메뉴 건너뛰기




Volumn 45, Issue 2-3, 2009, Pages 163-171

Evaluating switching neural networks through artificial and real gene expression data

Author keywords

Gene selection; Machine learning; Recursive feature addition; Shadow clustering; Switching neural networks

Indexed keywords

GENE SELECTION; MACHINE LEARNING; RECURSIVE FEATURE ADDITION; SHADOW CLUSTERING; SWITCHING NEURAL NETWORKS;

EID: 61449090610     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2008.08.002     Document Type: Article
Times cited : (10)

References (28)
  • 3
    • 4544339167 scopus 로고    scopus 로고
    • Defining transcription modules using large-scale gene expression data
    • Ihmels J., Bergmann S., and Barkai N. Defining transcription modules using large-scale gene expression data. Bioinformatics 20 (2004) 1993-2003
    • (2004) Bioinformatics , vol.20 , pp. 1993-2003
    • Ihmels, J.1    Bergmann, S.2    Barkai, N.3
  • 5
    • 0035375137 scopus 로고    scopus 로고
    • Computational analysis of microarray data
    • Quackenbush J. Computational analysis of microarray data. Nature Reviews Genetics 2 (2001) 418-427
    • (2001) Nature Reviews Genetics , vol.2 , pp. 418-427
    • Quackenbush, J.1
  • 7
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method
    • Li L., Weinberg C.R., Darden T.A., and Pedersen L.G. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 17 (2001) 1131-1142
    • (2001) Bioinformatics , vol.17 , pp. 1131-1142
    • Li, L.1    Weinberg, C.R.2    Darden, T.A.3    Pedersen, L.G.4
  • 8
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • Li T., Zhang C., and Ogihara M. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20 (2004) 2429-2437
    • (2004) Bioinformatics , vol.20 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 9
    • 34547236516 scopus 로고    scopus 로고
    • Xuan J, Wang Y, Dong Y, Feng Y, Wang B, Khan J, et al. Gene selection for multiclass prediction by weighted Fisher criterion. EURASIP Journal on Bioinformatics and Systems Biology 2007. doi:10.1155/2007/64628 [Article ID 64628].
    • Xuan J, Wang Y, Dong Y, Feng Y, Wang B, Khan J, et al. Gene selection for multiclass prediction by weighted Fisher criterion. EURASIP Journal on Bioinformatics and Systems Biology 2007. doi:10.1155/2007/64628 [Article ID 64628].
  • 10
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., and Mesirov J.P. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286 (1999) 531-537
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5    Mesirov, J.P.6
  • 15
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
    • Article 3
    • Smyth G.K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3 1 (2004) Article 3
    • (2004) Statistical Applications in Genetics and Molecular Biology , vol.3 , Issue.1
    • Smyth, G.K.1
  • 16
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., and Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning 46 (2002) 389-422
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 18
    • 33947324308 scopus 로고    scopus 로고
    • Improving the performance of SVM-RFE to select genes in microarray data
    • Ding Y., and Wilkins D. Improving the performance of SVM-RFE to select genes in microarray data. BMC Bioinformatics 7 (2006) 12
    • (2006) BMC Bioinformatics , vol.7 , pp. 12
    • Ding, Y.1    Wilkins, D.2
  • 19
    • 30344438839 scopus 로고    scopus 로고
    • Gene selection using support vector machines with non-convex penalty
    • Zhang H.H., Ahn J., Lin X., and Park C. Gene selection using support vector machines with non-convex penalty. Bioinformatics 22 (2006) 88-95
    • (2006) Bioinformatics , vol.22 , pp. 88-95
    • Zhang, H.H.1    Ahn, J.2    Lin, X.3    Park, C.4
  • 20
    • 33846945056 scopus 로고    scopus 로고
    • Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE
    • Niijima S., and Kuhara S. Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE. BMC Bioinformatics 7 (2006) 543
    • (2006) BMC Bioinformatics , vol.7 , pp. 543
    • Niijima, S.1    Kuhara, S.2
  • 21
    • 33745773915 scopus 로고    scopus 로고
    • Switching neural networks: A new connectionist model for classification
    • Apolloni B., et al. (Ed), Springer-Verlag, Berlin
    • Muselli M. Switching neural networks: A new connectionist model for classification. In: Apolloni B., et al. (Ed). WIRN/NAIS, vol. 3931 of lecture notes in computer science (2006), Springer-Verlag, Berlin 23-30
    • (2006) WIRN/NAIS, vol. 3931 of lecture notes in computer science , pp. 23-30
    • Muselli, M.1
  • 24
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expressions revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U., Barkai N., Notterman D.A., Gish K., Ybarra S., and Mack D. Broad patterns of gene expressions revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Science USA 96 (1999) 6745-6750
    • (1999) Proceedings of the National Academy of Science USA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6
  • 25
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • Alizadeh A.A., Eisen M.B., Davis R.E., Ma C., Lossos I.S., and Rosenwald A. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403 (2000) 503-511
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.A.1    Eisen, M.B.2    Davis, R.E.3    Ma, C.4    Lossos, I.S.5    Rosenwald, A.6
  • 26
    • 0037226593 scopus 로고    scopus 로고
    • A molecular signature of metastasis in primary solid tumors
    • Ramaswamy S., Ross K.N., Lander E.S., and Golub T.R. A molecular signature of metastasis in primary solid tumors. Nature Genetics 33 (2003) 49-54
    • (2003) Nature Genetics , vol.33 , pp. 49-54
    • Ramaswamy, S.1    Ross, K.N.2    Lander, E.S.3    Golub, T.R.4
  • 27
    • 0037391756 scopus 로고    scopus 로고
    • Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning
    • Ye Q.H., Qin L.X., Forgues M., He P., Kim J.W., and Peng A.C. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nature Medicine 9 4 (2003) 416-423
    • (2003) Nature Medicine , vol.9 , Issue.4 , pp. 416-423
    • Ye, Q.H.1    Qin, L.X.2    Forgues, M.3    He, P.4    Kim, J.W.5    Peng, A.C.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.