메뉴 건너뛰기




Volumn 53, Issue 9, 2013, Pages 2341-2348

Criterion for evaluating the predictive ability of nonlinear regression models without cross-validation

Author keywords

[No Author keywords available]

Indexed keywords

DATA HANDLING; MEAN SQUARE ERROR; NEAREST NEIGHBOR SEARCH;

EID: 84884574602     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci4003766     Document Type: Article
Times cited : (15)

References (46)
  • 2
    • 45949123735 scopus 로고
    • Principal component analysis
    • Wold, S. Principal component analysis Chemom. Intell. Lab. Syst. 1987, 2, 37-52
    • (1987) Chemom. Intell. Lab. Syst. , vol.2 , pp. 37-52
    • Wold, S.1
  • 4
    • 28944454142 scopus 로고    scopus 로고
    • Variable selection and interpretation in structure-affinity correlation modeling of estrogen receptor binders
    • Marini, F.; Roncaglioni, A.; Novič, M. Variable selection and interpretation in structure-affinity correlation modeling of estrogen receptor binders J. Chem. Inf. Model. 2005, 45, 1507-1519
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 1507-1519
    • Marini, F.1    Roncaglioni, A.2    Novič, M.3
  • 6
    • 24044461725 scopus 로고    scopus 로고
    • A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction
    • Kim, K.; Lee, J. M.; Lee, I. B. A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction Chemom. Intell. Lab. Syst. 2005, 79, 22-30
    • (2005) Chemom. Intell. Lab. Syst. , vol.79 , pp. 22-30
    • Kim, K.1    Lee, J.M.2    Lee, I.B.3
  • 7
    • 35248832636 scopus 로고    scopus 로고
    • Gaussian processes: A method for automatic QSAR modeling of ADME properties
    • Obrezanova, O.; Csanyi, G.; Gola, J. M. R.; Segall, M. D. Gaussian processes: A method for automatic QSAR modeling of ADME properties J. Chem. Inf. Model. 2007, 47, 1847-1857
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 1847-1857
    • Obrezanova, O.1    Csanyi, G.2    Gola, J.M.R.3    Segall, M.D.4
  • 8
    • 33244474244 scopus 로고    scopus 로고
    • Development and evaluation of an in silico model for hERG binding
    • Song, M. H.; Clark, M. Development and evaluation of an in silico model for hERG binding J. Chem. Inf. Model. 2006, 46, 392-400
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 392-400
    • Song, M.H.1    Clark, M.2
  • 9
    • 79960707576 scopus 로고    scopus 로고
    • Classifying molecules using a sparse probabilistic kernel binary classifier
    • Lowe, R.; Mussa, H. Y.; Mitchell, J. B. O.; Glen, R. C. Classifying molecules using a sparse probabilistic kernel binary classifier J. Chem. Inf. Model. 2011, 51, 1539-1544
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 1539-1544
    • Lowe, R.1    Mussa, H.Y.2    Mitchell, J.B.O.3    Glen, R.C.4
  • 10
    • 57549095014 scopus 로고    scopus 로고
    • External validation and prediction employing the predictive squared correlation coefficient -Test set activity mean vs training set activity mean
    • Schuurmann, G.; Ebert, R. U.; Chen, J. W.; Wang, B.; Kuhne, R. External validation and prediction employing the predictive squared correlation coefficient-Test set activity mean vs training set activity mean J. Chem. Inf. Model. 2008, 48, 2140-2145
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 2140-2145
    • Schuurmann, G.1    Ebert, R.U.2    Chen, J.W.3    Wang, B.4    Kuhne, R.5
  • 11
    • 80053295024 scopus 로고    scopus 로고
    • Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient
    • Chirico, N.; Gramatica, P. Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient J. Chem. Inf. Model. 2011, 51, 2320-2335
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2320-2335
    • Chirico, N.1    Gramatica, P.2
  • 12
    • 84865466657 scopus 로고    scopus 로고
    • Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection
    • Chirico, N.; Gramatica, P. Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection J. Chem. Inf. Model. 2012, 51, 2044-2058
    • (2012) J. Chem. Inf. Model. , vol.51 , pp. 2044-2058
    • Chirico, N.1    Gramatica, P.2
  • 14
    • 0037841526 scopus 로고    scopus 로고
    • Cross-validation as the objective function for variable-selection techniques
