메뉴 건너뛰기




Volumn 34, Issue SUPPL.1, 2014, Pages 41-49

Impairing methylations at ribosome RNA, a point mutation-dependent strategy for aminoglycoside resistance: The RsmG case

Author keywords

Aminoglycosides; Escherichia coli; Methylation; Mutagenesis; RNA biosynthesis; Streptomycin

Indexed keywords

AMINOGLYCOSIDE; ANTIINFECTIVE AGENT; BACTERIAL RNA; ESCHERICHIA COLI PROTEIN; GIDB PROTEIN, E COLI; HYBRID PROTEIN; METHYLTRANSFERASE; RIBOSOME PROTEIN; RNA 16S; RPSL PROTEIN, E COLI; RRNA (ADENOSINE-O-2'-)METHYLTRANSFERASE; S ADENOSYLMETHIONINE; STREPTOMYCIN;

EID: 84906552752     PISSN: 01204157     EISSN: None     Source Type: Journal    
DOI: 10.7705/biomedica.v34i0.1702     Document Type: Article
Times cited : (12)

References (43)
  • 1
    • 13544261687 scopus 로고    scopus 로고
    • Genetic factors in aminoglycoside toxicity
    • Fischel-Ghodsian N. Genetic factors in aminoglycoside toxicity. Pharmacogenomics. 2005;6:27-36. http://dx.doi.org/10.1517/14622416.6.1.27
    • (2005) Pharmacogenomics , vol.6 , pp. 27-36
    • Fischel-Ghodsian, N.1
  • 2
    • 0027339350 scopus 로고
    • Aminoglycoside toxicity
    • Inciardi JF. Aminoglycoside toxicity. J Infect Dis. 1993;168: 1594-5. http://dx.doi.org/10.1093/infdis/168.6.1594
    • (1993) J Infect Dis , vol.168 , pp. 1594-1595
    • Inciardi, J.F.1
  • 3
    • 0033152492 scopus 로고    scopus 로고
    • Basis for prokaryotic specificity of action of aminoglycoside antibiotics
    • Recht MI, Douthwaite S, Puglisi JD. Basis for prokaryotic specificity of action of aminoglycoside antibiotics. Embo J. 1999;18:3133-8. http://dx.doi.org/10.1093/emboj/18.11.3133
    • (1999) Embo J , vol.18 , pp. 3133-3138
    • Recht, M.I.1    Douthwaite, S.2    Puglisi, J.D.3
  • 4
    • 1842388479 scopus 로고    scopus 로고
    • RNA sequence determinants for aminoglycoside binding to an A-site rRNA model oligonucleotide
    • Recht MI, Fourmy D, Blanchard SC, Dahlquist KD, Puglisi JD. RNA sequence determinants for aminoglycoside binding to an A-site rRNA model oligonucleotide. J Mol Biol. 1996;262:421-36. http://dx.doi.org/10.1006/jmbi.1996.0526
    • (1996) J Mol Biol , vol.262 , pp. 421-436
    • Recht, M.I.1    Fourmy, D.2    Blanchard, S.C.3    Dahlquist, K.D.4    Puglisi, J.D.5
  • 5
    • 0015575958 scopus 로고
    • Two genetic loci for resistance to kasugamycin in Escherichia coli
    • Sparling PF, Ikeya Y, Elliot D. Two genetic loci for resistance to kasugamycin in Escherichia coli. J Bacteriol. 1973;113:704-10.
    • (1973) J Bacteriol , vol.113 , pp. 704-710
    • Sparling, P.F.1    Ikeya, Y.2    Elliot, D.3
  • 6
    • 0015543763 scopus 로고
    • Alteration of ribosomal protein S4 by mutation linked to kasugamycin-resistance in Escherichia coli
    • Zimmermann RA, Ikeya Y, Sparling PF. Alteration of ribosomal protein S4 by mutation linked to kasugamycin-resistance in Escherichia coli. Proc Natl Acad Sci U S A. 1973;70:71-5.
