메뉴 건너뛰기




Volumn 6, Issue 6, 2014, Pages 1642-1661

Enhancing the predicting accuracy of the water stage using a physical-based model and an artificial neural network-genetic algorithm in a river system

Author keywords

Back propagation neural network; Danshuei river system; Flood routing hydrodynamic model; Genetic algorithm neural network; Model calibration (training) and verification; Water stage

Indexed keywords

ALGORITHMS; BOUNDARY CONDITIONS; COMPUTER SIMULATION; DISASTER PREVENTION; FLOOD CONTROL; FLOODS; FLUID DYNAMICS; GENETIC ALGORITHMS; HURRICANES; NEURAL NETWORKS; WATER LEVELS; WATER RESOURCES;

EID: 84902007521     PISSN: None     EISSN: 20734441     Source Type: Journal    
DOI: 10.3390/w6061642     Document Type: Article
Times cited : (27)

References (61)
  • 1
    • 0344584823 scopus 로고    scopus 로고
    • Flood routing with real-time stage correction method for flash flood forecasting in the Tanshui River, Taiwan
    • Hsu, M.H.; Fu, J.C.; Liu, W.C. Flood routing with real-time stage correction method for flash flood forecasting in the Tanshui River, Taiwan. J. Hydrol. 2003, 283, 267-280.
    • (2003) J. Hydrol. , vol.283 , pp. 267-280
    • Hsu, M.H.1    Fu, J.C.2    Liu, W.C.3
  • 2
    • 5644241254 scopus 로고    scopus 로고
    • Unsteady 1D flow model of a river with partly vegetated floodplains-Application to the Rhine River
    • Helmio, T. Unsteady 1D flow model of a river with partly vegetated floodplains-Application to the Rhine River. Environ. Model. Softw. 2005, 20, 361-375.
    • (2005) Environ. Model. Softw , vol.20 , pp. 361-375
    • Helmio, T.1
  • 3
    • 36148991902 scopus 로고    scopus 로고
    • A comparison of one-and two-dimensional approaches to modeling flood inundation over complex upland floodplains
    • Tayefi, V.; Lane, S.N.; Hardy, R.J.; Yu, D. A comparison of one-and two-dimensional approaches to modeling flood inundation over complex upland floodplains. Hydrol. Process. 2007, 21, 3190-3202.
    • (2007) Hydrol. Process. , vol.21 , pp. 3190-3202
    • Tayefi, V.1    Lane, S.N.2    Hardy, R.J.3    Yu, D.4
  • 4
    • 69949096640 scopus 로고    scopus 로고
    • Hydrodynamic modeling of a large flood-prone river system in India with limited data
    • Patro, S.; Chatterjee, C.; Singh, R.; Raghuwanshi, N.S. Hydrodynamic modeling of a large flood-prone river system in India with limited data. Hydrol. Process. 2009, 23, 2774-2791.
    • (2009) Hydrol. Process. , vol.23 , pp. 2774-2791
    • Patro, S.1    Chatterjee, C.2    Singh, R.3    Raghuwanshi, N.S.4
  • 5
    • 77649235176 scopus 로고    scopus 로고
    • Dynamic routing modeling for flash flood forecast in river system
    • Liu, W.C.; Chen, W.B.; Hsu, M.H.; Fu, J.C. Dynamic routing modeling for flash flood forecast in river system. Nat. Hazards 2010, 52, 519-537.
    • (2010) Nat. Hazards , vol.52 , pp. 519-537
    • Liu, W.C.1    Chen, W.B.2    Hsu, M.H.3    Fu, J.C.4
  • 6
    • 77951976848 scopus 로고    scopus 로고
    • A real-time operation optimization model for flood management in river-reservoir systems
    • Malekmohammadi, B.; Zahraie, B.; Kerachian, R. A real-time operation optimization model for flood management in river-reservoir systems. Nat. Hazards 2010, 53, 459-482.
    • (2010) Nat. Hazards , vol.53 , pp. 459-482
    • Malekmohammadi, B.1    Zahraie, B.2    Kerachian, R.3
  • 7
    • 84858621706 scopus 로고    scopus 로고
    • Analysis of one-dimensional modeling for flood routing in compound channels
    • Costabile, P.; Macchione, F. Analysis of one-dimensional modeling for flood routing in compound channels. Water Resour. Manag. 2012, 26, 1065-1087.
    • (2012) Water Resour. Manag. , vol.26 , pp. 1065-1087
    • Costabile, P.1    Macchione, F.2
  • 8
    • 84874197161 scopus 로고    scopus 로고
    • Hydraulic routing of extreme floods in a large ungauged river and the estimation of associated uncertainties: A case study of the Damodar River, India
