-
1
-
-
33748570853
-
Semi-quantitative fluorescent PCR analysis identifies PRKAA1 on chromosome 5 as a potential candidate cancer gene of cervical cancer
-
DOI 10.1016/j.ygyno.2006.02.028, PII S0090825806002083
-
Huang FY, Chiu PM, Tam KF, et al. Semi-quantitative fluorescent PCR analysis identifies PRKAA1 on chromosome 5 as a potential candidate cancer gene of cervical cancer. Gynecol Oncol 2006;103:219-25. (Pubitemid 44374692)
-
(2006)
Gynecologic Oncology
, vol.103
, Issue.1
, pp. 219-225
-
-
Huang, F.Y.1
Chiu, P.M.2
Tam, K.F.3
Kwok, Y.K.Y.4
Lau, E.T.5
Tang, M.H.Y.6
Ng, T.Y.7
Liu, V.W.S.8
Cheung, A.N.Y.9
Ngan, H.Y.S.10
-
2
-
-
84862493914
-
AMP-activated protein kinase: New regulation, new roles?
-
Carling D, Thornton C, Woods A, et al. AMP-activated protein kinase: new regulation, new roles? Biochem J 2012;445:11-27.
-
(2012)
Biochem J
, vol.445
, pp. 11-27
-
-
Carling, D.1
Thornton, C.2
Woods, A.3
-
3
-
-
34648828532
-
AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy
-
DOI 10.1038/nrm2249, PII NRM2249
-
Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 2007;8:774-85. (Pubitemid 47462132)
-
(2007)
Nature Reviews Molecular Cell Biology
, vol.8
, Issue.10
, pp. 774-785
-
-
Hardie, D.G.1
-
4
-
-
0024786438
-
Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl- CoA reductase kinase activities
-
DOI 10.1111/j.1432-1033.1989.tb15186.x
-
Carling D, Clarke PR, Zammit VA, et al. Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities. Eur J Biochem 1989;186:129-36. (Pubitemid 20015135)
-
(1989)
European Journal of Biochemistry
, vol.186
, Issue.1-2
, pp. 129-136
-
-
Carling, D.1
Clarke, P.R.2
Zammit, V.A.3
Hardie, D.G.4
-
5
-
-
0034654362
-
Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding
-
DOI 10.1042/0264-6021:3460659
-
Cheung PC, Salt IP, Davies SP, et al. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J 2000;346:659-69. (Pubitemid 30171026)
-
(2000)
Biochemical Journal
, vol.346
, Issue.3
, pp. 659-669
-
-
Cheung, P.C.F.1
Salt, I.P.2
Davies, S.P.3
Hardie, D.G.4
Carling, D.5
-
6
-
-
0028359552
-
Characterisation of 5′-AMP-activated protein kinase in human liver using specific peptide substrates and the effects of 5′-AMP analogues on enzyme activity
-
Sullivan JE, Carey F, Carling D, et al. Characterisation of 5′-AMP-activated protein kinase in human liver using specific peptide substrates and the effects of 5′-AMP analogues on enzyme activity. Biochem Biophys Res Commun 1994;200:1551-6.
-
(1994)
Biochem Biophys Res Commun
, vol.200
, pp. 1551-1556
-
-
Sullivan, J.E.1
Carey, F.2
Carling, D.3
-
7
-
-
0029561919
-
5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2Calpha and native bovine protein phosphatase-2A(C)
-
DOI 10.1016/0014-5793(95)01368-7
-
Davies SP, Helps NR, Cohen PT, et al. 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett 1995;377:421-5. (Pubitemid 26027159)
-
(1995)
FEBS Letters
, vol.377
, Issue.3
, pp. 421-425
-
-
Davies, S.P.1
Helps, N.R.2
Cohen, P.T.W.3
Hardie, D.G.4
-
8
-
-
10744230065
-
LKB1 Is the Upstream Kinase in the AMP-Activated Protein Kinase Cascade
-
DOI 10.1016/j.cub.2003.10.031
-
Woods A, Johnstone SR, Dickerson K, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 2003;13:2004-8. (Pubitemid 37425212)
-
(2003)
Current Biology
, vol.13
, Issue.22
, pp. 2004-2008
-
-
Woods, A.1
Johnstone, S.R.2
Dickerson, K.3
Leiper, F.C.4
Fryer, L.G.D.5
Neumann, D.6
Schlattner, U.7
Wallimann, T.8
Carlson, M.9
Carling, D.10
-
9
-
-
42649105456
-
Hypothalamic CaMKK2 Contributes to the Regulation of Energy Balance
-
DOI 10.1016/j.cmet.2008.02.011, PII S1550413108000703
-
Anderson KA, Ribar TJ, Lin F, et al. Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab 2008;7:377-88. (Pubitemid 351598022)
-
(2008)
Cell Metabolism
, vol.7
, Issue.5
, pp. 377-388
-
-
Anderson, K.A.1
Ribar, T.J.2
Lin, F.3
Noeldner, P.K.4
Green, M.F.5
Muehlbauer, M.J.6
Witters, L.A.7
Kemp, B.E.8
Means, A.R.9
-
10
-
-
80053254762
-
Characterization of the CaMKKbeta-AMPK signaling complex
-
Green MF, Anderson KA, Means AR. Characterization of the CaMKKbeta-AMPK signaling complex. Cell Signal 2011;23:2005-12.
