-
2
-
-
45949123735
-
Principal component analysis
-
Wold, S. Principal component analysis Chemom. Intell. Lab. Syst. 1987, 2, 37-52
-
(1987)
Chemom. Intell. Lab. Syst.
, vol.2
, pp. 37-52
-
-
Wold, S.1
-
3
-
-
0035965476
-
PLS-regression: A basic tool of chemometrics
-
Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics Chemom. Intell. Lab. Syst. 2001, 58, 109-130
-
(2001)
Chemom. Intell. Lab. Syst.
, vol.58
, pp. 109-130
-
-
Wold, S.1
Sjöström, M.2
Eriksson, L.3
-
4
-
-
28944454142
-
Variable selection and interpretation in structure-affinity correlation modeling of estrogen receptor binders
-
Marini, F.; Roncaglioni, A.; Novič, M. Variable selection and interpretation in structure-affinity correlation modeling of estrogen receptor binders J. Chem. Inf. Model. 2005, 45, 1507-1519
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 1507-1519
-
-
Marini, F.1
Roncaglioni, A.2
Novič, M.3
-
5
-
-
28944453654
-
QSAR model for predicting pesticide aquatic toxicity
-
Mazzatorta, M.; Smiesko, M.; Piparo, E. L.; Benfenati, E. QSAR model for predicting pesticide aquatic toxicity J. Chem. Inf. Model. 2005, 45, 1767-1774
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 1767-1774
-
-
Mazzatorta, M.1
Smiesko, M.2
Piparo, E.L.3
Benfenati, E.4
-
6
-
-
24044461725
-
A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction
-
Kim, K.; Lee, J. M.; Lee, I. B. A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction Chemom. Intell. Lab. Syst. 2005, 79, 22-30
-
(2005)
Chemom. Intell. Lab. Syst.
, vol.79
, pp. 22-30
-
-
Kim, K.1
Lee, J.M.2
Lee, I.B.3
-
7
-
-
35248832636
-
Gaussian processes: A method for automatic QSAR modeling of ADME properties
-
Obrezanova, O.; Csanyi, G.; Gola, J. M. R.; Segall, M. D. Gaussian processes: A method for automatic QSAR modeling of ADME properties J. Chem. Inf. Model. 2007, 47, 1847-1857
-
(2007)
J. Chem. Inf. Model.
, vol.47
, pp. 1847-1857
-
-
Obrezanova, O.1
Csanyi, G.2
Gola, J.M.R.3
Segall, M.D.4
-
8
-
-
33244474244
-
Development and evaluation of an in silico model for hERG binding
-
Song, M. H.; Clark, M. Development and evaluation of an in silico model for hERG binding J. Chem. Inf. Model. 2006, 46, 392-400
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 392-400
-
-
Song, M.H.1
Clark, M.2
-
9
-
-
79960707576
-
Classifying molecules using a sparse probabilistic kernel binary classifier
-
Lowe, R.; Mussa, H. Y.; Mitchell, J. B. O.; Glen, R. C. Classifying molecules using a sparse probabilistic kernel binary classifier J. Chem. Inf. Model. 2011, 51, 1539-1544
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 1539-1544
-
-
Lowe, R.1
Mussa, H.Y.2
Mitchell, J.B.O.3
Glen, R.C.4
-
10
-
-
57549095014
-
External validation and prediction employing the predictive squared correlation coefficient -Test set activity mean vs training set activity mean
-
Schuurmann, G.; Ebert, R. U.; Chen, J. W.; Wang, B.; Kuhne, R. External validation and prediction employing the predictive squared correlation coefficient-Test set activity mean vs training set activity mean J. Chem. Inf. Model. 2008, 48, 2140-2145
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 2140-2145
-
-
Schuurmann, G.1
Ebert, R.U.2
Chen, J.W.3
Wang, B.4
Kuhne, R.5
-
11
-
-
80053295024
-
Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient
-
Chirico, N.; Gramatica, P. Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient J. Chem. Inf. Model. 2011, 51, 2320-2335
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 2320-2335
-
-
Chirico, N.1
Gramatica, P.2
-
12
-
-
84865466657
-
Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection
-
Chirico, N.; Gramatica, P. Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection J. Chem. Inf. Model. 2012, 51, 2044-2058
-
(2012)