    • (1973) Proc Natl Acad Sci U S A , vol.70 , pp. 71-75
    • Zimmermann, R.A.1    Ikeya, Y.2    Sparling, P.F.3
  • 7
    • 0015494418 scopus 로고
    • Mechanism of kasugamycin resistance in Escherichia coli
    • Helser TL, Davies JE, Dahlberg JE. Mechanism of kasugamycin resistance in Escherichia coli. Nat New Biol. 1972;235:6-9.
    • (1972) Nat New Biol , vol.235 , pp. 6-9
    • Helser, T.L.1    Davies, J.E.2    Dahlberg, J.E.3
  • 8
    • 0018690149 scopus 로고
    • Studies on the function of two adjacent N6 N6-dimethyladenosines near the 3' end of 16 S ribosomal RNA of Escherichia coli. I. The effect of kasugamycin on initiation of protein synthesis
    • Poldermans B, Goosen N, van Knippenberg PH. Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3' end of 16 S ribosomal RNA of Escherichia coli. I. The effect of kasugamycin on initiation of protein synthesis. J Biol Chem. 1979;254:9085-9.
    • (1979) J Biol Chem , vol.254 , pp. 9085-9089
    • Poldermans, B.1    Goosen, N.2    van Knippenberg, P.H.3
  • 9
    • 0018686494 scopus 로고
    • Studies on the function of two adjacent N6 N6-dimethyladenosines near the 3' end of 16 S ribosomal RNA of Escherichia coli. III. Purification and properties of the methylating enzyme and methylase-30 S interactions
    • Poldermans B, Roza L, van Knippenberg PH. Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3' end of 16 S ribosomal RNA of Escherichia coli. III. Purification and properties of the methylating enzyme and methylase-30 S interactions. J Biol Chem. 1979;254:9090-100.
    • (1979) J Biol Chem , vol.254 , pp. 9090-9100
    • Poldermans, B.1    Roza, L.2    van Knippenberg, P.H.3
  • 10
    • 0018686494 scopus 로고
    • Studies on the function of two adjacent N6 N6-dimethyladenosines near the 3' end of 16 S ribosomal RNA of Escherichia coli. II. The effect of the absence of the methyl groups on initiation of protein biosynthesis
    • Poldermans B, van Buul CP, van Knippenberg PH. Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3' end of 16 S ribosomal RNA of Escherichia coli. II. The effect of the absence of the methyl groups on initiation of protein biosynthesis. J Biol Chem. 1979;254:9090-3.
    • (1979) J Biol Chem , vol.254 , pp. 9090-9093
    • Poldermans, B.1    van Buul, C.P.2    van Knippenberg, P.H.3
  • 11
    • 84866603533 scopus 로고    scopus 로고
    • The Escherichia coli RlmN methyltransferase is a dual-specificity enzyme that modifies both rRNA and tRNA and controls translational accuracy
    • Benítez-Páez A, Villarroya M, Armengod ME. The Escherichia coli RlmN methyltransferase is a dual-specificity enzyme that modifies both rRNA and tRNA and controls translational accuracy. RNA. 2012;18:1783-95. http://dx.doi.org/10.1261/rna.033266.112
    • (2012) RNA , vol.18 , pp. 1783-1795
    • Benítez-Páez, A.1    Villarroya, M.2    Armengod, M.E.3
  • 12
    • 77950361036 scopus 로고    scopus 로고
    • Fine-tuning of the ribosomal decoding center by conserved methyl-modifications in the Escherichia coli 16S rRNA
    • Kimura S, Suzuki T. Fine-tuning of the ribosomal decoding center by conserved methyl-modifications in the Escherichia coli 16S rRNA. Nucleic Acids Res. 2010;38:1341-52. http://dx.doi.org/10.1093/nar/gkp1073
    • (2010) Nucleic Acids Res , vol.38 , pp. 1341-1352
    • Kimura, S.1    Suzuki, T.2
  • 13
    • 0034699519 scopus 로고    scopus 로고
    • Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics
    • Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature. 2000;407:340-8. http://dx.doi.org/10.1038/35030019
    • (2000) Nature , vol.407 , pp. 340-348
