메뉴 건너뛰기




Volumn 25, Issue 4, 2014, Pages 282-288

MicroRNA regulation of lipoprotein metabolism

Author keywords

cholesterol homeostasis; lipoprotein metabolism; miRNAs

Indexed keywords

ABC TRANSPORTER A1; ABC TRANSPORTER G1; LOW DENSITY LIPOPROTEIN CHOLESTEROL; MICRORNA; MICRORNA 122; MICRORNA 144; MICRORNA 182; MICRORNA 183; MICRORNA 185; MICRORNA 30C; MICRORNA 33A; MICRORNA 33B; MICRORNA 96; SCAVENGER RECEPTOR BI; UNCLASSIFIED DRUG;

EID: 84904187248     PISSN: 09579672     EISSN: 14736535     Source Type: Journal    
DOI: 10.1097/MOL.0000000000000094     Document Type: Review
Times cited : (28)

References (49)
  • 4
    • 4644309196 scopus 로고    scopus 로고
    • The functions of animal microRNAs
    • Ambros V. The functions of animal microRNAs. Nature 2004; 431:350-355.
    • (2004) Nature , vol.431 , pp. 350-355
    • Ambros, V.1
  • 5
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: Genomics, biogenesis, mechanism, and function
    • Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004; 116:281-297.
    • (2004) Cell , vol.116 , pp. 281-297
    • Bartel, D.P.1
  • 6
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: Target recognition and regulatory functions
    • Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell 2009; 136:215-233.
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 7
    • 38349169664 scopus 로고    scopus 로고
    • Mechanisms of posttranscriptional regulation by microRNAs: Are the answers in sight?
    • Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of posttranscriptional regulation by microRNAs: Are the answers in sight? Nat Rev Genet 2008; 9:102-114.
    • (2008) Nat Rev Genet , vol.9 , pp. 102-114
    • Filipowicz, W.1    Bhattacharyya, S.N.2    Sonenberg, N.3
  • 8
    • 42249093319 scopus 로고    scopus 로고
    • LNA-mediated microRNA silencing in nonhuman primates
    • Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in nonhuman primates. Nature 2008; 452:896-899.
    • (2008) Nature , vol.452 , pp. 896-899
    • Elmen, J.1    Lindow, M.2    Schutz, S.3
  • 9
    • 33645075443 scopus 로고    scopus 로고
    • MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting
    • Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3:87-98.
    • (2006) Cell Metab , vol.3 , pp. 87-98
    • Esau, C.1    Davis, S.2    Murray, S.F.3
  • 10
    • 84880288761 scopus 로고    scopus 로고
    • MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion
    • Soh J, Iqbal J, Queiroz J, et al. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med 2013; 19:892-900.
    • (2013) Nat Med , vol.19 , pp. 892-900
    • Soh, J.1    Iqbal, J.2    Queiroz, J.3
  • 11
    • 84879852051 scopus 로고    scopus 로고
    • An SREBP-responsive micro-RNA operon contributes to a regulatory loop for intracellular lipid homeostasis
    • Jeon TI, Esquejo RM, Roqueta-Rivera M, et al. An SREBP-responsive micro-RNA operon contributes to a regulatory loop for intracellular lipid homeostasis. Cell Metab 2013; 18:51-61.
    • (2013) Cell Metab , vol.18 , pp. 51-61
    • Jeon, T.I.1    Esquejo, R.M.2    Roqueta-Rivera, M.3
  • 12
    • 84893357948 scopus 로고    scopus 로고
    • Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake
    • Yang M, Liu W, Pellicane C, et al. Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. J Lipid Res 2014; 55:226-238.
    • (2014) J Lipid Res , vol.55 , pp. 226-238
    • Yang, M.1    Liu, W.2    Pellicane, C.3
  • 13
    • 84880006810 scopus 로고    scopus 로고
    • MicroRNA-144 regulates hepatic ABCA1 and plasma HDL following activation of the nuclear receptor FXR
    • de Aguiar Vallim T, Tarling E, Kim T, et al. MicroRNA-144 regulates hepatic ABCA1 and plasma HDL following activation of the nuclear receptor FXR. Circ Res 2013; 112:1602-1612.
    • (2013) Circ Res , vol.112 , pp. 1602-1612
    • De Aguiar Vallim, T.1    Tarling, E.2    Kim, T.3
  • 14
    • 77955456415 scopus 로고    scopus 로고
    • MiR-33 links SREBP-2 induction to repression of sterol transporters
    • Marquart TJ, Allen RM, Ory DS, Baldan A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci USA 2010; 107:12228-12232.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 12228-12232
