메뉴 건너뛰기




Volumn 49, Issue 5, 2011, Pages 1578-1589

Random-selection-based anomaly detector for hyperspectral imagery

Author keywords

Anomaly detection; hyperspectral images; multivariate outlier detection

Indexed keywords

RADAR TARGET RECOGNITION; REAL TIME CONTROL; REMOTE SENSING; SPECTROSCOPY; STATISTICS;

EID: 79955590723     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2010.2081677     Document Type: Article
Times cited : (291)

References (36)
  • 1
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • D. Manolakis G. Shaw Detection algorithms for hyperspectral imaging applications IEEE Signal Process. Mag. 19 1 29 43 Jan. 2002
    • (2002) IEEE Signal Process. Mag. , vol.19 , Issue.1 , pp. 29-43
    • Manolakis, D.1    Shaw, G.2
  • 2
    • 0033719885 scopus 로고    scopus 로고
    • Constrained subpixel target detection for remotely sensed imagery
    • C.-I. Chang D. C. Heinz Constrained subpixel target detection for remotely sensed imagery IEEE Trans. Geosci. Remote Sens. 38 3 1144 1159 May 2000
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , Issue.3 , pp. 1144-1159
    • Chang, C.-I.1    Heinz, D.C.2
  • 3
    • 17644371466 scopus 로고    scopus 로고
    • Hyperspectral image processing for automatic target detection applications
    • D. Manolakis D. Marden G. A. Shaw Hyperspectral image processing for automatic target detection applications Lincoln Lab. J. 14 1 79 116 2003
    • (2003) Lincoln Lab. J. , vol.14 , Issue.1 , pp. 79-116
    • Manolakis, D.1    Marden, D.2    Shaw, G.A.3
  • 4
    • 77952585265 scopus 로고    scopus 로고
    • Hybrid detectors based on selective endmembers
    • L. Zhang B. Du Y. Zhong Hybrid detectors based on selective endmembers IEEE Trans. Geosci. Remote Sens. 48 6 2633 2646 Jun. 2010
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.6 , pp. 2633-2646
    • Zhang, L.1    Du, B.2    Zhong, Y.3
  • 5
    • 48849090040 scopus 로고    scopus 로고
    • Improvement of target detection methods by multiway filtering
    • N. Renard S. Bourennane Improvement of target detection methods by multiway filtering IEEE Trans. Geosci. Remote Sens. 46 8 2407 2417 Aug. 2008
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.8 , pp. 2407-2417
    • Renard, N.1    Bourennane, S.2
  • 6
    • 38349194461 scopus 로고    scopus 로고
    • Nonorthogonal tensor matricization for hyperspectral image filtering
    • D. Letexier S. Bourennane J. B. Talon Nonorthogonal tensor matricization for hyperspectral image filtering IEEE Geosci. Remote Sens. Lett. 5 1 3 7 Jan. 2008
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.1 , pp. 3-7
    • Letexier, D.1    Bourennane, S.2    Talon, J.B.3
  • 8
    • 0036613261 scopus 로고    scopus 로고
    • Anomaly detection and classification for hyperspectral imagery
    • C.-I. Chang S.-S. Chiang Anomaly detection and classification for hyperspectral imagery IEEE Trans. Geosci. Remote Sens. 40 6 1314 1325 Jun. 2002
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.6 , pp. 1314-1325
    • Chang, C.-I.1    Chiang, S.-S.2
  • 9
    • 0035392091 scopus 로고    scopus 로고
    • Unsupervised target detection in hyperspectral images using projection pursuit
    • S.-S. Chiang C.-I. Chang I. W. Ginsberg Unsupervised target detection in hyperspectral images using projection pursuit IEEE Trans. Geosci. Remote Sens. 39 7 1380 1391 Jul. 2001
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.7 , pp. 1380-1391