J. Chem. Inf. Model.
, vol.51
, pp. 2044-2058
-
-
Chirico, N.1
Gramatica, P.2
-
14
-
-
0037841526
-
Cross-validation as the objective function for variable-selection techniques
-
Baumann, K. Cross-validation as the objective function for variable-selection techniques TrAC, Trends Anal. Chem. 2003, 22, 395-406
-
(2003)
TrAC, Trends Anal. Chem.
, vol.22
, pp. 395-406
-
-
Baumann, K.1
-
15
-
-
2942720566
-
Detecting "bad" regression models: Multicriteria fitness functions in regression analysis
-
Todeschini, R.; Consonni, V.; Mauri, A.; Pavan, M. Detecting "bad" regression models: multicriteria fitness functions in regression analysis Anal. Chim. Acta 2004, 515, 199-208
-
(2004)
Anal. Chim. Acta
, vol.515
, pp. 199-208
-
-
Todeschini, R.1
Consonni, V.2
Mauri, A.3
Pavan, M.4
-
16
-
-
41549109469
-
Statistical confidence for variable selection in QSAR models via Monte Carlo cross-validation
-
Konovalov, D. A.; Sim, N.; Deconinck, E.; Heyden, Y. V.; Coomans, D. Statistical confidence for variable selection in QSAR models via Monte Carlo cross-validation J. Chem. Inf. Model. 2008, 48, 370-383
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 370-383
-
-
Konovalov, D.A.1
Sim, N.2
Deconinck, E.3
Heyden, Y.V.4
Coomans, D.5
-
17
-
-
84876520796
-
Time-split cross-validation as a method for estimating the goodness of prospective prediction
-
Sheridan, R. P. Time-split cross-validation as a method for estimating the goodness of prospective prediction J. Chem. Inf. Model. 2013, 53, 783-790
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 783-790
-
-
Sheridan, R.P.1
-
18
-
-
37349097759
-
Y -Randomization and its variants in QSPR/QSAR
-
Rucker, C.; Rucker, G.; Meringer, M. y -Randomization and its variants in QSPR/QSAR J. Chem. Inf. Model. 2007, 47, 2345-2357
-
(2007)
J. Chem. Inf. Model.
, vol.47
, pp. 2345-2357
-
-
Rucker, C.1
Rucker, G.2
Meringer, M.3
-
19
-
-
26944468691
-
Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow)
-
Papa, E.; Villa, F.; Gramatica, P. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow) J. Chem. Inf. Model. 2005, 45, 1256-1266
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 1256-1266
-
-
Papa, E.1
Villa, F.2
Gramatica, P.3
-
20
-
-
33750724182
-
Reducing over-optimism in variable selection by cross-model validation
-
Anderssen, E.; Dyrstad, K.; Westad, F.; Martens, H. Reducing over-optimism in variable selection by cross-model validation Chemom. Intell. Lab. Syst. 2006, 84, 69-74
-
(2006)
Chemom. Intell. Lab. Syst.
, vol.84
, pp. 69-74
-
-
Anderssen, E.1
Dyrstad, K.2
Westad, F.3
Martens, H.4
-
21
-
-
51349115095
-
Big data: The future of biocuration
-
Howe, D.; Costanzo, M.; Fey, P.; Gojobori, T.; Hannick, L.; Hide, W.; Hill, D. P.; Kania, R.; Schaeffer, M.; Pierre, S., St; Twigger, S.; White, O.; Rhee, S. Y. Big data: The future of biocuration Nature. 2008, 455, 47-50
-
(2008)
Nature.