-
(2011)
Cell Signal
, vol.23
, pp. 2005-2012
-
-
Green, M.F.1
Anderson, K.A.2
Means, A.R.3
-
11
-
-
33748747706
-
Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro
-
DOI 10.1074/jbc.M604399200
-
Momcilovic M, Hong S-P, Carlson M. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem 2006;281:25336-43. (Pubitemid 44401921)
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.35
, pp. 25336-25343
-
-
Momcilovic, M.1
Hong, S.-P.2
Carlson, M.3
-
12
-
-
0024795323
-
Regulation of fatty acid synthesis via phosphorylation of acetyl-CoA carboxylase
-
Hardie DG. Regulation of fatty acid synthesis via phosphorylation of acetyl-CoA carboxylase. Prog Lipid Res 1989;28:117-46.
-
(1989)
Prog Lipid Res
, vol.28
, pp. 117-146
-
-
Hardie, D.G.1
-
13
-
-
84860339683
-
AMPK enhances insulin-stimulated GLUT4 regulation via lowering membrane cholesterol
-
Habegger KM, Hoffman NJ, Ridenour CM, et al. AMPK enhances insulin-stimulated GLUT4 regulation via lowering membrane cholesterol. Endocrinology 2012;153:2130-41.
-
(2012)
Endocrinology
, vol.153
, pp. 2130-2141
-
-
Habegger, K.M.1
Hoffman, N.J.2
Ridenour, C.M.3
-
14
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011;13:132-41.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
-
15
-
-
67749111502
-
The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression
-
Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009;9:563-75.
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 563-575
-
-
Shackelford, D.B.1
Shaw, R.J.2
-
16
-
-
78650465738
-
LKB1 regulated pathways in lung cancer invasion and metastasis
-
Marcus AI, Zhou W. LKB1 regulated pathways in lung cancer invasion and metastasis. J Thorac Oncol 2010;5:1883-6.
-
(2010)
J Thorac Oncol
, vol.5
, pp. 1883-1886
-
-
Marcus, A.I.1
Zhou, W.2
-
17
-
-
0036864358
-
Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase
-
DOI 10.1042/BST0301064
-
Hardie DG, Pan DA. Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans 2002;30:1064-70. (Pubitemid 36002407)
-
(2002)
Biochemical Society Transactions
, vol.30
, Issue.6
, pp. 1064-1070
-
-
Hardie, D.G.1
Pan, D.A.2
-
18
-
-
0025021124
-
Identification of an isozymic form of acetyl-CoA carboxylase
-
Bianchi A, Evans JL, Iverson AJ, et al. Identification of an isozymic form of acetyl-CoA carboxylase. J Biol Chem 1990;265:1502-9.
-
(1990)
J Biol Chem
, vol.265
, pp. 1502-1509
-
-
Bianchi, A.1
Evans, J.L.2
Iverson, A.J.3
-
19
-
-
0024459546
-
Formation of malonyl coenzyme A in rat heart. Identification and purification of an isozyme of acetyl coenzyme A carboxylase from rat heart
-
Thampy KG. Formation of malonyl coenzyme A in rat heart. Identification and purification of an isozyme of A carboxylase from rat heart. J Biol Chem 1989;264:17631-4. (Pubitemid 19279218)
-
(1989)
Journal of Biological Chemistry
, vol.264
, Issue.30
, pp. 17631-17634
-
-
Thampy, K.G.1
-
20
-
-
0001217446
-
Evidence for the participation of biotin in the enzymic synthesis of fatty acids
-
Wakil SJ, Titchener EB, Gibson DM. Evidence for the participation of biotin in the enzymic synthesis of fatty acids. Biochim Biophys Acta 1958;29:225-6.
-
(1958)
Biochim Biophys Acta
, vol.29
, pp. 225-226
-
-
Wakil, S.J.1
Titchener, E.B.2
Gibson, D.M.3
-
21
-
-
0000962708
-
Carnitine in intermediary metabolism. The biosynthesis of palmitylcarnitine by cell subfractions
-
Bremer J. Carnitine in intermediary metabolism. The biosynthesis of palmitylcarnitine by cell subfractions. J Biol Chem 1963;238:2774-9.