    • Marquart, T.J.1    Allen, R.M.2    Ory, D.S.3    Baldan, A.4
  • 15
    • 77953780835 scopus 로고    scopus 로고
    • MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis
    • Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010; 328:1566-1569.
    • (2010) Science , vol.328 , pp. 1566-1569
    • Najafi-Shoushtari, S.H.1    Kristo, F.2    Li, Y.3
  • 16
    • 84880031381 scopus 로고    scopus 로고
    • Control of cholesterol metabolism and plasma HDL levels by miRNA-144
    • Ramirez CM, Rotllan N, Vlassov AV, et al. Control of cholesterol metabolism and plasma HDL levels by miRNA-144. Circ Res 2013; 112:1592-1601.
    • (2013) Circ Res , vol.112 , pp. 1592-1601
    • Ramirez, C.M.1    Rotllan, N.2    Vlassov, A.V.3
  • 17
    • 77953787211 scopus 로고    scopus 로고
    • MiR-33 contributes to the regulation of cholesterol homeostasis
    • Rayner KJ, Suarez Y, Davalos A, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010; 328:1570-1573.
    • (2010) Science , vol.328 , pp. 1570-1573
    • Rayner, K.J.1    Suarez, Y.2    Davalos, A.3
  • 18
    • 40249106014 scopus 로고    scopus 로고
    • Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver
    • Elmen J, Lindow M, Silahtaroglu A, et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 2008; 36:1153-1162.
    • (2008) Nucleic Acids Res , vol.36 , pp. 1153-1162
    • Elmen, J.1    Lindow, M.2    Silahtaroglu, A.3
  • 19
    • 28444469246 scopus 로고    scopus 로고
    • Silencing of microRNAs in vivo with 'antagomirs'
    • Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 2005; 438:685-689.
    • (2005) Nature , vol.438 , pp. 685-689
    • Krutzfeldt, J.1    Rajewsky, N.2    Braich, R.3
  • 20
    • 0030941803 scopus 로고    scopus 로고
    • The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
    • Brown MS, Goldstein JL. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997; 89:331-340.
    • (1997) Cell , vol.89 , pp. 331-340
    • Brown, M.S.1    Goldstein, J.L.2
  • 21
    • 0036251153 scopus 로고    scopus 로고
    • SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver
    • Horton JD, Goldstein JL, Brown MS. SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109:1125-1131.
    • (2002) J Clin Invest , vol.109 , pp. 1125-1131
    • Horton, J.D.1    Goldstein, J.L.2    Brown, M.S.3
  • 22
    • 0013321009 scopus 로고
    • Familial hypercholesterolemia: Defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3- methylglutaryl coenzyme A reductase activity
    • Brown MS, Goldstein JL. Familial hypercholesterolemia: Defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Proc Natl Acad Sci USA 1974; 71:788-792.
    • (1974) Proc Natl Acad Sci USA , vol.71 , pp. 788-792
    • Brown, M.S.1    Goldstein, J.L.2
  • 23
    • 0022549920 scopus 로고
    • A receptor-mediated pathway for cholesterol homeostasis
    • Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science 1986; 232:34-47.
    • (1986) Science , vol.232 , pp. 34-47
    • Brown, M.S.1    Goldstein, J.L.2
  • 24
    • 0036792050 scopus 로고    scopus 로고
    • Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory elementbinding proteins
    • Yabe D, Brown MS, Goldstein JL. Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory elementbinding proteins. Proc Natl Acad Sci USA 2002; 99:12753-12758.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 12753-12758
    • Yabe, D.1    Brown, M.S.2    Goldstein, J.L.3
  • 25
    • 0037162719 scopus 로고    scopus 로고
    • Crucial step in cholesterol homeostasis: Sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER
    • Yang T, Espenshade PJ, Wright ME, et al. Crucial step in cholesterol homeostasis: Sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 2002; 110:489-500.
    • (2002) Cell , vol.110 , pp. 489-500
    • Yang, T.1    Espenshade, P.J.2    Wright, M.E.3
  • 26
    • 65549140251 scopus 로고    scopus 로고
    • A phosphorylation cascade controls the degradation of active SREBP1
    • Bengoechea-Alonso MT, Ericsson J. A phosphorylation cascade controls the degradation of active SREBP1. J Biol Chem 2009; 284:5885-5895.
    • (2009) J Biol Chem , vol.284 , pp. 5885-5895
    • Bengoechea-Alonso, M.T.1    Ericsson, J.2
  • 27