    • Carter, A.P.1    Clemons, W.M.2    Brodersen, D.E.3    Morgan-Warren, R.J.4    Wimberly, B.T.5    Ramakrishnan, V.6
  • 14
    • 18844413446 scopus 로고    scopus 로고
    • Structural insights into transla-tional fidelity
    • Ogle JM, Ramakrishnan V. Structural insights into transla-tional fidelity. Annu Rev Biochem. 2005;74:129-77. http://dx.doi.org/10.1146/annurev.biochem.74.061903.155440
    • (2005) Annu Rev Biochem , vol.74 , pp. 129-177
    • Ogle, J.M.1    Ramakrishnan, V.2
  • 15
    • 0027489149 scopus 로고
    • Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: Alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot
    • Finken M, Kirschner P, Meier A, Wrede A, Bottger EC. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: Alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbiol. 1993;9:1239-46. http://dx.doi.org/10.1111/j.1365-2958.1993.tb01253.x
    • (1993) Mol Microbiol , vol.9 , pp. 1239-1246
    • Finken, M.1    Kirschner, P.2    Meier, A.3    Wrede, A.4    Bottger, E.C.5
  • 16
    • 0034814812 scopus 로고    scopus 로고
    • Mechanisms of streptomycin resistance: Selection of mutations in the 16S rRNA gene conferring resistance
    • Springer B, Kidan YG, Prammananan T, Ellrott K, Bottger EC, Sander P. Mechanisms of streptomycin resistance: Selection of mutations in the 16S rRNA gene conferring resistance. Antimicrob Agents Chemother. 2001;45:2877-84. http://dx.doi.org/10.1128/AAC.45.10.2877-2884.2001
    • (2001) Antimicrob Agents Chemother , vol.45 , pp. 2877-2884
    • Springer, B.1    Kidan, Y.G.2    Prammananan, T.3    Ellrott, K.4    Bottger, E.C.5    Sander, P.6
  • 18
    • 33846678393 scopus 로고    scopus 로고
    • Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria
    • Okamoto S, Tamaru A, Nakajima C, Nishimura K, Tanaka Y, Tokuyama S, et al. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol. 2007;63:1096-106. http://dx.doi.org/10.1111/j.1365-2958.2006.05585.x
    • (2007) Mol Microbiol , vol.63 , pp. 1096-1106
    • Okamoto, S.1    Tamaru, A.2    Nakajima, C.3    Nishimura, K.4    Tanaka, Y.5    Tokuyama, S.6
  • 19
    • 34248349446 scopus 로고    scopus 로고
    • Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2)
    • Nishimura K, Hosaka T, Tokuyama S, Okamoto S, Ochi K. Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2). J Bacteriol. 2007;189:3876-83. http://dx.doi.org/10.1128/JB.01776-06
    • (2007) J Bacteriol , vol.189 , pp. 3876-3883
    • Nishimura, K.1    Hosaka, T.2    Tokuyama, S.3    Okamoto, S.4    Ochi, K.5
  • 20
    • 69049112874 scopus 로고    scopus 로고
    • Structural and functional studies of the Thermus thermophilus 16S rRNA methyltransferase RsmG
    • Gregory ST, Demirci H, Belardinelli R, Monshupanee T, Gualerzi C, Dahlberg AE, et al. Structural and functional studies of the Thermus thermophilus 16S rRNA methyltransferase RsmG. RNA. 2009;15:1693-704. http://dx.doi.org/10.1261/rna.1652709
    • (2009) RNA , vol.15 , pp. 1693-1704
    • Gregory, S.T.1    Demirci, H.2    Belardinelli, R.3    Monshupanee, T.4    Gualerzi, C.5    Dahlberg, A.E.6
  • 21
    • 34547751877 scopus 로고    scopus 로고
    • Identification of the RsmG methyltransferase target as 16S rRNA nucleotide G527 and characterization of Bacillus subtilis rsmG mutants
    • Nishimura K, Johansen SK, Inaoka T, Hosaka T, Tokuyama S, Tahara Y, et al. Identification of the RsmG methyltransferase target as 16S rRNA nucleotide G527 and characterization of Bacillus subtilis rsmG mutants. J Bacteriol. 2007;189:6068-73. http://dx.doi.org/10.1128/JB.00558-07
    • (2007) J Bacteriol , vol.189 , pp. 6068-6073