-
(1963)
J Biol Chem
, vol.238
, pp. 2774-2779
-
-
Bremer, J.1
-
22
-
-
0001105243
-
Long-chain carnitine acyltransferase and the role of acylcarnitine derivatives in the catalytic increase of fatty acid oxidation induced by carnitine
-
Fritz IB, Yue KT. Long-chain carnitine acyltransferase and the role of acylcarnitine derivatives in the catalytic increase of fatty acid oxidation induced by carnitine. J Lipid Res 1963;4:279-88.
-
(1963)
J Lipid Res
, vol.4
, pp. 279-288
-
-
Fritz, I.B.1
Yue, K.T.2
-
23
-
-
0029093341
-
High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase
-
Kudo N, Barr AJ, Barr RL, et al. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 1995;270:17513-20.
-
(1995)
J Biol Chem
, vol.270
, pp. 17513-17520
-
-
Kudo, N.1
Barr, A.J.2
Barr, R.L.3
-
24
-
-
0028522881
-
The 1993 Merck Frosst Award. Acetyl-CoA carboxylase: An important regulator of fatty acid oxidation in the heart
-
Lopaschuk GD, Gamble J. The 1993 Merck Frosst Award. Acetyl-CoA carboxylase: an important regulator of fatty acid oxidation in the heart. Can J Physiol Pharmacol 1994;72:1101-9.
-
(1994)
Can J Physiol Pharmacol
, vol.72
, pp. 1101-1109
-
-
Lopaschuk, G.D.1
Gamble, J.2
-
25
-
-
79953755370
-
AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice
-
Li Y, Xu S, Mihaylova MM, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011;13:376-88.
-
(2011)
Cell Metab
, vol.13
, pp. 376-388
-
-
Li, Y.1
Xu, S.2
Mihaylova, M.M.3
-
26
-
-
0034964446
-
The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death
-
DOI 10.1016/S1097-2765(01)00258-1
-
Karuman P, Gozani O, Odze RD, et al. The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol Cell 2001;7:1307-19. (Pubitemid 32607363)
-
(2001)
Molecular Cell
, vol.7
, Issue.6
, pp. 1307-1319
-
-
Karuman, P.1
Gozani, O.2
Odze, R.D.3
Zhou, X.C.4
Zhu, H.5
Shaw, R.6
Brien, T.P.7
Bozzuto, C.D.8
Ooi, D.9
Cantley, L.C.10
Yuan, J.11
-
27
-
-
0033607176
-
Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis- related genes
-
DOI 10.1073/pnas.96.22.12737
-
Foretz M, Guichard C, Ferre P, et al. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci USA 1999;96:12737-42. (Pubitemid 29513572)
-
(1999)
Proceedings of the National Academy of Sciences of the United States of America
, vol.96
, Issue.22
, pp. 12737-12742
-
-
Foretz, M.1
Guichard, C.2
Ferre, P.3
Foufelle, F.4
-
28
-
-
84857873299
-
Autophagy and cancer
-
Choi KS. Autophagy and cancer. Exp Mol Med 2012;44:109-20.
-
(2012)
Exp Mol Med
, vol.44
, pp. 109-120
-
-
Choi, K.S.1
-
29
-
-
77951649035
-
The role of autophagy in tumour development and cancer therapy
-
Rosenfeldt MT, Ryan KM. The role of autophagy in tumour development and cancer therapy. Expert Rev Mol Med 2009;11:e36.
-
(2009)
Expert Rev Mol Med
, vol.11
-
-
Rosenfeldt, M.T.1
Ryan, K.M.2
-
30
-
-
33750366092
-
Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes
-
DOI 10.1242/jcs.03172
-
Young AR, Chan EY, Hu XW, et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 2006;119:3888-900. (Pubitemid 44614440)
-
(2006)
Journal of Cell Science
, vol.119
, Issue.18
, pp. 3888-3900
-
-
Young, A.R.J.1
Chan, E.Y.W.2
Hu, X.W.3
Kochl, R.4
Crawshaw, S.G.5
High, S.6
Halley, D.W.7
Lippincott-Schwartz, J.8
Tooze, S.A.9
-
31
-
-
4043171462
-
Upstream and downstream of mTOR
-
DOI 10.1101/gad.1212704
-
Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004;18:1926-45. (Pubitemid 39071573)
-
(2004)
Genes and Development
, vol.18
, Issue.16
, pp. 1926-1945
-
-
Hay, N.1
Sonenberg, N.2
-
32
-
-
27744569843
-
mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events
-
DOI 10.1016/j.cell.2005.10.024, PII S0092867405011578
-
Holz MK, Ballif BA, Gygi SP, et al. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 2005;123:569-80. (Pubitemid 41608461)
-
(2005)
Cell
, vol.123
, Issue.4
, pp. 569-580
-
-
Holz, M.K.1
Ballif, B.A.2
Gygi, S.P.3
Blenis, J.4
-
33
-
-
0028786952
-
Repression of cap-dependent translation by 4E-binding protein 1: Competition with p220 for binding to eukaryotic initiation factor-4E
-
Haghighat A, Mader S, Pause A, et al. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J 1995;14:5701.