, vol.455
, pp. 47-50
-
-
Howe, D.1
Costanzo, M.2
Fey, P.3
Gojobori, T.4
Hannick, L.5
Hide, W.6
Hill, D.P.7
Kania, R.8
Schaeffer, M.9
St, P.S.10
Twigger, S.11
White, O.12
Rhee, S.Y.13
-
22
-
-
77952756796
-
Classification and virtual screening of androgen receptor antagonists
-
Li, J. Z.; Gramatica, P. Classification and virtual screening of androgen receptor antagonists J. Chem. Inf. Model. 2010, 50, 861-874
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 861-874
-
-
Li, J.Z.1
Gramatica, P.2
-
23
-
-
79958773884
-
Predictivity of simulated ADME autoQSAR models over time
-
Rodgers, S. L.; Davis, A. M.; Tomkinson, N. P.; Waterbeemd, H. V. D. Predictivity of simulated ADME autoQSAR models over time Mol. Inf. 2011, 30, 256-266
-
(2011)
Mol. Inf.
, vol.30
, pp. 256-266
-
-
Rodgers, S.L.1
Davis, A.M.2
Tomkinson, N.P.3
Waterbeemd, H.V.D.4
-
24
-
-
27144556425
-
Incremental online learning in high dimensions
-
D'Souza, A.; Schaal, S. Incremental online learning in high dimensions Neural Comput. 2005, 17, 2602-2634
-
(2005)
Neural Comput.
, vol.17
, pp. 2602-2634
-
-
D'Souza, A.1
Schaal, S.2
-
25
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
Kadlec, P.; Gabrys, B.; Strandt, S. Data-driven soft sensors in the process industry Comput. Chem. Eng. 2009, 33, 795-814
-
(2009)
Comput. Chem. Eng.
, vol.33
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
26
-
-
84879309312
-
Classification of the degradation of soft sensor models and discussion on adaptive models
-
Kaneko, H.; Funatsu, K. Classification of the degradation of soft sensor models and discussion on adaptive models AIChE J. 2013, 59, 2339-2347
-
(2013)
AIChE J.
, vol.59
, pp. 2339-2347
-
-
Kaneko, H.1
Funatsu, K.2
-
27
-
-
84883140452
-
Adaptive soft sensor model using online support vector regression with time variable and discussion of appropriate hyperparameter settings and window size
-
Kaneko, H.; Funatsu, K. Adaptive soft sensor model using online support vector regression with time variable and discussion of appropriate hyperparameter settings and window size Comput. Chem. Eng. 2013, 58, 288-297
-
(2013)
Comput. Chem. Eng.
, vol.58
, pp. 288-297
-
-
Kaneko, H.1
Funatsu, K.2
-
28
-
-
84915425007
-
Some comments on Cp
-
Mallow, C. L. Some comments on Cp Technometrics 1973, 15, 661-675
-
(1973)
Technometrics
, vol.15
, pp. 661-675
-
-
Mallow, C.L.1
-
29
-
-
33845722419
-
Factor analysis and AIC
-
Akaike, H. Factor analysis and AIC Psychometrika 1987, 52, 317-332
-
(1987)
Psychometrika
, vol.52
, pp. 317-332
-
-
Akaike, H.1
-
30
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz, G. Estimating the dimension of a model Ann. Stat. 1978, 6, 461-464
-
(1978)
Ann. Stat.
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
31
-
-
0033971270
-
The Mahalanobis distance
-
Maesschalck, R. D.; Jouan-Rimbaud, D.; Massart, D. L. The Mahalanobis distance Chemom. Intell. Lab. Syst. 2000, 50, 1-18
-
(2000)
Chemom. Intell. Lab. Syst.
, vol.50
, pp. 1-18
-
-
Maesschalck, R.D.1
Jouan-Rimbaud, D.2
Massart, D.L.3
-
33
-
-
72149085992
-
An accumulative error based adaptive design of experiments for offline metamodeling
-
Li, G.; Aute, V.; Azarm, S. An accumulative error based adaptive design of experiments for offline metamodeling Struct. Multidiscip. Optim. 2010, 40, 137-155
-
(2010)
Struct. Multidiscip. Optim.