    • Chiang, S.-S.1    Chang, C.-I.2    Ginsberg, I.W.3
  • 10
    • 13144293109 scopus 로고    scopus 로고
    • Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery
    • H. Kwon N. M. Nasrabadi Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery IEEE Trans. Geosci. Remote Sens. 43 2 388 397 Feb. 2005
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.2 , pp. 388-397
    • Kwon, H.1    Nasrabadi, N.M.2
  • 11
    • 36348959745 scopus 로고    scopus 로고
    • A time-efficient method for anomaly detection in hyperspectral images
    • O. Duran M. Petrou A time-efficient method for anomaly detection in hyperspectral images IEEE Trans. Geosci. Remote Sens. 45 12 3894 3904 Dec. 2007
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.12 , pp. 3894-3904
    • Duran, O.1    Petrou, M.2
  • 12
    • 34247549367 scopus 로고    scopus 로고
    • Anomaly detection based on wavelet domain GARCH random field modeling
    • A. Noiboar I. Cohen Anomaly detection based on wavelet domain GARCH random field modeling IEEE Trans. Geosci. Remote Sens. 45 5 1361 1373 May 2007
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.5 , pp. 1361-1373
    • Noiboar, A.1    Cohen, I.2
  • 13
    • 13144306114 scopus 로고    scopus 로고
    • A cluster-based approach for detecting man-made objects and changes in imagery
    • M. J. Carlotte A cluster-based approach for detecting man-made objects and changes in imagery IEEE Trans. Geosci. Remote Sens. 43 2 374 387 Feb. 2005
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.2 , pp. 374-387
    • Carlotte, M.J.1
  • 14
    • 15844423011 scopus 로고    scopus 로고
    • Anomaly detection based on the statistics of hyperspectral imagery
    • S. Catterall Anomaly detection based on the statistics of hyperspectral imagery Proc. SPIE Conf. Imagery Spectroscopy X 5546 171 178 Proc. SPIE Conf. Imagery Spectroscopy X 2004
    • (2004) , vol.5546 , pp. 171-178
    • Catterall, S.1
  • 15
    • 0025508756 scopus 로고
    • Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution
    • I. S. Reed X. Yu Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution IEEE Trans. Acoust., Speech, Signal Process. 38 10 1760 1770 Oct. 1990
    • (1990) IEEE Trans. Acoust., Speech, Signal Process. , vol.38 , Issue.10 , pp. 1760-1770
    • Reed, I.S.1    Yu, X.2
  • 16
    • 33646762000 scopus 로고    scopus 로고
    • Whitening spatial correlation filtering for hyperspectral anomaly detection
    • J.-M. Gaucel M. Guillaume S. Bourennane Whitening spatial correlation filtering for hyperspectral anomaly detection Proc. Int. Conf. Acoust., Speech, Signal Process. 333 336 Proc. Int. Conf. Acoust., Speech, Signal Process. 2005
    • (2005) , pp. 333-336
    • Gaucel, J.-M.1    Guillaume, M.2    Bourennane, S.3
  • 17
    • 69949151812 scopus 로고    scopus 로고
    • Reduction of false alarms caused by background boundaries in real time subspace RX anomaly detection
    • A. V. Kanaev E. Allman J. Murray-Krezan Reduction of false alarms caused by background boundaries in real time subspace RX anomaly detection Proc. SPIEAlgorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV 7334 733405-1 733405-11 Proc. SPIEAlgorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV 2009-Apr.
    • (2009) , vol.7334 , pp. 733405-1-733405-11
    • Kanaev, A.V.1    Allman, E.2    Murray-Krezan, J.3
  • 18
    • 77149128951 scopus 로고    scopus 로고