-
(1995)
EMBO J
, vol.14
, pp. 5701
-
-
Haghighat, A.1
Mader, S.2
Pause, A.3
-
34
-
-
0032054816
-
The mRNA 5' cap-binding protein elF4E and control of cell growth
-
DOI 10.1016/S0955-0674(98)80150-6
-
Sonenberg N, Gingras A-C. The mRNA 5′ cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol 1998;10:268-75. (Pubitemid 28174770)
-
(1998)
Current Opinion in Cell Biology
, vol.10
, Issue.2
, pp. 268-275
-
-
Sonenberg, N.1
Gingras, A.-C.2
-
35
-
-
34347220473
-
Defining the Role of mTOR in Cancer
-
DOI 10.1016/j.ccr.2007.05.008, PII S1535610807001511
-
Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007;12:9-22. (Pubitemid 47001784)
-
(2007)
Cancer Cell
, vol.12
, Issue.1
, pp. 9-22
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
36
-
-
18544375193
-
Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin
-
Dan HC, Sun M, Yang L, et al. Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J Biol Chem 2002;277:35364-70.
-
(2002)
J Biol Chem
, vol.277
, pp. 35364-35370
-
-
Dan, H.C.1
Sun, M.2
Yang, L.3
-
37
-
-
63849149937
-
LKB1 and AMP-activated protein kinase control of mTOR signalling and growth
-
Shaw RJ. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf) 2009;196:65-80.
-
(2009)
Acta Physiol (Oxf)
, vol.196
, pp. 65-80
-
-
Shaw, R.J.1
-
38
-
-
84883146054
-
The evolution of the TOR pathway and its role in cancer
-
Beauchamp EM, Platanias LC. The evolution of the TOR pathway and its role in cancer. Oncogene 2013;32:3923-32.
-
(2013)
Oncogene
, vol.32
, pp. 3923-3932
-
-
Beauchamp, E.M.1
Platanias, L.C.2
-
39
-
-
79958026380
-
The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation
-
Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 2011;36:320-8.
-
(2011)
Trends Biochem Sci
, vol.36
, pp. 320-328
-
-
Mendoza, M.C.1
Er, E.E.2
Blenis, J.3
-
40
-
-
0043127125
-
Rheb GTpase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
DOI 10.1101/gad.1110003
-
Inoki K, Li Y, Xu T, et al. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003;17:1829-34. (Pubitemid 36944560)
-
(2003)
Genes and Development
, vol.17
, Issue.15
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
Guan, K.-L.4
-
41
-
-
3142594193
-
The LKB1 tumor suppressor negatively regulates mTOR signaling
-
DOI 10.1016/j.ccr.2004.06.007, PII S1535610804001771
-
Shaw RJ, Bardeesy N, Manning BD, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 2004;6:91-9. (Pubitemid 38903165)
-
(2004)
Cancer Cell
, vol.6
, Issue.1
, pp. 91-99
-
-
Shaw, R.J.1
Bardeesy, N.2
Manning, B.D.3
Lopez, L.4
Kosmatka, M.5
DePinho, R.A.6
Cantley, L.C.7
-
42
-
-
33947264077
-
PRAS40 Is an Insulin-Regulated Inhibitor of the mTORC1 Protein Kinase
-
DOI 10.1016/j.molcel.2007.03.003, PII S1097276507001487
-
Sancak Y, Thoreen CC, Peterson TR, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007;25:903-15. (Pubitemid 46436534)
-
(2007)
Molecular Cell
, vol.25
, Issue.6
, pp. 903-915
-
-
Sancak, Y.1
Thoreen, C.C.2
Peterson, T.R.3
Lindquist, R.A.4
Kang, S.A.5
Spooner, E.6
Carr, S.A.7
Sabatini, D.M.8
-
43
-
-
42949139481
-
AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint
-
DOI 10.1016/j.molcel.2008.03.003, PII S109727650800169X
-
Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008;30:214-26. (Pubitemid 351626684)
-
(2008)
Molecular Cell
, vol.30
, Issue.2
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
Turk, B.E.7
Shaw, R.J.8
-
44
-
-
77953121697
-
AMPK controls the speed of microtubule polymerization and directional cell migration through CLIP-170 phosphorylation
-
Nakano A, Kato H, Watanabe T, et al. AMPK controls the speed of microtubule polymerization and directional cell migration through CLIP-170 phosphorylation. Nat Cell Biol 2010;12:583-90.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 583-590
