메뉴 건너뛰기




Volumn 8, Issue 1, 2009, Pages

Balanced gradient boosting from imbalanced data for clinical outcome prediction

Author keywords

Boosting; Cancer; Clinical outcome; Cost sensitive learning; Diabetes; Diagnosis; Ensemble learning; Imbalanced data; Renal cell carcinoma

Indexed keywords

MICRORNA; TUMOR MARKER;

EID: 67249139015     PISSN: None     EISSN: 15446115     Source Type: Journal    
DOI: 10.2202/1544-6115.1422     Document Type: Article
Times cited : (8)

References (28)
  • 1
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996) Bagging predictors. Machine Learning, 24, 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001) Random forests. Machine Learning, 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 3
    • 0035575477 scopus 로고    scopus 로고
    • Using iterated bagging to debias regressions
    • Breiman, L. (2001) Using iterated bagging to debias regressions. Machine Learning, 45, 261-277.
    • (2001) Machine Learning , vol.45 , pp. 261-277
    • Breiman, L.1
  • 4
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • Chawla, VN. (2004) Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations Newsletter, 6, 1-6.
    • (2004) SIGKDD Explorations Newsletter , vol.6 , pp. 1-6
    • Chawla, V.N.1
  • 5
    • 37549029793 scopus 로고    scopus 로고
    • The properties of high-dimensional data spaces: Implications for exploring gene and protein expression data
    • Clarke, R. et al. (2008) The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nature Reviews Cancer., 8, 37-49.
    • (2008) Nature Reviews Cancer , vol.8 , pp. 37-49
    • Clarke, R.1
  • 6
    • 12344294601 scopus 로고    scopus 로고
    • BagBoosting for tumor classification with gene expression data
    • Dettling, M. (2004) BagBoosting for tumor classification with gene expression data. Bioinformatics., 20, 3583-3593.
    • (2004) Bioinformatics , vol.20 , pp. 3583-3593
    • Dettling, M.1
  • 7
    • 0344324689 scopus 로고    scopus 로고
    • MetaCost: A general method for making classifiers cost-sensitive
    • Domingos, P. (1999) MetaCost: A general method for making classifiers cost-sensitive. In Knowledge Discovery and Data Mining, 155-164.
    • (1999) Knowledge Discovery and Data Mining , pp. 155-164
    • Domingos, P.1
  • 9
    • 33749542216 scopus 로고    scopus 로고
    • Effective estimation of posterior probabilities: Explaining the accuracy of randomized decision tree approaches
    • Fan, W. et al. (2005) Effective estimation of posterior probabilities: Explaining the accuracy of randomized decision tree approaches. In Proceeding of the Fifth IEEE International Conference on Data Mining (ICDM), 154-161.
    • (2005) Proceeding of the Fifth IEEE International Conference on Data Mining (ICDM) , pp. 154-161
    • Fan, W.1
  • 10
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y and Shapire, E. (1997) A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Shapire, E.2
  • 11
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman, J. et al. (2000) Additive logistic regression: A statistical view of boosting. Ann. Statist., 28, 337-374.
    • (2000) Ann. Statist , vol.28 , pp. 337-374
    • Friedman, J.1
  • 12
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J. (2001) Greedy function approximation: A gradient boosting machine. Ann. Statist., 29, 1189-1232.
    • (2001) Ann. Statist , vol.29 , pp. 1189-1232
    • Friedman, J.1
  • 16
    • 19544378196 scopus 로고    scopus 로고
    • Boosting proportional hazards models using smoothing splines, with applications to high-dimensional microarray data
    • Li, H. and Luan, Y. (2005) Boosting proportional hazards models using smoothing splines, with applications to high-dimensional microarray data. Bioinformatics., 21, 2403-2409.
    • (2005) Bioinformatics , vol.21 , pp. 2403-2409
    • Li, H.1    Luan, Y.2
  • 17
    • 20444460289 scopus 로고    scopus 로고
    • Micro RNA expression profiles classify human cancers
    • Lu, J. et al. (2005) Micro RNA expression profiles classify human cancers. Nature, 435, 834-838.
    • (2005) Nature , vol.435 , pp. 834-838
    • Lu, J.1
  • 18
    • 39149126959 scopus 로고    scopus 로고
    • 1H NMR metabolomics approach to the disease continuum of diabetic complications and premature death
    • Mäkinen, VP. Et al. (2008) 1H NMR metabolomics approach to the disease continuum of diabetic complications and premature death. Mol. Syst. Biol., 4, 167.
    • (2008) Mol. Syst. Biol , vol.4 , pp. 167
    • Mäkinen, V.P.1    Et al.2
  • 20
    • 40449117749 scopus 로고    scopus 로고
    • Molecular profiling related to poor prognosis in thyroid carcinoma. Combining gene expression data and biological information
    • Montero-Conde, C. et al. (2007) Molecular profiling related to poor prognosis in thyroid carcinoma. Combining gene expression data and biological information, Oncogene, 27, 1554 - 1561.
    • (2007) Oncogene , vol.27 , pp. 1554-1561
    • Montero-Conde, C.1
  • 21
    • 0042567193 scopus 로고    scopus 로고
    • Gene expression profiling identifies molecular subtypes of gliomas
    • Shai, R. et al. (2003) Gene expression profiling identifies molecular subtypes of gliomas. Oncogene, 22, 4918-4923.
    • (2003) Oncogene , vol.22 , pp. 4918-4923
    • Shai, R.1
  • 22
    • 16444381830 scopus 로고    scopus 로고
    • Tumor classification by tissue microarray profiling: Random forest clustering applied to renal cell carcinoma
    • Shi, T. et al. (2005) Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma. Mod. Pathol., 18, 547-557.
    • (2005) Mod. Pathol , vol.18 , pp. 547-557
    • Shi, T.1
  • 23
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Sun, Y. et al. (2007) Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 40, 3358-3378.
    • (2007) Pattern Recognition , vol.40 , pp. 3358-3378
    • Sun, Y.1
  • 24
    • 33748767667 scopus 로고    scopus 로고
    • Cancer diagnosis marker extraction for soft tissue sarcomas based on gene expression profiling data by using projective adaptive resonance theory (PART) filtering method
    • Takahashi, H. et al. (2006) Cancer diagnosis marker extraction for soft tissue sarcomas based on gene expression profiling data by using projective adaptive resonance theory (PART) filtering method. BMC Bioinformatics, 7, 399.
    • (2006) BMC Bioinformatics , vol.7 , pp. 399
    • Takahashi, H.1
  • 27
    • 0142008803 scopus 로고    scopus 로고
    • A data-analytic strategy for protein biomarker discovery: Profiling of high-dimensional proteomic data for cancer detection
    • Yasui, Y. et al. (2003) A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. Biostatistics., 4, 449-463.
    • (2003) Biostatistics , vol.4 , pp. 449-463
    • Yasui, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.