    • Sanyal, J.; Carbonneua, P.; Densmore, A. Hydraulic routing of extreme floods in a large ungauged river and the estimation of associated uncertainties: A case study of the Damodar River, India. Nat. Hazards 2013, 66, 1153-1177.
    • (2013) Nat. Hazards , vol.66 , pp. 1153-1177
    • Sanyal, J.1    Carbonneua, P.2    Densmore, A.3
  • 9
    • 84870976873 scopus 로고    scopus 로고
    • Impact of river bed morphology on discharge and water levels simulated by a 1D Saint-Venant hydraulic model at regional scale
    • Saleh, F.; Ducharne, A.; Flipo, N.; Oudin, L.; Ledoux, E. Impact of river bed morphology on discharge and water levels simulated by a 1D Saint-Venant hydraulic model at regional scale. J. Hydrol. 2013, 476, 169-177.
    • (2013) J. Hydrol. , vol.476 , pp. 169-177
    • Saleh, F.1    Ducharne, A.2    Flipo, N.3    Oudin, L.4    Ledoux, E.5
  • 10
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks-Fundamentals, computing, design, and application
    • Basheer, I.A.; Hajmeer, M. Artificial neural networks-Fundamentals, computing, design, and application. J. Microbiol. Meth. 2000, 43, 3-31.
    • (2000) J. Microbiol. Meth. , vol.43 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 11
    • 84868367414 scopus 로고    scopus 로고
    • Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon
    • Taromina, R.; Chau, K.W.; Sethi, R. Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng. Appl. Artif. Intel. 2012, 25, 1670-1676.
    • (2012) Eng. Appl. Artif. Intel. , vol.25 , pp. 1670-1676
    • Taromina, R.1    Chau, K.W.2    Sethi, R.3
  • 12
    • 24944573867 scopus 로고    scopus 로고
    • Long-term prediction of discharges in Manwan Reservoir using neural network models
    • Cheng, C.T.; Chau, K.W.; Sun, Y.G.; Lin, J.Y. Long-term prediction of discharges in Manwan Reservoir using neural network models. Lect. Notes Comput. Sci. 2005, 3498, 1040-1045.
    • (2005) Lect. Notes Comput. Sci. , vol.3498 , pp. 1040-1045
    • Cheng, C.T.1    Chau, K.W.2    Sun, Y.G.3    Lin, J.Y.4
  • 13
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in Yangtz River
    • Chau, K.W.; Wu, C.L.; Li, Y.S. Comparison of several flood forecasting models in Yangtz River. J. Hydrol. Eng. ASCE 2005, 10, 485-491.
    • (2005) J. Hydrol. Eng. ASCE , vol.10 , pp. 485-491
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 14
    • 33845428421 scopus 로고    scopus 로고
    • Intelligent manipulation and calibration of parameters for hydrological models
    • Chen, W.; Chau, K.W. Intelligent manipulation and calibration of parameters for hydrological models. Int. J. Environ. Pollut. 2006, 28, 432-447.
    • (2006) Int. J. Environ. Pollut. , vol.28 , pp. 432-447
    • Chen, W.1    Chau, K.W.2
  • 15
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithm
    • Kisi, O. Streamflow forecasting using different artificial neural network algorithm. J. Hydrol. Eng. ASCE 2007, 12, 532-539.
    • (2007) J. Hydrol. Eng. ASCE , vol.12 , pp. 532-539
    • Kisi, O.1
  • 16
    • 41949142664 scopus 로고    scopus 로고
    • River flow forecasting and estimation using different artificial neural network techniques
    • Kisi, O. River flow forecasting and estimation using different artificial neural network techniques. Hydrol. Res. 2008, 39, 27-40.
    • (2008) Hydrol. Res , vol.39 , pp. 27-40
    • Kisi, O.1
  • 17
    • 69949143939 scopus 로고    scopus 로고
    • Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction
    • Pramanik, N.; Panda, R.K. Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction. Hydrol. Sci. J. 2009, 54, 247-260.
    • (2009) Hydrol. Sci. J. , vol.54 , pp. 247-260
    • Pramanik, N.1    Panda, R.K.2
  • 18
    • 66249107437 scopus 로고    scopus 로고
    • Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models
    • Mukerji, A.; Chatterjee, C.; Raghuwanshi, N.S. Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models. J. Hydrol. Eng. ASCE 2009, 14, 647-652.