-
-
Nakano, A.1
Kato, H.2
Watanabe, T.3
-
45
-
-
40849088165
-
Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends
-
DOI 10.1083/jcb.200707203
-
Dragestein KA, van Cappellen WA, van Haren J, et al. Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends. J Cell Biol 2008;180:729-37. (Pubitemid 351397772)
-
(2008)
Journal of Cell Biology
, vol.180
, Issue.4
, pp. 729-737
-
-
Dragestein, K.A.1
Van Cappellen, W.A.2
Van Haren, J.3
Tsibidis, G.D.4
Akhmanova, A.5
Knoch, T.A.6
Grosveld, F.7
Galjart, N.8
-
46
-
-
0032572528
-
Regulation of cell polarity by microtubules in fission yeast
-
DOI 10.1083/jcb.142.2.457
-
Sawin KE, Nurse P. Regulation of cell polarity by microtubules in fission yeast. J Cell Biol 1998;142:457-71. (Pubitemid 28361552)
-
(1998)
Journal of Cell Biology
, vol.142
, Issue.2
, pp. 457-471
-
-
Sawin, K.E.1
Nurse, P.2
-
47
-
-
65349177200
-
AMPK: An emerging drug target for diabetes and the metabolic syndrome
-
Zhang BB, Zhou G, Li C. AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 2009;9:407-16.
-
(2009)
Cell Metab
, vol.9
, pp. 407-416
-
-
Zhang, B.B.1
Zhou, G.2
Li, C.3
-
49
-
-
0027402281
-
Periprandial regulation of lipid metabolism in insulin-treated diabetes mellitus
-
DOI 10.1016/0026-0495(93)90110-A
-
Frayn KN, Coppack SW, Humphreys SM, et al. Periprandial regulation of lipid metabolism in insulin-treated diabetes mellitus. Metabolism 1993;42:504-10. (Pubitemid 23112718)
-
(1993)
Metabolism: Clinical and Experimental
, vol.42
, Issue.4
, pp. 504-510
-
-
Frayn, K.N.1
Coppack, S.W.2
Humphreys, S.M.3
Clark, M.L.4
Evans, R.D.5
-
50
-
-
0031658771
-
Molecular mechanisms involved in GLUT4 translocation in muscle during insulin and contraction stimulation
-
Cushman S, Goodyear L, Pilch P, et al. Molecular mechanisms involved in GLUT4 translocation in muscle during insulin and contraction stimulation. Adv Exp Med Biol. 1998;441:63-71. (Pubitemid 28428980)
-
(1998)
Advances in Experimental Medicine and Biology
, vol.441
, pp. 63-71
-
-
Cushman, S.W.1
Goodyear, L.J.2
Pilch, P.F.3
Ralston, E.4
Galbo, H.5
Ploug, T.6
Kristiansen, S.7
Klip, A.8
-
51
-
-
0032765396
-
5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle
-
DOI 10.2337/diabetes.48.8.1667
-
Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, et al. 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 1999;48:1667-71. (Pubitemid 29356879)
-
(1999)
Diabetes
, vol.48
, Issue.8
, pp. 1667-1671
-
-
Kurth-Kraczek, E.J.1
Hirshman, M.F.2
Goodyear, L.J.3
Winder, W.W.4
-
52
-
-
0032966874
-
Effect of AMPK activation on muscle glucose metabolism in conscious rats
-
Bergeron R, Russell RR III, Young LH, et al. Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol 1999;276:E938-44. (Pubitemid 29249614)
-
(1999)
American Journal of Physiology - Endocrinology and Metabolism
, vol.276
, Issue.5
-
-
Bergeron, R.1
Russell III, R.R.2
Young, L.H.3
Ren, J.-M.4
Marcucci, M.5
Lee, A.6
Shulman, G.I.7
-
53
-
-
0036289911
-
Acute and chronic treatment of ob/ob and db/db mice with AICAR decreases blood glucose concentrations
-
DOI 10.1016/S0006-291X(02)00557-0, PII S0006291X02005570
-
Halseth AE, Ensor NJ, White TA, et al. Acute and chronic treatment of ob/ob and db/db mice with AICAR decreases blood glucose concentrations. Biochem Biophys Res Commun 2002;294:798-805. (Pubitemid 34687187)
-
(2002)
Biochemical and Biophysical Research Communications
, vol.294
, Issue.4
, pp. 798-805
-
-
Halseth, A.E.1
Ensor, N.J.2
White, T.A.3
Ross, S.A.4
Gulve, E.A.5
-
54
-
-
0036165489
-
5-Aminoimidazole-4-carboxamide ribonucleoside treatment improves glucose homeostasis in insulin-resistant diabetic (ob/ob) mice
-
DOI 10.1007/s125-002-8245-8
-