    • A comparison of multivariate outlier detection methods for finding hyperspectral anomalies
    • T. E. Smetek K. W. Bauer A comparison of multivariate outlier detection methods for finding hyperspectral anomalies Mil. Oper. Res. 13 4 19 44 2008
    • (2008) Mil. Oper. Res. , vol.13 , Issue.4 , pp. 19-44
    • Smetek, T.E.1    Bauer, K.W.2
  • 19
    • 85177012619 scopus 로고    scopus 로고
    • Finding hyperspectral anomalies using multivariate outlier detection
    • T. E. Smetek K. W. Bauer Finding hyperspectral anomalies using multivariate outlier detection Proc. IEEE Aerosp. Conf. 1 24 Proc. IEEE Aerosp. Conf. 2007-Mar.
    • (2007) , pp. 1-24
    • Smetek, T.E.1    Bauer, K.W.2
  • 20
    • 77958572610 scopus 로고    scopus 로고
    • Improved hyperspectral image processing algorithm testing using synthetic imagery and factorial designed experiments
    • J. P. Bellucci T. E. Smetek K. W. Bauer Improved hyperspectral image processing algorithm testing using synthetic imagery and factorial designed experiments IEEE Trans. Geosci. Remote Sens. 48 3 1211 1223 Mar. 2010
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.3 , pp. 1211-1223
    • Bellucci, J.P.1    Smetek, T.E.2    Bauer, K.W.3
  • 21
    • 85177018371 scopus 로고    scopus 로고
    • Air Univ. OH, Wright-Patterson AFB
    • T. E. Smetek Hyperspectral improved anomaly detection and signature matching methods 2007 Air Univ. OH, Wright-Patterson AFB
    • (2007)
    • Smetek, T.E.1
  • 22
    • 35949003645 scopus 로고    scopus 로고
    • Random sampling statistical analysis for adaptive target-scale-invariant hyperspectral anomaly detection
    • J. M. Romano D. Rosario Random sampling statistical analysis for adaptive target-scale-invariant hyperspectral anomaly detection Proc. SPIE 6565 656522 May 2007
    • (2007) Proc. SPIE , vol.6565 , pp. 656522
    • Romano, J.M.1    Rosario, D.2
  • 23
    • 0037189770 scopus 로고    scopus 로고
    • Identifying multivariate discordant observation: A computer-intensive approach
    • H. Viljoen J. H. Venter Identifying multivariate discordant observation: A computer-intensive approach Comput. Statist. Data Anal. 40 1 159 172 Jul. 2002
    • (2002) Comput. Statist. Data Anal. , vol.40 , Issue.1 , pp. 159-172
    • Viljoen, H.1    Venter, J.H.2
  • 24
    • 0037411806 scopus 로고    scopus 로고
    • Exploring process data with the use of robust outlier detection algorithms
    • L. H. Chiang R. J. Pell M. B. Seasholtz Exploring process data with the use of robust outlier detection algorithms J. Process Control 13 5 437 449 Aug. 2003
    • (2003) J. Process Control , vol.13 , Issue.5 , pp. 437-449
    • Chiang, L.H.1    Pell, R.J.2    Seasholtz, M.B.3
  • 25
    • 1542742610 scopus 로고    scopus 로고
    • The masking breakdown point of multivariate outlier identification rules
    • C. Becker U. Gather The masking breakdown point of multivariate outlier identification rules J. Amer. Stat. Assoc. 94 447 947 955 Sep. 1999
    • (1999) J. Amer. Stat. Assoc. , vol.94 , Issue.447 , pp. 947-955
    • Becker, C.1    Gather, U.2
  • 26
    • 0034282347 scopus 로고    scopus 로고
    • BACON: Blocked adaptive computationally efficient outlier nominators
    • N. Billor A. S. Hadi P. F. Velleman BACON: Blocked adaptive computationally efficient outlier nominators Comput. Statist. Data Anal. 34 3 279 298 Sep. 2000
    • (2000) Comput. Statist. Data Anal. , vol.34 , Issue.3 , pp. 279-298