    • 0037603589 scopus 로고    scopus 로고
    • Mutations in PCSK9 cause autosomal dominant hypercholesterolemia
    • Abifadel M, Varret M, Rabes JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003; 34:154-156.
    • (2003) Nat Genet , vol.34 , pp. 154-156
    • Abifadel, M.1    Varret, M.2    Rabes, J.P.3
  • 28
    • 2342451128 scopus 로고    scopus 로고
    • Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype
    • Maxwell KN, Breslow JL. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc Natl Acad Sci USA 2004; 101:7100-7105.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 7100-7105
    • Maxwell, K.N.1    Breslow, J.L.2
  • 29
    • 67650092919 scopus 로고    scopus 로고
    • LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor
    • Zelcer N, Hong C, Boyadjian R, Tontonoz P. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 2009; 325:100-104.
    • (2009) Science , vol.325 , pp. 100-104
    • Zelcer, N.1    Hong, C.2    Boyadjian, R.3    Tontonoz, P.4
  • 30
    • 84867405858 scopus 로고    scopus 로고
    • Transcriptional and posttranscriptional control of cholesterol homeostasis by liver X receptors
    • Tontonoz P. Transcriptional and posttranscriptional control of cholesterol homeostasis by liver X receptors. Cold Spring Harb Symp Quant Biol 2011; 76:129-137.
    • (2011) Cold Spring Harb Symp Quant Biol , vol.76 , pp. 129-137
    • Tontonoz, P.1
  • 31
    • 0032813809 scopus 로고    scopus 로고
    • The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease
    • Bodzioch M, Orso E, Klucken J, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999; 22:347-351.
    • (1999) Nat Genet , vol.22 , pp. 347-351
    • Bodzioch, M.1    Orso, E.2    Klucken, J.3
  • 32
    • 0032813808 scopus 로고    scopus 로고
    • Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency
    • Brooks-Wilson A, Marcil M, Clee SM, et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 1999; 22:336-345.
    • (1999) Nat Genet , vol.22 , pp. 336-345
    • Brooks-Wilson, A.1    Marcil, M.2    Clee, S.M.3
  • 33
    • 0032813660 scopus 로고    scopus 로고
    • Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1
    • Rust S, RosierM, Funke H, et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 1999; 22:352-355.
    • (1999) Nat Genet , vol.22 , pp. 352-355
    • Rust, S.1    Rosier, M.2    Funke, H.3
  • 34
    • 84894613848 scopus 로고    scopus 로고
    • Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXRa expression and cholesterol homeostasis
    • Adlakha YK, Khanna S, Singh R, et al. Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXRa expression and cholesterol homeostasis. Cell Death Dis 2013; 4:e780.
    • (2013) Cell Death Dis , vol.4
    • Adlakha, Y.K.1    Khanna, S.2    Singh, R.3
  • 35
    • 84878958446 scopus 로고    scopus 로고
    • A regulatory role for microRNA 33-in controlling lipid metabolism gene expression
    • Goedeke L, Vales-Lara FM, Fenstermaker M, et al. A regulatory role for microRNA 33-in controlling lipid metabolism gene expression. Mol Cell Biol 2013; 33:2339-2352.
    • (2013) Mol Cell Biol , vol.33 , pp. 2339-2352
    • Goedeke, L.1    Vales-Lara, F.M.2    Fenstermaker, M.3
  • 36
    • 84888205573 scopus 로고    scopus 로고
    • Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145
    • Kang MH, Zhang LH, Wijesekara N, et al. Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145. Arterioscler Thromb Vasc Biol 2013; 33:2724-2732.
    • (2013) Arterioscler Thromb Vasc Biol , vol.33 , pp. 2724-2732
    • Kang, M.H.1    Zhang, L.H.2    Wijesekara, N.3
  • 37
    • 84860377430 scopus 로고    scopus 로고
    • MiR-106b impairs cholesterol efflux and increases Ab levels by repressing ABCA1 expression
    • Kim J, Yoon H, Ramirez CM, et al. MiR-106b impairs cholesterol efflux and increases Ab levels by repressing ABCA1 expression. Exp Neurol 2012; 235:476-483.
    • (2012) Exp Neurol , vol.235 , pp. 476-483
    • Kim, J.1    Yoon, H.2    Ramirez, C.M.3
  • 38
    • 80054900644 scopus 로고    scopus 로고
    • MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1
    • Ramirez CM, Davalos A, Goedeke L, et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol 2011; 31:2707-2714.