Song XM, Fiedler M, Galuska D, et al. 5-Aminoimidazole-4-carboxamide ribonucleoside treatment improves glucose homeostasis in insulin-resistant diabetic (ob/ob) mice. Diabetologia 2002;45:56-65. (Pubitemid 34118543)
-
(2002)
Diabetologia
, vol.45
, Issue.1
, pp. 56-65
-
-
Song, X.M.1
Fiedler, M.2
Galuska, D.3
Ryder, J.W.4
Fernstrom, M.5
Chibalin, A.V.6
Wallberg-Henriksson, H.7
Zierath, J.R.8
-
55
-
-
12144271041
-
Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: Prevention of diabetes and ectopic lipid deposition
-
DOI 10.1007/s00125-004-1570-9
-
Yu X, McCorkle S, Wang M, et al. Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: prevention of diabetes and ectopic lipid deposition. Diabetologia 2004;47:2012-21. (Pubitemid 40110213)
-
(2004)
Diabetologia
, vol.47
, Issue.11
, pp. 2012-2021
-
-
Yu, X.1
McCorkle, S.2
Wang, M.3
Lee, Y.4
Li, J.5
Saha, A.K.6
Unger, R.H.7
Ruderman, N.B.8
-
56
-
-
0029133854
-
Insulin secretory defect in Zucker fa/fa rats is improved by ameliorating insulin resistance
-
de Souza CJ, Yu JH, Robinson DD, et al. Insulin secretory defect in Zucker fa/fa rats is improved by ameliorating insulin resistance. Diabetes 1995;44:984-91.
-
(1995)
Diabetes
, vol.44
, pp. 984-991
-
-
De Souza, C.J.1
Yu, J.H.2
Robinson, D.D.3
-
57
-
-
0027303172
-
In vivo metformin treatment ameliorates insulin resistance: Evidence for potentiation of insulin-induced translocation and increased functional activity of glucose transporters in obese (fa/fa) Zucker rat adipocytes
-
DOI 10.1210/en.133.1.304
-
Matthaei S, Reibold JP, Hamann A, et al. In vivo metformin treatment ameliorates insulin resistance: evidence for potentiation of insulin-induced translocation and increased functional activity of glucose transporters in obese (fa/fa) Zucker rat adipocytes. Endocrinology 1993;133:304-11. (Pubitemid 23206408)
-
(1993)
Endocrinology
, vol.133
, Issue.1
, pp. 304-311
-
-
Matthaei, S.1
Reibold, J.P.2
Hamann, A.3
Benecke, H.4
Haring, H.U.5
Greten, H.6
Klein, H.H.7
-
58
-
-
0345107247
-
Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade
-
Hawley SA, Boudeau J, Reid JL, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2003;2:28.
-
(2003)
J Biol
, vol.2
, pp. 28
-
-
Hawley, S.A.1
Boudeau, J.2
Reid, J.L.3
-
59
-
-
1542618348
-
The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress
-
DOI 10.1073/pnas.0308061100
-
Shaw RJ, Kosmatka M, Bardeesy N, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 2004;101:3329-35. (Pubitemid 38338195)
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.10
, pp. 3329-3335
-
-
Shaw, R.J.1
Kosmatka, M.2
Bardeesy, N.3
Hurley, R.L.4
Witters, L.A.5
DePinho, R.A.6
Cantley, L.C.7
-
60
-
-
0035929359
-
Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D- ribofuranoside, in a human hepatocellular carcinoma cell line
-
DOI 10.1006/bbrc.2001.5627
-
Imamura K, Ogura T, Kishimoto A, et al. Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem Biophys Res Commun 2001;287:562-7. (Pubitemid 32917636)
-
(2001)
Biochemical and Biophysical Research Communications
, vol.287
, Issue.2
, pp. 562-567
-
-
Imamura, K.1
Ogura, T.2
Kishimoto, A.3
Kaminishi, M.4
Esumi, H.5
-
61
-
-
20844449238
-
AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
-
DOI 10.1016/j.molcel.2005.03.027, PII S1097276505012207
-
Jones RG, Plas DR, Kubek S, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 2005;18:283-93. (Pubitemid 41350534)
-
(2005)
Molecular Cell
, vol.18
, Issue.3
, pp. 283-293
-
-
Jones, R.G.1
Plas, D.R.2
Kubek, S.3
Buzzai, M.4
Mu, J.5
Xu, Y.6
Birnbaum, M.J.7
Thompson, C.B.8
-
62
-
-
77949462458
-
AMPK as a metabolic tumor suppressor: Control of metabolism and cell growth
-
Luo Z, Zang M, Guo W. AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol 2010;6:457-70.
