메뉴 건너뛰기




Volumn 15, Issue , 2014, Pages

Use of attribute driven incremental discretization and logic learning machine to build a prognostic classifier for neuroblastoma patients

Author keywords

[No Author keywords available]

Indexed keywords

APPLICATION PROGRAMS; COMPUTER CIRCUITS; DECISION SUPPORT SYSTEMS; DISEASES; FORECASTING; GENE EXPRESSION; LEARNING ALGORITHMS; LEARNING SYSTEMS; METADATA; PROBES; TUMORS;

EID: 84907224077     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-15-S5-S4     Document Type: Article
Times cited : (24)

References (64)
  • 2
    • 0002749582 scopus 로고    scopus 로고
    • Neuroblastoma
    • London: Kluwer Academic; Master JRW, Palsson B
    • Thiele CJ: Neuroblastoma. In Human Cell Culture. London: Kluwer Academic; Master JRW, Palsson B 1999:21-22.
    • (1999) Human Cell Culture , pp. 21-22
    • Thiele, C.J.1
  • 4
    • 79951897927 scopus 로고    scopus 로고
    • Selecting systemic cancer therapy one patient at a time: is there a role for molecular profiling of individual patients with advanced solid tumors?
    • Doroshow JH: Selecting systemic cancer therapy one patient at a time: is there a role for molecular profiling of individual patients with advanced solid tumors? J Clin Oncol 2010, 28:4869-4871.
    • (2010) J Clin Oncol , vol.28 , pp. 4869-4871
    • Doroshow, J.H.1
  • 8
    • 33750963337 scopus 로고    scopus 로고
    • Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification
    • Oberthuer A, Berthold F, Warnat P, Hero B, Kahlert Y, Spitz R, Ernestus K, Konig R, Haas S, Eils R, et al: Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J Clin Oncol 2006, 24:5070-5078.
    • (2006) J Clin Oncol , vol.24 , pp. 5070-5078
    • Oberthuer, A.1    Berthold, F.2    Warnat, P.3    Hero, B.4    Kahlert, Y.5    Spitz, R.6    Ernestus, K.7    Konig, R.8    Haas, S.9    Eils, R.10
  • 14
    • 70449726777 scopus 로고    scopus 로고
    • The l1-l2 regularization framework unmasks the hypoxia signature hidden in the transcriptome of a set of heterogeneous neuroblastoma cell lines
    • Fardin P, Barla A, Mosci S, Rosasco L, Verri A, Varesio L: The l1-l2 regularization framework unmasks the hypoxia signature hidden in the transcriptome of a set of heterogeneous neuroblastoma cell lines. BMC Genomics 2009, 10:474.
    • (2009) BMC Genomics , vol.10 , pp. 474
    • Fardin, P.1    Barla, A.2    Mosci, S.3    Rosasco, L.4    Verri, A.5    Varesio, L.6
  • 16
    • 78349283042 scopus 로고    scopus 로고
    • The HIF-2alpha-driven pseudo-hypoxic phenotype in tumor aggressiveness, differentiation, and vascularization
    • Pietras A, Johnsson AS, Pahlman S: The HIF-2alpha-driven pseudo-hypoxic phenotype in tumor aggressiveness, differentiation, and vascularization. Curr Top Microbiol Immunol 2010, 345:1-20.
    • (2010) Curr Top Microbiol Immunol , vol.345 , pp. 1-20
    • Pietras, A.1    Johnsson, A.S.2    Pahlman, S.3
  • 17
    • 60549083256 scopus 로고    scopus 로고
    • Regulation of cancer cell metabolism by hypoxia-inducible factor 1
    • Semenza GL: Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol 2009, 19:12-16.
    • (2009) Semin Cancer Biol , vol.19 , pp. 12-16
    • Semenza, G.L.1
  • 19
    • 77954414428 scopus 로고    scopus 로고
    • Impact of the hypoxic tumor microenvironment on the regulation of cancer stem cell characteristics
    • Lin Q, Yun Z: Impact of the hypoxic tumor microenvironment on the regulation of cancer stem cell characteristics. Cancer Biol Ther 2010, 9:949-956.