    • Nishimura, K.1    Johansen, S.K.2    Inaoka, T.3    Hosaka, T.4    Tokuyama, S.5    Tahara, Y.6
  • 22
    • 79956293824 scopus 로고    scopus 로고
    • Mutations in gidB confer low-level streptomycin resistance in Mycobacterium tuberculosis
    • Wong SY, Lee JS, Kwak HK, Via LE, Boshoff HI, Barry CE 3rd. Mutations in gidB confer low-level streptomycin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2011;55:2515-22. http://dx.doi.org/10.1128/AAC.01814-10
    • (2011) Antimicrob Agents Chemother , vol.55 , pp. 2515-2522
    • Wong, S.Y.1    Lee, J.S.2    Kwak, H.K.3    Via, L.E.4    Boshoff, H.I.5    Barry III, C.E.6
  • 23
    • 84858650505 scopus 로고    scopus 로고
    • Regulation of expression and catalytic activity of Escherichia coli RsmG methyltransferase
    • Benítez-Páez A, Villarroya M, Armengod ME. Regulation of expression and catalytic activity of Escherichia coli RsmG methyltransferase. RNA. 2012;18:795-806. http://dx.doi.org/10.1261/rna.029868.111
    • (2012) RNA , vol.18 , pp. 795-806
    • Benítez-Páez, A.1    Villarroya, M.2    Armengod, M.E.3
  • 24
    • 84874724662 scopus 로고    scopus 로고
    • The Uniprot, Consortium., Update on activities at the Universal Protein Resource (UniProt) in, 2013
    • The Uniprot Consortium. Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res. 2013;41:D43-7. http://dx.doi.org/10.1093/nar/gks1068
    • (2013) Nucleic Acids, Res , vol.41
  • 25
    • 14644430471 scopus 로고    scopus 로고
    • ProbCons: Probabilistic consistency-based multiple sequence alignment
    • Do CB, Mahabhashyam MS, Brudno M, Batzoglou S. ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res. 2005;15:330-40. http://dx.doi.org/10.1101/gr.2821705
    • (2005) Genome Res , vol.15 , pp. 330-340
    • Do, C.B.1    Mahabhashyam, M.S.2    Brudno, M.3    Batzoglou, S.4
  • 26
    • 0031743421 scopus 로고    scopus 로고
    • Profile hidden Markov models
    • Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14:755-63. http://dx.doi.org/10.1093/bioinformatics/14.9.755
    • (1998) Bioinformatics , vol.14 , pp. 755-763
    • Eddy, S.R.1
  • 27
    • 84858667785 scopus 로고    scopus 로고
    • A practical guide for the computational selection of residues to be experimentally characterized in protein families
    • Benítez-Páez A, Cardenas-Brito S, Gutiérrez AJ. A practical guide for the computational selection of residues to be experimentally characterized in protein families. Brief Bioinform. 2012;13:329-36. http://dx.doi.org/110.1093/bib/bbr052
    • (2012) Brief Bioinform , vol.13 , pp. 329-336
    • Benítez-Páez, A.1    Cardenas-Brito, S.2    Gutiérrez, A.J.3
  • 28
    • 0036606484 scopus 로고    scopus 로고
    • Crystal structure of the Escherichia coli glucose-inhibited division protein B (GidB) reveals a methyltransferase fold
    • Romanowski MJ, Bonanno JB, Burley SK. Crystal structure of the Escherichia coli glucose-inhibited division protein B (GidB) reveals a methyltransferase fold. Proteins. 2002;47:563-7. http://dx.doi.org/10.1002/prot.10121
    • (2002) Proteins , vol.47 , pp. 563-567
    • Romanowski, M.J.1    Bonanno, J.B.2    Burley, S.K.3
  • 29
    • 32144432437 scopus 로고    scopus 로고
    • The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling
    • Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195-201. http://dx.doi.org/10.1093/bioinformatics/bti770
    • (2006) Bioinformatics , vol.22 , pp. 195-201
    • Arnold, K.1    Bordoli, L.2    Kopp, J.3    Schwede, T.4
  • 30
    • 0031473847 scopus 로고    scopus 로고
    • SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling
    • Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18:2714-23.