    • Billor, N.1    Hadi, A.S.2    Velleman, P.F.3
  • 27
    • 0001556356 scopus 로고
    • Identifying multiple outliers in multivariate data
    • A. S. Hadi Identifying multiple outliers in multivariate data J. R. Stat. Soc., Ser. B 54 3 761 771 1992
    • (1992) J. R. Stat. Soc., Ser. B , vol.54 , Issue.3 , pp. 761-771
    • Hadi, A.S.1
  • 28
    • 33748640868 scopus 로고    scopus 로고
    • Recent Adavaces in Hyperspectral Signal and Image Processing
    • Pixel purity index-based algorithm to unmix hyperspectral data Res. Signpost India, Trivandrum
    • F. Chaudhry C. Wu W. Liu C.-I. Chang A. Plaza Recent Adavaces in Hyperspectral Signal and Image Processing 2006 Res. Signpost India, Trivandrum Pixel purity index-based algorithm to unmix hyperspectral data
    • (2006)
    • Chaudhry, F.1    Wu, C.2    Liu, W.3    Chang, C.-I.4    Plaza, A.5
  • 29
    • 85177006875 scopus 로고    scopus 로고
    • The civil air patrol's ARCHER hyperspectral detection system
    • W. Kendall The civil air patrol's ARCHER hyperspectral detection system Proc. Specialty Group Camouflage, Concealment, Deception, Mil. Sens. Symp. 17 28 Proc. Specialty Group Camouflage, Concealment, Deception, Mil. Sens. Symp. 2005
    • (2005) , pp. 17-28
    • Kendall, W.1
  • 30
    • 0035305896 scopus 로고    scopus 로고
    • Real-time processing algorithms for target detection and classification in hyperspectral imagery
    • C.-I. Chang H. Ren S.-S. Chiang Real-time processing algorithms for target detection and classification in hyperspectral imagery IEEE Trans. Geosci. Remote Sens. 39 4 760 768 Apr. 2001
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.4 , pp. 760-768
    • Chang, C.-I.1    Ren, H.2    Chiang, S.-S.3
  • 31
    • 85177016344 scopus 로고    scopus 로고
    • A remedy for nonstationarity in background transition regions for real time hyperspectral detection
    • A. P. Schaum A remedy for nonstationarity in background transition regions for real time hyperspectral detection Proc. IEEE Aerosp. Conf. 1 9 Proc. IEEE Aerosp. Conf. 2006-Mar.-411
    • (2006) , pp. 1-9
    • Schaum, A.P.1
  • 32
    • 0004236492 scopus 로고
    • Matrix Computations
    • 2nd Johns Hopkins Univ. Press MD, Baltimore
    • G. H. Golub G. F. Van Loan Matrix Computations 2nd 1989 Johns Hopkins Univ. Press MD, Baltimore
    • (1989)
    • Golub, G.H.1    Van Loan, G.F.2
  • 33
    • 85177015962 scopus 로고
    • A systolic array algorithm and architecture of adaptive spatial filters for FLIR target detection
    • C.-I. Chang M. L. G. Althouse A systolic array algorithm and architecture of adaptive spatial filters for FLIR target detection Proc. IEEE Workshop Vis. Signal Process. Commun. 110 115 Proc. IEEE Workshop Vis. Signal Process. Commun. Hsinchu Taiwan 1991-Jun.-67
    • (1991) , pp. 110-115
    • Chang, C.-I.1    Althouse, M.L.G.2
  • 34
    • 15944406786 scopus 로고    scopus 로고
    • Optimal linear unmixing for hyperspectral image analysis
    • Q. Du Optimal linear unmixing for hyperspectral image analysis Proc. IEEE IGARSS 5 3219 3221 Proc. IEEE IGARSS 2004
    • (2004) , vol.5 , pp. 3219-3221
    • Du, Q.1
  • 35
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • J. C. Harsanyi C.-I. Chang Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach IEEE Trans. Geosci. Remote Sens. 32 4 779 785 Jul. 1994
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.-I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.