    • (2010) Cancer Biol Ther , vol.9 , pp. 949-956
    • Lin, Q.1    Yun, Z.2
  • 20
    • 78650373860 scopus 로고    scopus 로고
    • Hypoxia and hypoxia-inducible factors: master regulators of metastasis
    • Lu X, Kang Y: Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 2010, 16:5928-5935.
    • (2010) Clin Cancer Res , vol.16 , pp. 5928-5935
    • Lu, X.1    Kang, Y.2
  • 21
    • 34547125574 scopus 로고    scopus 로고
    • Hypoxia, gene expression, and metastasis
    • Chan DA, Giaccia AJ: Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev 2007, 26:333-339.
    • (2007) Cancer Metastasis Rev , vol.26 , pp. 333-339
    • Chan, D.A.1    Giaccia, A.J.2
  • 22
    • 0036359548 scopus 로고    scopus 로고
    • Hypoxia-a key regulatory factor in tumour growth
    • Harris AL: Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer 2002, 2:38-47.
    • (2002) Nat Rev Cancer , vol.2 , pp. 38-47
    • Harris, A.L.1
  • 23
    • 40949142209 scopus 로고    scopus 로고
    • The role of hypoxia-inducible factors in tumorigenesis
    • Rankin EB, Giaccia AJ: The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ 2008, 15:678-685.
    • (2008) Cell Death Differ , vol.15 , pp. 678-685
    • Rankin, E.B.1    Giaccia, A.J.2
  • 25
    • 38349031393 scopus 로고    scopus 로고
    • Machine learning: a review of classification and combining techniques
    • Kotsiantis SB, Zaharakis ID, Pintelas PE: Machine learning: a review of classification and combining techniques. Artif Intell Rev 2006, 26:159-190.
    • (2006) Artif Intell Rev , vol.26 , pp. 159-190
    • Kotsiantis, S.B.1    Zaharakis, I.D.2    Pintelas, P.E.3
  • 26
    • 27544451127 scopus 로고    scopus 로고
    • Simple decision rules for classifying human cancers from gene expression profiles
    • Tan AC, Naiman DQ, Xu LF, Winslow RL, Geman D: Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 2005, 21:3896-3904.
    • (2005) Bioinformatics , vol.21 , pp. 3896-3904
    • Tan, A.C.1    Naiman, D.Q.2    Xu, L.F.3    Winslow, R.L.4    Geman, D.5
  • 28
    • 78649424137 scopus 로고    scopus 로고
    • Coupling Logical Analysis of Data and Shadow Clustering for Partially Defined Positive Boolean Function Reconstruction
    • Muselli M, Ferrari E: Coupling Logical Analysis of Data and Shadow Clustering for Partially Defined Positive Boolean Function Reconstruction. IEEE Transactions on Knowledge and Data Engineering 2011, 23:37-50.
    • (2011) IEEE Transactions on Knowledge and Data Engineering , vol.23 , pp. 37-50
    • Muselli, M.1    Ferrari, E.2
  • 31
    • 61449090610 scopus 로고    scopus 로고
    • Evaluating switching neural networks through artificial and real gene expression data
    • Muselli M, Costacurta M, Ruffino F: Evaluating switching neural networks through artificial and real gene expression data. Artif Intell Med 2009, 45:163-171.
    • (2009) Artif Intell Med , vol.45 , pp. 163-171
    • Muselli, M.1    Costacurta, M.2    Ruffino, F.3
  • 32
    • 80051549717 scopus 로고    scopus 로고
    • The application of atmospheric pressure matrixassisted laser desorption/ionization to the analysis of long-term cryopreserved serum peptidome
    • Mangerini R, Romano P, Facchiano A, Damonte G, Muselli M, Rocco M, Boccardo F, Profumo A: The application of atmospheric pressure matrixassisted laser desorption/ionization to the analysis of long-term cryopreserved serum peptidome. Anal Biochem 2011, 417:174-181.