-
(2010)
Future Oncol
, vol.6
, pp. 457-470
-
-
Luo, Z.1
Zang, M.2
Guo, W.3
-
63
-
-
77956477076
-
Metastasis suppression by adiponectin: LKB1 rises up to the challenge
-
Saxena NK, Sharma D. Metastasis suppression by adiponectin: LKB1 rises up to the challenge. Cell Adh Migr 2010;4:358-62.
-
(2010)
Cell Adh Migr
, vol.4
, pp. 358-362
-
-
Saxena, N.K.1
Sharma, D.2
-
64
-
-
73949111049
-
Tumor suppression by LKB1: SIK-ness prevents metastasis
-
Shaw RJ. Tumor suppression by LKB1: SIK-ness prevents metastasis. Sci Signal 2009;2:pe55.
-
(2009)
Sci Signal
, vol.2
-
-
Shaw, R.J.1
-
66
-
-
39849100440
-
Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton
-
Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 2008;1778:660-9.
-
(2008)
Biochim Biophys Acta
, vol.1778
, pp. 660-669
-
-
Hartsock, A.1
Nelson, W.J.2
-
67
-
-
80051724097
-
Epithelial cell polarity: A major gatekeeper against cancer&quest
-
Royer C, Lu X. Epithelial cell polarity: a major gatekeeper against cancer&quest. Cell Death Different 2011;18:1470-77.
-
(2011)
Cell Death Different
, vol.18
, pp. 1470-1477
-
-
Royer, C.1
Lu, X.2
-
68
-
-
50149108987
-
Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine
-
Imanshahidi M, Hosseinzadeh H. Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytother Res 2008;22:999-1012.
-
(2008)
Phytother Res
, vol.22
, pp. 999-1012
-
-
Imanshahidi, M.1
Hosseinzadeh, H.2
-
70
-
-
79952198976
-
Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E(2) and prostaglandin E(2) receptors
-
Singh T, Vaid M, Katiyar N, et al. Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E(2) and prostaglandin E(2) receptors. Carcinogenesis 2011;32:86-92.
-
(2011)
Carcinogenesis
, vol.32
, pp. 86-92
-
-
Singh, T.1
Vaid, M.2
Katiyar, N.3
-
71
-
-
84867193563
-
Berberine inhibits human colon cancer cell migration via AMP-activated protein kinase-mediated downregulation of integrin beta1 signaling
-
Park JJ, Seo SM, Kim EJ, et al. Berberine inhibits human colon cancer cell migration via AMP-activated protein kinase-mediated downregulation of integrin beta1 signaling. Biochem Biophys Res Commun 2012;426:461-7.
-
(2012)
Biochem Biophys Res Commun
, vol.426
, pp. 461-467
-
-
Park, J.J.1
Seo, S.M.2
Kim, E.J.3
-
72
-
-
84455208086
-
Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression
-
Kim HS, Kim MJ, Kim EJ, et al. Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression. Biochem Pharmacol 2012;83:385-94.
-
(2012)
Biochem Pharmacol
, vol.83
, pp. 385-394
-
-
Kim, H.S.1
Kim, M.J.2
Kim, E.J.3
-
73
-
-
34547923201
-
The cyclooxygenase-2-mediated prostaglandin signaling is causally related to epithelial carcinogenesis
-
DOI 10.1002/mc.20326
-
Muller-Decker K, Furstenberger G. The cyclooxygenase-2-mediated prostaglandin signaling is causally related to epithelial carcinogenesis. Mol Carcinog 2007;46:705-10. (Pubitemid 47255191)
-
(2007)
Molecular Carcinogenesis
, vol.46
, Issue.8
, pp. 705-710
-
-
Muller-Decker, K.1
Furstenberger, G.2
-
74
-
-
0027930794
-
Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts
-
Allard MF, Schonekess BO, Henning SL, et al. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol 1994;267:H742-50. (Pubitemid 24272494)
-
(1994)
American Journal of Physiology - Heart and Circulatory Physiology
, vol.267
, Issue.2
-
-
Allard, M.F.1
Schonekess, B.O.2
Henning, S.L.3
English, D.R.4
Lopaschuk, G.D.5
-
75
-
-
7244234162
-
Mechanisms for increased glycolysis in the hypertrophied rat heart
-
DOI 10.1161/01.HYP.0000144292.69599.0c
-
Nascimben L, Ingwall JS, Lorell BH, et al. Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertension 2004;44:662-7. (Pubitemid 39435236)
-
(2004)
Hypertension
, vol.44
, Issue.5
, pp. 662-667
-
-
Nascimben, L.1
Ingwall, J.S.2
Lorell, B.H.3
Pinz, I.4
Schultz, V.5
Tornheim, K.6
Tian, R.7
-
76
-
-
57749083482
-
Metabolic switch and hypertrophy of cardiomyocytes following treatment with angiotensin II are prevented by AMP-activated protein kinase
-
Stuck BJ, Lenski M, Bohm M, et al. Metabolic switch and hypertrophy of cardiomyocytes following treatment with angiotensin II are prevented by AMP-activated protein kinase. J Biol Chem 2008;283:32562-9.