, vol.40
, pp. 137-155
-
-
Li, G.1
Aute, V.2
Azarm, S.3
-
34
-
-
84884565589
-
-
(accessed June 12).
-
http://www.cadaster.eu/node/65 (accessed June 12, 2013).
-
(2013)
-
-
-
35
-
-
79960730867
-
Visualization of molecular fingerprints
-
Owen, J. R.; Nabney, I. T.; Medina-Franco, J. L.; Lopez-Vallejo, F. Visualization of molecular fingerprints J. Chem. Inf. Model. 2011, 21, 1552-1563
-
(2011)
J. Chem. Inf. Model.
, vol.21
, pp. 1552-1563
-
-
Owen, J.R.1
Nabney, I.T.2
Medina-Franco, J.L.3
Lopez-Vallejo, F.4
-
36
-
-
84884561088
-
-
(accessed June 12).
-
http://www.talete.mi.it/products/dragon-description.htm (accessed June 12, 2013).
-
(2013)
-
-
-
37
-
-
1542741028
-
ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach
-
Hou, T. J.; Xia, K.; Zhang, W.; Xu, X. J. ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach J. Chem. Inf. Comput. Sci. 2004, 44, 266-275
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, pp. 266-275
-
-
Hou, T.J.1
Xia, K.2
Zhang, W.3
Xu, X.J.4
-
38
-
-
11144354973
-
Drug-like annotation and duplicate analysis of a 23-supplier chemical database totalling 2.7 million compounds
-
Baurin, N. Drug-like annotation and duplicate analysis of a 23-supplier chemical database totalling 2.7 million compounds J. Chem. Inf. Comput. Sci. 2004, 44, 643-651
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, pp. 643-651
-
-
Baurin, N.1
-
39
-
-
1842639123
-
Universal molecular descriptor system for prediction of logP, logS, logBB, and absorption
-
Sun, H. A Universal molecular descriptor system for prediction of logP, logS, logBB, and absorption J. Chem. Inf. Comput. Sci. 2004, 44, 748-757
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, pp. 748-757
-
-
Sun, H.A.1
-
40
-
-
2942704287
-
Feature selection for descriptor based classification models. 1. Theory and GA-SEC algorithm
-
Wegner, J. K.; Fröhlich, H.; Zell, A. Feature selection for descriptor based classification models. 1. Theory and GA-SEC algorithm J. Chem. Inf. Comput. Sci. 2004, 44, 921-930
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, pp. 921-930
-
-
Wegner, J.K.1
Fröhlich, H.2
Zell, A.3
-
41
-
-
4043112686
-
Global and local computational models for aqueous solubility prediction of drug-like molecules
-
Bergström, C. A. S.; Wassvik, C. M.; Norinder, U.; Luthman, K.; Artursson, P. Global and local computational models for aqueous solubility prediction of drug-like molecules J. Chem. Inf. Comput. Sci. 2004, 44, 1477-1488
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, pp. 1477-1488
-
-
Bergström, C.A.S.1
Wassvik, C.M.2
Norinder, U.3
Luthman, K.4
Artursson, P.5
-
42
-
-
17844369895
-
Generalized fragment-substructure based property prediction method
-
Clark, M. Generalized fragment-substructure based property prediction method J. Chem. Inf. Model. 2005, 45, 30-38
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 30-38
-
-
Clark, M.1
-
43
-
-
18344367660
-
LINGO, An efficient holographic text based method to calculate biophysical properties and intermolecular similarities
-
Vidal, D.; Thormann, M.; Pons, M. LINGO, An efficient holographic text based method to calculate biophysical properties and intermolecular similarities J. Chem. Inf. Model. 2005, 45, 386-393
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 386-393
-
-
Vidal, D.1
Thormann, M.2
Pons, M.3
-
44
-
-
42149192690
-
Development of a new regression analysis method using independent component analysis
-
Kaneko, H.; Funatsu, K. Development of a new regression analysis method using independent component analysis J. Chem. Inf. Model. 2008, 48, 534-541
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 534-541
-
-
Kaneko, H.1
Funatsu, K.2
|