    • (2011) Anal Biochem , vol.417 , pp. 174-181
    • Mangerini, R.1    Romano, P.2    Facchiano, A.3    Damonte, G.4    Muselli, M.5    Rocco, M.6    Boccardo, F.7    Profumo, A.8
  • 33
    • 33745773915 scopus 로고    scopus 로고
    • Switching Neural Networks: A New Connectionist Model for Classification
    • In WIRN/NAIS 2005 Volume 3931. Berlin:Springer-Verlag; Apolloni B, Marinaro M, Nicosia G, Tagliaferri R
    • Muselli M: Switching Neural Networks: A New Connectionist Model for Classification. In WIRN/NAIS 2005 Volume 3931. Berlin: Springer-Verlag; Apolloni B, Marinaro M, Nicosia G, Tagliaferri R 2006:23-30.
    • (2006) , pp. 23-30
    • Muselli, M.1
  • 34
    • 15844418259 scopus 로고    scopus 로고
    • Approximate multi-state reliability expressions using a new machine learning technique
    • Rocco CM, Muselli M: Approximate multi-state reliability expressions using a new machine learning technique. Reliability Engineering and System Safety 2005, 89:261-270.
    • (2005) Reliability Engineering and System Safety , vol.89 , pp. 261-270
    • Rocco, C.M.1    Muselli, M.2
  • 35
    • 84887178867 scopus 로고    scopus 로고
    • Estimating female labor force participation through statistical and machine learning methods: A comparison
    • Springer-Verlag; Shu-Heng C, Paul P W, Tzu-Wen K
    • Zambrano O, Rocco CM, Muselli M: Estimating female labor force participation through statistical and machine learning methods: A comparison. In Computational Intelligence in Economics and Finance Volume Berlin: Springer-Verlag; Shu-Heng C, Paul P W, Tzu-Wen K 2007:93-106.
    • (2007) Computational Intelligence in Economics and Finance Volume Berlin , pp. 93-106
    • Zambrano, O.1    Rocco, C.M.2    Muselli, M.3
  • 37
    • 0034281914 scopus 로고    scopus 로고
    • Hamming clustering techniques for the identification of prognostic indices in patients with advanced head and neck cancer treated with radiation therapy
    • Paoli G, Muselli M, Bellazzi R, Corvo R, Liberati D, Foppiano F: Hamming clustering techniques for the identification of prognostic indices in patients with advanced head and neck cancer treated with radiation therapy. Med Biol Eng Comput 2000, 38:483-486.
    • (2000) Med Biol Eng Comput , vol.38 , pp. 483-486
    • Paoli, G.1    Muselli, M.2    Bellazzi, R.3    Corvo, R.4    Liberati, D.5    Foppiano, F.6
  • 38
    • 0642303089 scopus 로고    scopus 로고
    • Alternative splicing of the human estrogen receptor alpha primary transcript: mechanisms of exon skipping
    • Ferro P, Forlani A, Muselli M, Pfeffer U: Alternative splicing of the human estrogen receptor alpha primary transcript: mechanisms of exon skipping. Int J Mol Med 2003, 12:355-363.
    • (2003) Int J Mol Med , vol.12 , pp. 355-363
    • Ferro, P.1    Forlani, A.2    Muselli, M.3    Pfeffer, U.4
  • 40
    • 84988407136 scopus 로고    scopus 로고
    • Rulex software suite. [http://www.impara-ai.com].
  • 41
    • 47249097168 scopus 로고    scopus 로고
    • Sources of variation in baseline gene expression levels from toxicogenomics study control animals across multiple laboratories
    • Boedigheimer MJ, Wolfinger RD, Bass MB, Bushel PR, Chou JW, Cooper MF, et al: Sources of variation in baseline gene expression levels from toxicogenomics study control animals across multiple laboratories. BMC Genomics 2008, 9:285.