-
(2008)
J Biol Chem
, vol.283
, pp. 32562-32569
-
-
Stuck, B.J.1
Lenski, M.2
Bohm, M.3
-
77
-
-
84874641762
-
AMPK attenuates microtubule proliferation in cardiac hypertrophy
-
Fassett JT, Hu X, Xu X, et al. AMPK attenuates microtubule proliferation in cardiac hypertrophy. Am J Physiol 2013;304:H749-58.
-
(2013)
Am J Physiol
, vol.304
-
-
Fassett, J.T.1
Hu, X.2
Xu, X.3
-
78
-
-
55949114398
-
AMP activated protein kinase-alpha2 deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction in mice
-
Zhang P, Hu X, Xu X, et al. AMP activated protein kinase-alpha2 deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction in mice. Hypertension 2008;52:918-24.
-
(2008)
Hypertension
, vol.52
, pp. 918-924
-
-
Zhang, P.1
Hu, X.2
Xu, X.3
-
79
-
-
3543008912
-
Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte
-
DOI 10.1074/jbc.M403528200
-
Chan AY, Soltys CL, Young ME, et al. Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. J Biol Chem 2004;279:32771-9. (Pubitemid 39014736)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.31
, pp. 32771-32779
-
-
Chan, A.Y.M.1
Soltys, C.-L.M.2
Young, M.E.3
Proud, C.G.4
Dyck, J.R.B.5
-
80
-
-
35548995067
-
Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy
-
DOI 10.1038/nn1998, PII NN1998
-
Vilchez D, Ros S, Cifuentes D, et al. Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci 2007;10:1407-13. (Pubitemid 350014686)
-
(2007)
Nature Neuroscience
, vol.10
, Issue.11
, pp. 1407-1413
-
-
Vilchez, D.1
Ros, S.2
Cifuentes, D.3
Pujadas, L.4
Valles, J.5
Garcia-Fojeda, B.6
Criado-Garcia, O.7
Fernandez-Sanchez, E.8
Medrao-Fernandez, I.9
Dominguez, J.10
Garcia-Rocha, M.11
Soriano, E.12
Rodriguez, D.C.S.13
Guinovart, J.J.14
-
82
-
-
46749133868
-
Drosophila alicorn is a neuronal maintenance factor protecting against activity-induced retinal degeneration
-
Spasic MR, Callaerts P, Norga KK. Drosophila alicorn is a neuronal maintenance factor protecting against activity-induced retinal degeneration. J Neurosci 2008;28:6419-29.
-
(2008)
J Neurosci
, vol.28
, pp. 6419-6429
-
-
Spasic, M.R.1
Callaerts, P.2
Norga, K.K.3
-
83
-
-
33846111645
-
B Receptors by the Metabolic Sensor AMP-Dependent Protein Kinase
-
DOI 10.1016/j.neuron.2006.12.015, PII S0896627306010208
-
Kuramoto N, Wilkins ME, Fairfax BP, et al. Phospho-dependent functional modulation of GABA(B) receptors by the metabolic sensor AMP-dependent protein kinase. Neuron 2007;53:233-47. (Pubitemid 46074400)
-
(2007)
Neuron
, vol.53
, Issue.2
, pp. 233-247
-
-
Kuramoto, N.1
Wilkins, M.E.2
Fairfax, B.P.3
Revilla-Sanchez, R.4
Terunuma, M.5
Tamaki, K.6
Iemata, M.7
Warren, N.8
Couve, A.9
Calver, A.10
Horvath, Z.11
Freeman, K.12
Carling, D.13
Huang, L.14
Gonzales, C.15
Cooper, E.16
Smart, T.G.17
Pangalos, M.N.18
Moss, S.J.19
-
84
-
-
0014709161
-
Inhibitory control of intracerebellar nuclei by the Purkinje cell axons
-
Ito M, Yoshida M, Obata K, et al. Inhibitory control of intracerebellar nuclei by the Purkinje cell axons. Exp Brain Res 1970;10:64-80.
-
(1970)
Exp Brain Res
, vol.10
, pp. 64-80
-
-
Ito, M.1
Yoshida, M.2
Obata, K.3
|