    • (1997) Electrophoresis , vol.18 , pp. 2714-2723
    • Guex, N.1    Peitsch, M.C.2
  • 32
    • 33748582906 scopus 로고    scopus 로고
    • Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements
    • Korostelev A, Trakhanov S, Laurberg M, Noller HF. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell. 2006;126:1065-77. http://dx.doi.org/10.1016/j.cell.2006.08.032
    • (2006) Cell , vol.126 , pp. 1065-1077
    • Korostelev, A.1    Trakhanov, S.2    Laurberg, M.3    Noller, H.F.4
  • 33
    • 33749354360 scopus 로고    scopus 로고
    • Structure of the 70S ribosome complexed with mRNA and tRNA
    • Selmer M, Dunham CM, Murphy FVt, Weixlbaumer A, Petry S, Kelley AC, et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science. 2006;313:1935-42. http://dx.doi.org/10.1126/science.1131127
    • (2006) Science , vol.313 , pp. 1935-1942
    • Selmer, M.1    Dunham, C.M.2    Murphy, F.V.3    Weixlbaumer, A.4    Petry, S.5    Kelley, A.C.6
  • 34
    • 0026620038 scopus 로고
    • Interaction between the two conserved single-stranded regions at the decoding site of small subunit ribosomal RNA is essential for ribosome function
    • Cunningham PR, Nurse K, Bakin A, Weitzmann CJ, Pflumm M, Ofengand J. Interaction between the two conserved single-stranded regions at the decoding site of small subunit ribosomal RNA is essential for ribosome function. Biochemistry. 1992;31:12012-22.
    • (1992) Biochemistry , vol.31 , pp. 12012-12022
    • Cunningham, P.R.1    Nurse, K.2    Bakin, A.3    Weitzmann, C.J.4    Pflumm, M.5    Ofengand, J.6
  • 35
    • 0027282806 scopus 로고
    • Functional effects of base changes which further define the decoding center of Escherichia coli 16S ribosomal RNA: Mutation of C1404, G1405, C1496, G1497, and U1498
    • Cunningham PR, Nurse K, Weitzmann CJ, Ofengand J. Functional effects of base changes which further define the decoding center of Escherichia coli 16S ribosomal RNA: Mutation of C1404, G1405, C1496, G1497, and U1498. Biochemistry. 1993;32:7172-80.
