression levels from toxicogenomics study control animals across multiple laboratories. BMC Genomics 2008, 9:285.
-
(2008)
BMC Genomics
, vol.9
, pp. 285
-
-
Boedigheimer, M.J.1
Wolfinger, R.D.2
Bass, M.B.3
Bushel, P.R.4
Chou, J.W.5
Cooper, M.F.6
-
44
-
-
33645311528
-
The inconsistency of "optimal" cutpoints obtained using two criteria based on the receiver operating characteristic curve
-
Perkins NJ, Schisterman EF: The inconsistency of "optimal" cutpoints obtained using two criteria based on the receiver operating characteristic curve. Am J Epidemiol 2006, 163:670-675.
-
(2006)
Am J Epidemiol
, vol.163
, pp. 670-675
-
-
Perkins, N.J.1
Schisterman, E.F.2
-
45
-
-
0003500248
-
C4.5: programs for machine learning Morgan Kaufmann Publishers Inc
-
Quinlan JR: C4.5: programs for machine learning Morgan Kaufmann Publishers Inc; 1993.
-
(1993)
-
-
Quinlan, J.R.1
-
47
-
-
0037076272
-
Diagnosis of multiple cancer types by shrunken centroids of gene expression
-
Tibshirani RF, Hastie TF, Narasimhan BF, Chu G: Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 2002, 99:6567-6572.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 6567-6572
-
-
Tibshirani, R.F.1
Hastie, T.F.2
Narasimhan, B.F.3
Chu, G.4
-
48
-
-
77957988489
-
Class prediction for high-dimensional class-imbalanced data
-
Blagus RF, Lusa L: Class prediction for high-dimensional class-imbalanced data. BMC Bioinformatics 2010, 11:523.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 523
-
-
Blagus, R.F.1
Lusa, L.2
-
49
-
-
77958152423
-
A cost-sensitive extension of AdaBoost with markov random field priors for automated segmentation of breast tumors in ultrasonic images
-
Takemura AF, Shimizu AF, Hamamoto K: A cost-sensitive extension of AdaBoost with markov random field priors for automated segmentation of breast tumors in ultrasonic images. Int J Comput Assist Radiol Surg 2010, 5:537-547.
-
(2010)
Int J Comput Assist Radiol Surg
, vol.5
, pp. 537-547
-
-
Takemura, A.F.1
Shimizu, A.F.2
Hamamoto, K.3
-
50
-
-
56049113949
-
ProICET: a cost-sensitive system for prostate cancer data
-
Vidrighin CF, Potolea R: ProICET: a cost-sensitive system for prostate cancer data. Health informatics journal 2008, 14:297-307.
-
(2008)
Health informatics journal
, vol.14
, pp. 297-307
-
-
Vidrighin, C.F.1
Potolea, R.2
-
51
-
-
84877744350
-
Computer-aided diagnosis for early-stage lung cancer based on longitudinal and balanced data
-
Sun TF, Zhang RF, Wang JF, Li XF, Guo X: Computer-aided diagnosis for early-stage lung cancer based on longitudinal and balanced data. PLoS ONE 2013, 8:e63559.
-
(2013)
PLoS ONE
, vol.8
-
-
Sun, T.F.1
Zhang, R.F.2
Wang, J.F.3
Li, X.F.4
Guo, X.5
-
52
-
-
80055018052
-
An active learning based classification strategy for the minority class problem: application to histopathology annotation
-
Doyle S, Monaco JF, Feldman MF, Tomaszewski JF, Madabhushi A: An active learning based classification strategy for the minority class problem: application to histopathology annotation. BMC Bioinformatics 2011, 12:424.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 424
-
-
Doyle, S.1
Monaco, J.F.2
Feldman, M.F.3
Tomaszewski, J.F.4
Madabhushi, A.5
-
53
-
-
67249139015
-
Balanced gradient boosting from imbalanced data for clinical outcome prediction
-
(Electronic)
-
Teramoto R: Balanced gradient boosting from imbalanced data for clinical outcome prediction. Stat Appl Genet Mol Biol 2009, 8:1544-6115, (Electronic).
-
(2009)
Stat Appl Genet Mol Biol
, vol.8
, pp. 1544-6115
-
-
Teramoto, R.1
-
55
-
-
34047144947
-
Classification of neuroblastoma patients by published gene-expression markers reveals a low sensitivity for unfavorable courses of MYCN non-amplified disease
-
Oberthuer A, Warnat P, Kahlert Y, Westermann F, Spitz R, Brors B, Hero B, Eils R, Schwab M, Berthold F, et al: Classification of neuroblastoma patients by published gene-expression markers reveals a low sensitivity for unfavorable courses of MYCN non-amplified disease. Cancer Letters 2007, 250:250-267.