    • (2008) BMC Genomics , vol.9 , pp. 285
    • Boedigheimer, M.J.1    Wolfinger, R.D.2    Bass, M.B.3    Bushel, P.R.4    Chou, J.W.5    Cooper, M.F.6
  • 44
    • 33645311528 scopus 로고    scopus 로고
    • The inconsistency of "optimal" cutpoints obtained using two criteria based on the receiver operating characteristic curve
    • Perkins NJ, Schisterman EF: The inconsistency of "optimal" cutpoints obtained using two criteria based on the receiver operating characteristic curve. Am J Epidemiol 2006, 163:670-675.
    • (2006) Am J Epidemiol , vol.163 , pp. 670-675
    • Perkins, N.J.1    Schisterman, E.F.2
  • 45
    • 0003500248 scopus 로고
    • C4.5: programs for machine learning Morgan Kaufmann Publishers Inc
    • Quinlan JR: C4.5: programs for machine learning Morgan Kaufmann Publishers Inc; 1993.
    • (1993)
    • Quinlan, J.R.1
  • 48
    • 77957988489 scopus 로고    scopus 로고
    • Class prediction for high-dimensional class-imbalanced data
    • Blagus RF, Lusa L: Class prediction for high-dimensional class-imbalanced data. BMC Bioinformatics 2010, 11:523.
    • (2010) BMC Bioinformatics , vol.11 , pp. 523
    • Blagus, R.F.1    Lusa, L.2
  • 49
    • 77958152423 scopus 로고    scopus 로고
    • A cost-sensitive extension of AdaBoost with markov random field priors for automated segmentation of breast tumors in ultrasonic images
    • Takemura AF, Shimizu AF, Hamamoto K: A cost-sensitive extension of AdaBoost with markov random field priors for automated segmentation of breast tumors in ultrasonic images. Int J Comput Assist Radiol Surg 2010, 5:537-547.
    • (2010) Int J Comput Assist Radiol Surg , vol.5 , pp. 537-547
    • Takemura, A.F.1    Shimizu, A.F.2    Hamamoto, K.3
  • 50
    • 56049113949 scopus 로고    scopus 로고
    • ProICET: a cost-sensitive system for prostate cancer data
    • Vidrighin CF, Potolea R: ProICET: a cost-sensitive system for prostate cancer data. Health informatics journal 2008, 14:297-307.
    • (2008) Health informatics journal , vol.14 , pp. 297-307
    • Vidrighin, C.F.1    Potolea, R.2
  • 51
    • 84877744350 scopus 로고    scopus 로고
    • Computer-aided diagnosis for early-stage lung cancer based on longitudinal and balanced data
    • Sun TF, Zhang RF, Wang JF, Li XF, Guo X: Computer-aided diagnosis for early-stage lung cancer based on longitudinal and balanced data. PLoS ONE 2013, 8:e63559.
    • (2013) PLoS ONE , vol.8
    • Sun, T.F.1    Zhang, R.F.2    Wang, J.F.3    Li, X.F.4    Guo, X.5
  • 52
    • 80055018052 scopus 로고    scopus 로고
    • An active learning based classification strategy for the minority class problem: application to histopathology annotation
    • Doyle S, Monaco JF, Feldman MF, Tomaszewski JF, Madabhushi A: An active learning based classification strategy for the minority class problem: application to histopathology annotation. BMC Bioinformatics 2011, 12:424.
    • (2011) BMC Bioinformatics , vol.12 , pp. 424
    • Doyle, S.1    Monaco, J.F.2    Feldman, M.F.3    Tomaszewski, J.F.4    Madabhushi, A.5
  • 53
    • 67249139015 scopus 로고    scopus 로고
    • Balanced gradient boosting from imbalanced data for clinical outcome prediction
    • (Electronic)
    • Teramoto R: Balanced gradient boosting from imbalanced data for clinical outcome prediction. Stat Appl Genet Mol Biol 2009, 8:1544-6115, (Electronic).