    • (1993) Biochemistry , vol.32 , pp. 7172-7180
    • Cunningham, P.R.1    Nurse, K.2    Weitzmann, C.J.3    Ofengand, J.4
  • 36
    • 84863116168 scopus 로고    scopus 로고
    • Role of helix 44 of 16S rRNA in the fidelity of translation initiation
    • Qin D, Liu Q, Devaraj A, Fredrick K. Role of helix 44 of 16S rRNA in the fidelity of translation initiation. RNA. 2012;18:485-95. http://dx.doi.org/10.1261/rna.031203.111
    • (2012) RNA , vol.18 , pp. 485-495
    • Qin, D.1    Liu, Q.2    Devaraj, A.3    Fredrick, K.4
  • 38
    • 84860193646 scopus 로고    scopus 로고
    • Fitness cost and interference of Arm/Rmt aminoglycoside resistance with the RsmF housekeeping methyltransferases
    • Gutiérrez B, Escudero JA, San Millán A, Hidalgo L, Carrilero L, Ovejero CM, et al Fitness cost and interference of Arm/Rmt aminoglycoside resistance with the RsmF housekeeping methyltransferases. Antimicrob Agents Chemother. 2012;56:2335-41. http://dx.doi.org/10.1128/AAC.06066-11
    • (2012) Antimicrob Agents Chemother , vol.56 , pp. 2335-2341
    • Gutiérrez, B.1    Escudero, J.A.2    San Millán, A.3    Hidalgo, L.4    Carrilero, L.5    Ovejero, C.M.6
  • 39
    • 0031757665 scopus 로고    scopus 로고
    • Fitness of antibiotic-resistant microorganisms and compensatory mutations
    • Bottger EC, Springer B, Pletschette M, Sander P. Fitness of antibiotic-resistant microorganisms and compensatory mutations. Nat Med. 1998;4:1343-4. http://dx.doi.org/10.1038/3906
    • (1998) Nat Med , vol.4 , pp. 1343-1344
    • Bottger, E.C.1    Springer, B.2    Pletschette, M.3    Sander, P.4
  • 40
    • 0033064996 scopus 로고    scopus 로고
    • Modelling in Escherichia coli of mutations in mitoribosomal protein S12: Novel mutant phenotypes of rpsL
    • Toivonen JM, Boocock MR, Jacobs HT. Modelling in Escherichia coli of mutations in mitoribosomal protein S12: Novel mutant phenotypes of rpsL. Mol Microbiol. 1999;31:1735-46. http://dx.doi.org/10.1046/j.1365-2958.1999.01307.x
    • (1999) Mol Microbiol , vol.31 , pp. 1735-1746
    • Toivonen, J.M.1    Boocock, M.R.2    Jacobs, H.T.3
  • 41
    • 59749097483 scopus 로고    scopus 로고
    • Inactivation of KsgA, a 16S rRNA methyltransferase, causes vigorous emergence of mutants with high-level kasugamycin resistance
    • Ochi K, Kim JY, Tanaka Y, Wang G, Masuda K, Nanamiya H, et al. Inactivation of KsgA, a 16S rRNA methyltransferase, causes vigorous emergence of mutants with high-level kasugamycin resistance. Antimicrob Agents Chemother. 2009;53:193-201. http://dx.doi.org/10.1128/AAC.00873-08
    • (2009) Antimicrob Agents Chemother , vol.53 , pp. 193-201
    • Ochi, K.1    Kim, J.Y.2    Tanaka, Y.3    Wang, G.4    Masuda, K.5    Nanamiya, H.6
  • 42
    • 77954680177 scopus 로고    scopus 로고
    • Two novel point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection
    • Gao W, Chua K, Davies JK, Newton HJ, Seemann T, Harrison PF, et al. Two novel point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection. PLoS Pathog. 2010;6:e1000944. http://dx.doi.org/10.1371/journal.ppat.1000944
    • (2010) PLoS Pathog , vol.6
    • Gao, W.1    Chua, K.2    Davies, J.K.3    Newton, H.J.4    Seemann, T.5    Harrison, P.F.6
  • 43
    • 79956294760 scopus 로고    scopus 로고
    • Inactivation of the indigenous methyltransferase RlmN in Staphylococcus aureus increases linezolid resistance
    • LaMarre JM, Howden BP, Mankin AS. Inactivation of the indigenous methyltransferase RlmN in Staphylococcus aureus increases linezolid resistance. Antimicrob Agents Chemother. 2011;55:2989-91. http://dx.doi.org/10.1128/AAC.00183-11
    • (2011) Antimicrob Agents Chemother , vol.55 , pp. 2989-2991
    • LaMarre, J.M.1    Howden, B.P.2    Mankin, A.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.