-
(2007)
Cancer Letters
, vol.250
, pp. 250-267
-
-
Oberthuer, A.1
Warnat, P.2
Kahlert, Y.3
Westermann, F.4
Spitz, R.5
Brors, B.6
Hero, B.7
Eils, R.8
Schwab, M.9
Berthold, F.10
-
56
-
-
67649397388
-
Reanalysis of neuroblastoma expression profiling data using improved methodology and extended follow-up increases validity of outcome prediction
-
Schramm A, Mierswa I, Kaderali L, Morik K, Eggert A, Schulte JH: Reanalysis of neuroblastoma expression profiling data using improved methodology and extended follow-up increases validity of outcome prediction. Cancer Lett 2009, 282:55-62.
-
(2009)
Cancer Lett
, vol.282
, pp. 55-62
-
-
Schramm, A.1
Mierswa, I.2
Kaderali, L.3
Morik, K.4
Eggert, A.5
Schulte, J.H.6
-
57
-
-
84865743175
-
Affymetrix GeneChip microarray preprocessing for multivariate analyses
-
Mccall MN, Almudevar A: Affymetrix GeneChip microarray preprocessing for multivariate analyses. Briefings in Bioinformatics 2012, 13:536-546.
-
(2012)
Briefings in Bioinformatics
, vol.13
, pp. 536-546
-
-
Mccall, M.N.1
Almudevar, A.2
-
58
-
-
84868159265
-
Motif effects in Affymetrix GeneChips seriously affect probe intensities
-
Upton GJG, Harrison AP: Motif effects in Affymetrix GeneChips seriously affect probe intensities. Nucleic Acids Res 2012, 40:9705-9716.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 9705-9716
-
-
Upton, G.J.G.1
Harrison, A.P.2
-
59
-
-
2942590732
-
Exploiting tumour hypoxia in cancer treatment
-
Brown JM, William WR: Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 2004, 4:437-447.
-
(2004)
Nat Rev Cancer
, vol.4
, pp. 437-447
-
-
Brown, J.M.1
William, W.R.2
-
60
-
-
33845432928
-
Adjusting batch effects in microarray expression data using empirical Bayes methods
-
Johnson WE, Li CF, Rabinovic A: Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8:118-127.
-
(2007)
Biostatistics
, vol.8
, pp. 118-127
-
-
Johnson, W.E.1
Li, C.F.2
Rabinovic, A.3
-
61
-
-
77955131271
-
A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data
-
Luo JF, Schumacher MF, Scherer AF, Sanoudou DF, Megherbi DF, Davison TF, Shi TF, Tong WF, Shi LF, Hong HF, et al: A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. Pharmacogenomics J 2010, 10:278-291.
-
(2010)
Pharmacogenomics J
, vol.10
, pp. 278-291
-
-
Luo, J.F.1
Schumacher, M.F.2
Scherer, A.F.3
Sanoudou, D.F.4
Megherbi, D.F.5
Davison, T.F.6
Shi, T.F.7
Tong, W.F.8
Shi, L.F.9
Hong, H.F.10
-
62
-
-
63449100807
-
ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome
-
Huang S, Laoukili J, Epping MT, Koster J, Holzel M, Westerman BA, Nijkamp W, Hata A, Asgharzadeh S, Seeger RC, et al: ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. Cancer Cell 2009, 15:328-340.
-
(2009)
Cancer Cell
, vol.15
, pp. 328-340
-
-
Huang, S.1
Laoukili, J.2
Epping, M.T.3
Koster, J.4
Holzel, M.5
Westerman, B.A.6
Nijkamp, W.7
Hata, A.8
Asgharzadeh, S.9
Seeger, R.C.10
-
63
-
-
77950655000
-
A robust method for estimating gene expression states using Affymetrix microarray probe level data
-
Ohtaki M, Otani K, Hiyama K, Kamei N, Satoh K, Hiyama E: A robust method for estimating gene expression states using Affymetrix microarray probe level data. BMC Bioinformatics 2010, 11:183.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 183
-
-
Ohtaki, M.1
Otani, K.2
Hiyama, K.3
Kamei, N.4
Satoh, K.5
Hiyama, E.6
-
64
-
-
84859098571
-
The sva package for removing batch effects and other unwanted variation in high-throughput experiments
-
Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD: The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012, 28:882-883.
-
(2012)
Bioinformatics
, vol.28
, pp. 882-883
-
-
Leek, J.T.1
Johnson, W.E.2
Parker, H.S.3
Jaffe, A.E.4
Storey, J.D.5
|