    • (2009) Stat Appl Genet Mol Biol , vol.8 , pp. 1544-6115
    • Teramoto, R.1
  • 55
    • 34047144947 scopus 로고    scopus 로고
    • Classification of neuroblastoma patients by published gene-expression markers reveals a low sensitivity for unfavorable courses of MYCN non-amplified disease
    • Oberthuer A, Warnat P, Kahlert Y, Westermann F, Spitz R, Brors B, Hero B, Eils R, Schwab M, Berthold F, et al: Classification of neuroblastoma patients by published gene-expression markers reveals a low sensitivity for unfavorable courses of MYCN non-amplified disease. Cancer Letters 2007, 250:250-267.
    • (2007) Cancer Letters , vol.250 , pp. 250-267
    • Oberthuer, A.1    Warnat, P.2    Kahlert, Y.3    Westermann, F.4    Spitz, R.5    Brors, B.6    Hero, B.7    Eils, R.8    Schwab, M.9    Berthold, F.10
  • 56
    • 67649397388 scopus 로고    scopus 로고
    • Reanalysis of neuroblastoma expression profiling data using improved methodology and extended follow-up increases validity of outcome prediction
    • Schramm A, Mierswa I, Kaderali L, Morik K, Eggert A, Schulte JH: Reanalysis of neuroblastoma expression profiling data using improved methodology and extended follow-up increases validity of outcome prediction. Cancer Lett 2009, 282:55-62.
    • (2009) Cancer Lett , vol.282 , pp. 55-62
    • Schramm, A.1    Mierswa, I.2    Kaderali, L.3    Morik, K.4    Eggert, A.5    Schulte, J.H.6
  • 57
    • 84865743175 scopus 로고    scopus 로고
    • Affymetrix GeneChip microarray preprocessing for multivariate analyses
    • Mccall MN, Almudevar A: Affymetrix GeneChip microarray preprocessing for multivariate analyses. Briefings in Bioinformatics 2012, 13:536-546.
    • (2012) Briefings in Bioinformatics , vol.13 , pp. 536-546
    • Mccall, M.N.1    Almudevar, A.2
  • 58
    • 84868159265 scopus 로고    scopus 로고
    • Motif effects in Affymetrix GeneChips seriously affect probe intensities
    • Upton GJG, Harrison AP: Motif effects in Affymetrix GeneChips seriously affect probe intensities. Nucleic Acids Res 2012, 40:9705-9716.
    • (2012) Nucleic Acids Res , vol.40 , pp. 9705-9716
    • Upton, G.J.G.1    Harrison, A.P.2
  • 59
    • 2942590732 scopus 로고    scopus 로고
    • Exploiting tumour hypoxia in cancer treatment
    • Brown JM, William WR: Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 2004, 4:437-447.
    • (2004) Nat Rev Cancer , vol.4 , pp. 437-447
    • Brown, J.M.1    William, W.R.2
  • 60
    • 33845432928 scopus 로고    scopus 로고
    • Adjusting batch effects in microarray expression data using empirical Bayes methods
    • Johnson WE, Li CF, Rabinovic A: Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8:118-127.
    • (2007) Biostatistics , vol.8 , pp. 118-127
    • Johnson, W.E.1    Li, C.F.2    Rabinovic, A.3
  • 63
    • 77950655000 scopus 로고    scopus 로고
    • A robust method for estimating gene expression states using Affymetrix microarray probe level data
    • Ohtaki M, Otani K, Hiyama K, Kamei N, Satoh K, Hiyama E: A robust method for estimating gene expression states using Affymetrix microarray probe level data. BMC Bioinformatics 2010, 11:183.
    • (2010) BMC Bioinformatics , vol.11 , pp. 183
    • Ohtaki, M.1    Otani, K.2    Hiyama, K.3    Kamei, N.4    Satoh, K.5    Hiyama, E.6
  • 64
    • 84859098571 scopus 로고    scopus 로고
    • The sva package for removing batch effects and other unwanted variation in high-throughput experiments
    • Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD: The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012, 28:882-883.
    • (2012) Bioinformatics , vol.28 , pp. 882-883
    • Leek, J.T.1    Johnson, W.E.2    Parker, H.S.3    Jaffe, A.E.4    Storey, J.D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.