    • (2009) J. Hydrol. Eng. ASCE , vol.14 , pp. 647-652
    • Mukerji, A.1    Chatterjee, C.2    Raghuwanshi, N.S.3
  • 19
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
    • Wu, C.L.; Chau, K.W. Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour. Res. 2009, 45, W08432.
    • (2009) Water Resour. Res , vol.45
    • Wu, C.L.1    Chau, K.W.2
  • 20
    • 77956263390 scopus 로고    scopus 로고
    • Evaluation of rainfall and discharges inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall-runoff modeling
    • Talei, A.; Chua, L.H.C.; Wong, T.S.W. Evaluation of rainfall and discharges inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall-runoff modeling. J. Hydrol. 2010, 391, 248-262.
    • (2010) J. Hydrol. , vol.391 , pp. 248-262
    • Talei, A.1    Chua, L.H.C.2    Wong, T.S.W.3
  • 21
    • 79956302151 scopus 로고    scopus 로고
    • Monthly rainfall-runoff modelling using artificial neural networks
    • Machado, F.; Mine, M.; Kaviski, E.; Fill, H. Monthly rainfall-runoff modelling using artificial neural networks. Hydrol. Sci. J. 2011, 56, 349-361.
    • (2011) Hydrol. Sci. J. , vol.56 , pp. 349-361
    • Machado, F.1    Mine, M.2    Kaviski, E.3    Fill, H.4
  • 22
    • 80052966658 scopus 로고    scopus 로고
    • Rainfall-runoff modeling of flash floods in the absence of rainfall forecasts: The case of "Cevenol flash floods"
    • Toukourou, M.; Johannet, A.; Dreyfus, G.; Ayral, P.A. Rainfall-runoff modeling of flash floods in the absence of rainfall forecasts: The case of "Cevenol flash floods". Appl. Intell. 2011, 35, 178-189.
    • (2011) Appl. Intell. , vol.35 , pp. 178-189
    • Toukourou, M.1    Johannet, A.2    Dreyfus, G.3    Ayral, P.A.4
  • 23
    • 79952006341 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis
    • Wu, C.L.; Chau, K.W. Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis. J. Hydrol. 2011, 399, 394-409.
    • (2011) J. Hydrol. , vol.399 , pp. 394-409
    • Wu, C.L.1    Chau, K.W.2
  • 24
    • 84870159777 scopus 로고    scopus 로고
    • Modeling rainfall-runoff process using soft computing techniques
    • Kisi, O.; Shiri, J.; Mustafa, T. Modeling rainfall-runoff process using soft computing techniques. Comput. Geosci. 2012, 51, 108-117.
    • (2012) Comput. Geosci. , vol.51 , pp. 108-117
    • Kisi, O.1    Shiri, J.2    Mustafa, T.3
  • 25
    • 84864109362 scopus 로고    scopus 로고
    • Flow estimations for the Sohu Stream using artificial neural networks
    • Sattari, M.T.; Apaydin, H.; Ozturk, F. Flow estimations for the Sohu Stream using artificial neural networks. Environ. Earth Sci. 2012, 66, 2031-2045.
    • (2012) Environ. Earth Sci. , vol.66 , pp. 2031-2045
    • Sattari, M.T.1    Apaydin, H.2    Ozturk, F.3
  • 26
    • 84879033086 scopus 로고    scopus 로고
    • Echo state networks as an alternative to traditional artificial neural networks in rainfall-runoff modelling
    • De Vos, N.J. Echo state networks as an alternative to traditional artificial neural networks in rainfall-runoff modelling. Hydrol. Earth Syst. Sci. 2013, 17, 253-267.
    • (2013) Hydrol. Earth Syst. Sci , vol.17 , pp. 253-267
    • De Vos, N.J.1
  • 28
    • 33344463490 scopus 로고    scopus 로고
    • Water level forecasting through fuzzy logic and artificial neural network approach
    • Alvisi, S.; Mascellani, G.; Franchini, M.; Bardossy, A. Water level forecasting through fuzzy logic and artificial neural network approach. Hydrol. Earth Syst. Sci. 2006, 10, 1-17.
    • (2006) Hydrol. Earth Syst. Sci. , vol.10 , pp. 1-17
    • Alvisi, S.1    Mascellani, G.2    Franchini, M.3    Bardossy, A.4
  • 29
    • 33748929857 scopus 로고    scopus 로고
    • Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River
    • Chau, K.W. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J. Hydrol. 2006, 329, 363-367.
    • (2006) J. Hydrol , vol.329 , pp. 363-367
    • Chau, K.W.1
  • 30
    • 79955832065 scopus 로고    scopus 로고