    • (2011) Arterioscler Thromb Vasc Biol , vol.31 , pp. 2707-2714
    • Ramirez, C.M.1    Davalos, A.2    Goedeke, L.3
  • 39
    • 84876335568 scopus 로고    scopus 로고
    • MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells
    • Shirasaki T, Honda M, Shimakami T, et al. MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells. J Virol 2013; 87:5270-5286.
    • (2013) J Virol , vol.87 , pp. 5270-5286
    • Shirasaki, T.1    Honda, M.2    Shimakami, T.3
  • 40
    • 84866973849 scopus 로고    scopus 로고
    • Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b
    • Wang D, Xia M, Yan X, et al. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ Res 2012; 111:967-981.
    • (2012) Circ Res , vol.111 , pp. 967-981
    • Wang, D.1    Xia, M.2    Yan, X.3
  • 41
    • 80054971110 scopus 로고    scopus 로고
    • Inhibition of miR-33a/b in nonhuman primates raises plasma HDL and lowers VLDL triglycerides
    • Rayner KJ, Esau CC, Hussain FN, et al. Inhibition of miR-33a/b in nonhuman primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011; 478:404-407.
    • (2011) Nature , vol.478 , pp. 404-407
    • Rayner, K.J.1    Esau, C.C.2    Hussain, F.N.3
  • 42
    • 84890387599 scopus 로고    scopus 로고
    • Pharmacological inhibition of a microRNA family in nonhuman primates by a seed-targeting 8-mer antimiR
    • Rottiers V, Obad S, Petri A, et al. Pharmacological inhibition of a microRNA family in nonhuman primates by a seed-targeting 8-mer antimiR. Sci Transl Med 2013; 5:212-162.
    • (2013) Sci Transl Med , vol.5 , pp. 212-162
    • Rottiers, V.1    Obad, S.2    Petri, A.3
  • 43
    • 78049295975 scopus 로고    scopus 로고
    • MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo
    • Horie T, Ono K, Horiguchi M, et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci USA 2010; 107:17321-17326.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 17321-17326
    • Horie, T.1    Ono, K.2    Horiguchi, M.3
  • 44
    • 84890205234 scopus 로고    scopus 로고
    • MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice
    • Horie T, Nishino T, Baba O, et al. MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Nat Commun 2013; 4:2883.
    • (2013) Nat Commun , vol.4 , pp. 2883
    • Horie, T.1    Nishino, T.2    Baba, O.3
  • 45
    • 84882573604 scopus 로고    scopus 로고
    • MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice
    • Miller AM, Gilchrist DS, Nijjar J, et al. MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice. PloS One 2013; 8:e72324.
    • (2013) PloS One , vol.8
    • Miller, A.M.1    Gilchrist, D.S.2    Nijjar, J.3
  • 46
    • 84876329845 scopus 로고    scopus 로고
    • MicroRNA-1 and microRNA-206 suppress LXRa-induced lipogenesis in hepatocytes
    • Zhong D, Huang G, Zhang Y, et al. MicroRNA-1 and microRNA-206 suppress LXRa-induced lipogenesis in hepatocytes. Cellular Signalling 2013; 25:1429-1437.
    • (2013) Cellular Signalling , vol.25 , pp. 1429-1437
    • Zhong, D.1    Huang, G.2    Zhang, Y.3
  • 47
    • 84861183215 scopus 로고    scopus 로고
    • MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7
    • Sun D, Zhang J, Xie J, et al. MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett 2012; 586:1472-1479.
    • (2012) FEBS Lett , vol.586 , pp. 1472-1479
    • Sun, D.1    Zhang, J.2    Xie, J.3
  • 48
    • 84871887481 scopus 로고    scopus 로고
    • MicroRNAs 125a and 455 repress lipoprotein-supported steroidogenesis by targeting scavenger receptor class B type i in steroidogenic cells
    • Hu Z, Shen WJ, Kraemer FB, Azhar S. MicroRNAs 125a and 455 repress lipoprotein-supported steroidogenesis by targeting scavenger receptor class B type I in steroidogenic cells. Mol Cell Biol 2012; 32:5035-5045.
    • (2012) Mol Cell Biol , vol.32 , pp. 5035-5045
    • Hu, Z.1    Shen, W.J.2    Kraemer, F.B.3    Azhar, S.4
  • 49
    • 84878967914 scopus 로고    scopus 로고
    • MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition
    • Wang L, Jia XJ, Jiang HJ, et al. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol Cell Biol 2013; 33:1956-1964.
    • (2013) Mol Cell Biol , vol.33 , pp. 1956-1964
    • Wang, L.1    Jia, X.J.2    Jiang, H.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.