    • Baumann, K. Cross-validation as the objective function for variable-selection techniques TrAC, Trends Anal. Chem. 2003, 22, 395-406
    • (2003) TrAC, Trends Anal. Chem. , vol.22 , pp. 395-406
    • Baumann, K.1
  • 15
    • 2942720566 scopus 로고    scopus 로고
    • Detecting "bad" regression models: Multicriteria fitness functions in regression analysis
    • Todeschini, R.; Consonni, V.; Mauri, A.; Pavan, M. Detecting "bad" regression models: multicriteria fitness functions in regression analysis Anal. Chim. Acta 2004, 515, 199-208
    • (2004) Anal. Chim. Acta , vol.515 , pp. 199-208
    • Todeschini, R.1    Consonni, V.2    Mauri, A.3    Pavan, M.4
  • 16
    • 41549109469 scopus 로고    scopus 로고
    • Statistical confidence for variable selection in QSAR models via Monte Carlo cross-validation
    • Konovalov, D. A.; Sim, N.; Deconinck, E.; Heyden, Y. V.; Coomans, D. Statistical confidence for variable selection in QSAR models via Monte Carlo cross-validation J. Chem. Inf. Model. 2008, 48, 370-383
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 370-383
    • Konovalov, D.A.1    Sim, N.2    Deconinck, E.3    Heyden, Y.V.4    Coomans, D.5
  • 17
    • 84876520796 scopus 로고    scopus 로고
    • Time-split cross-validation as a method for estimating the goodness of prospective prediction
    • Sheridan, R. P. Time-split cross-validation as a method for estimating the goodness of prospective prediction J. Chem. Inf. Model. 2013, 53, 783-790
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 783-790
    • Sheridan, R.P.1
  • 18
    • 37349097759 scopus 로고    scopus 로고
    • Y -Randomization and its variants in QSPR/QSAR
    • Rucker, C.; Rucker, G.; Meringer, M. y -Randomization and its variants in QSPR/QSAR J. Chem. Inf. Model. 2007, 47, 2345-2357
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 2345-2357
    • Rucker, C.1    Rucker, G.2    Meringer, M.3
  • 19
    • 26944468691 scopus 로고    scopus 로고
    • Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow)
    • Papa, E.; Villa, F.; Gramatica, P. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow) J. Chem. Inf. Model. 2005, 45, 1256-1266
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 1256-1266
    • Papa, E.1    Villa, F.2    Gramatica, P.3
  • 22
    • 77952756796 scopus 로고    scopus 로고
    • Classification and virtual screening of androgen receptor antagonists
    • Li, J. Z.; Gramatica, P. Classification and virtual screening of androgen receptor antagonists J. Chem. Inf. Model. 2010, 50, 861-874
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 861-874
    • Li, J.Z.1    Gramatica, P.2
  • 24
    • 27144556425 scopus 로고    scopus 로고
    • Incremental online learning in high dimensions
    • D'Souza, A.; Schaal, S. Incremental online learning in high dimensions Neural Comput. 2005, 17, 2602-2634
    • (2005) Neural Comput. , vol.17 , pp. 2602-2634
    • D'Souza, A.1    Schaal, S.2
  • 25
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec, P.; Gabrys, B.; Strandt, S. Data-driven soft sensors in the process industry Comput. Chem. Eng. 2009, 33, 795-814
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 26
    • 84879309312 scopus 로고    scopus 로고
    • Classification of the degradation of soft sensor models and discussion on adaptive models
    • Kaneko, H.; Funatsu, K. Classification of the degradation of soft sensor models and discussion on adaptive models AIChE J. 2013, 59, 2339-2347
    • (2013) AIChE J. , vol.59 , pp. 2339-2347
    • Kaneko, H.1    Funatsu, K.2
  • 27
    • 84883140452 scopus 로고    scopus 로고
    • Adaptive soft sensor model using online support vector regression with time variable and discussion of appropriate hyperparameter settings and window size
    • Kaneko, H.; Funatsu, K. Adaptive soft sensor model using online support vector regression with time variable and discussion of appropriate hyperparameter settings and window size Comput. Chem. Eng. 2013, 58, 288-297
    • (2013) Comput. Chem. Eng. , vol.58 , pp. 288-297
    • Kaneko, H.1    Funatsu, K.2
  • 28
    • 84915425007 scopus 로고
    • Some comments on Cp
    • Mallow, C. L. Some comments on Cp Technometrics 1973, 15, 661-675
    • (1973) Technometrics , vol.15 , pp. 661-675
    • Mallow, C.L.1
  • 29
    • 33845722419 scopus 로고
    • Factor analysis and AIC
    • Akaike, H. Factor analysis and AIC Psychometrika 1987, 52, 317-332
    • (1987) Psychometrika , vol.52 , pp. 317-332
    • Akaike, H.1
  • 30
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. Estimating the dimension of a model Ann. Stat. 1978, 6, 461-464
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 33
    • 72149085992 scopus 로고    scopus 로고
    • An accumulative error based adaptive design of experiments for offline metamodeling
    • Li, G.; Aute, V.; Azarm, S. An accumulative error based adaptive design of experiments for offline metamodeling Struct. Multidiscip. Optim. 2010, 40, 137-155
    • (2010) Struct. Multidiscip. Optim. , vol.40 , pp. 137-155
    • Li, G.1    Aute, V.2    Azarm, S.3
  • 34
    • 84884565589 scopus 로고    scopus 로고
    • (accessed June 12).
    • http://www.cadaster.eu/node/65 (accessed June 12, 2013).
    • (2013)
  • 36
    • 84884561088 scopus 로고    scopus 로고
    • (accessed June 12).
    • http://www.talete.mi.it/products/dragon-description.htm (accessed June 12, 2013).
    • (2013)
  • 37
    • 1542741028 scopus 로고    scopus 로고
    • ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach
    • Hou, T. J.; Xia, K.; Zhang, W.; Xu, X. J. ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach J. Chem. Inf. Comput. Sci. 2004, 44, 266-275
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 266-275
    • Hou, T.J.1    Xia, K.2    Zhang, W.3    Xu, X.J.4
  • 38
    • 11144354973 scopus 로고    scopus 로고
    • Drug-like annotation and duplicate analysis of a 23-supplier chemical database totalling 2.7 million compounds
    • Baurin, N. Drug-like annotation and duplicate analysis of a 23-supplier chemical database totalling 2.7 million compounds J. Chem. Inf. Comput. Sci. 2004, 44, 643-651
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 643-651
    • Baurin, N.1
  • 39
    • 1842639123 scopus 로고    scopus 로고
    • Universal molecular descriptor system for prediction of logP, logS, logBB, and absorption
    • Sun, H. A Universal molecular descriptor system for prediction of logP, logS, logBB, and absorption J. Chem. Inf. Comput. Sci. 2004, 44, 748-757
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 748-757
    • Sun, H.A.1
  • 40
    • 2942704287 scopus 로고    scopus 로고
    • Feature selection for descriptor based classification models. 1. Theory and GA-SEC algorithm
    • Wegner, J. K.; Fröhlich, H.; Zell, A. Feature selection for descriptor based classification models. 1. Theory and GA-SEC algorithm J. Chem. Inf. Comput. Sci. 2004, 44, 921-930
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 921-930
    • Wegner, J.K.1    Fröhlich, H.2    Zell, A.3
  • 42
    • 17844369895 scopus 로고    scopus 로고
    • Generalized fragment-substructure based property prediction method
    • Clark, M. Generalized fragment-substructure based property prediction method J. Chem. Inf. Model. 2005, 45, 30-38
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 30-38
    • Clark, M.1
  • 43
    • 18344367660 scopus 로고    scopus 로고
    • LINGO, An efficient holographic text based method to calculate biophysical properties and intermolecular similarities
    • Vidal, D.; Thormann, M.; Pons, M. LINGO, An efficient holographic text based method to calculate biophysical properties and intermolecular similarities J. Chem. Inf. Model. 2005, 45, 386-393
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 386-393
    • Vidal, D.1    Thormann, M.2    Pons, M.3
  • 44
    • 42149192690 scopus 로고    scopus 로고
    • Development of a new regression analysis method using independent component analysis
    • Kaneko, H.; Funatsu, K. Development of a new regression analysis method using independent component analysis J. Chem. Inf. Model. 2008, 48, 534-541
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 534-541
    • Kaneko, H.1    Funatsu, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.