    • Artificial neural network for precipitation and water level predictions of Bedup River
    • Bustami, R.; Bessaih, N.; Bong, C.; Suhaili, S. Artificial neural network for precipitation and water level predictions of Bedup River. IAENG Int. J. Comput. Sci. 2007, 34, 228-233.
    • (2007) IAENG Int. J. Comput. Sci. , vol.34 , pp. 228-233
    • Bustami, R.1    Bessaih, N.2    Bong, C.3    Suhaili, S.4
  • 31
    • 79960702239 scopus 로고    scopus 로고
    • Improved water level forecasting performance by using optimal steepness coefficients in an artificial neural network
    • Sulaiman, M.; El-Shafie, A.; Karim, O.; Basri, H. Improved water level forecasting performance by using optimal steepness coefficients in an artificial neural network. Water Resour. Manag. 2011, 25, 2525-2541.
    • (2011) Water Resour. Manag. , vol.25 , pp. 2525-2541
    • Sulaiman, M.1    El-Shafie, A.2    Karim, O.3    Basri, H.4
  • 32
    • 84893906937 scopus 로고    scopus 로고
    • Flood forecasting in large rivers with data-driven models
    • Nguyen, P.K.T.; Chua, L.H.C.; Son, L.H. Flood forecasting in large rivers with data-driven models. Nat. Hazards 2014, 71, 767-784.
    • (2014) Nat. Hazards , vol.71 , pp. 767-784
    • Nguyen, P.K.T.1    Chua, L.H.C.2    Son, L.H.3
  • 33
    • 84861096829 scopus 로고    scopus 로고
    • Wave data assimilation using a hybrid approach in the Persian Gulf
    • Moeini, M.H.; Etemad-Shahidi, A.; Chegini, V.; Rahmani, I. Wave data assimilation using a hybrid approach in the Persian Gulf. Ocean. Dynam. 2012, 62, 785-797.
    • (2012) Ocean. Dynam. , vol.62 , pp. 785-797
    • Moeini, M.H.1    Etemad-Shahidi, A.2    Chegini, V.3    Rahmani, I.4
  • 34
    • 62949110142 scopus 로고    scopus 로고
    • Flow forecast by SWAT model and ANN in Pracana basin, Portugal
    • Demirel, M.C.; Venancio, A.; Kahya, E. Flow forecast by SWAT model and ANN in Pracana basin, Portugal. Adv. Eng. Softw. 2009, 40, 467-473.
    • (2009) Adv. Eng. Softw. , vol.40 , pp. 467-473
    • Demirel, M.C.1    Venancio, A.2    Kahya, E.3
  • 35
    • 77953122265 scopus 로고    scopus 로고
    • Simulation of river stage using artificial network and MIKE 11 hydrodynamic model
    • Panda, R.K.; Pramanik, N.; Bala, B. Simulation of river stage using artificial network and MIKE 11 hydrodynamic model. Comput. Geosci. 2010, 36, 735-745.
    • (2010) Comput. Geosci. , vol.36 , pp. 735-745
    • Panda, R.K.1    Pramanik, N.2    Bala, B.3
  • 36
    • 83555161594 scopus 로고    scopus 로고
    • Comparison of ANN approach with 2D and 3D hydrodynamic models for simulating estuary water stage
    • Chen, W.B.; Liu, W.C.; Hsu, M.H. Comparison of ANN approach with 2D and 3D hydrodynamic models for simulating estuary water stage. Adv. Eng. Softw. 2012, 45, 69-79.
    • (2012) Adv. Eng. Softw. , vol.45 , pp. 69-79
    • Chen, W.B.1    Liu, W.C.2    Hsu, M.H.3
  • 37
    • 84859780132 scopus 로고    scopus 로고
    • The influence of discharge reductions on salt water intrusion and residual circulation in Danshuei River
    • Liu, W.C.; Chen, W.B.; Hsu, M.H. The influence of discharge reductions on salt water intrusion and residual circulation in Danshuei River. J. Mar. Sci. Technol. 2011, 19, 596-606.
    • (2011) J. Mar. Sci. Technol. , vol.19 , pp. 596-606
    • Liu, W.C.1    Chen, W.B.2    Hsu, M.H.3
  • 38
    • 0033081414 scopus 로고    scopus 로고
    • Procedure to calibrate and verify numerical models of estuarine hydrodynamics
    • Hsu, M.H.; Kuo, A.Y.; Kuo, J.T.; Liu, W.C. Procedure to calibrate and verify numerical models of estuarine hydrodynamics. J. Hydraul. Eng. ASCE 1999, 125, 166-182.
    • (1999) J. Hydraul. Eng. ASCE , vol.125 , pp. 166-182
    • Hsu, M.H.1    Kuo, A.Y.2    Kuo, J.T.3    Liu, W.C.4
  • 40
    • 0001202418 scopus 로고
    • Implicit flood routing in natural channel
    • Amein, M.; Fang, C.S. Implicit flood routing in natural channel. J. Hydraul. Div. ASCE 1970, 96, 2481-2500.
    • (1970) J. Hydraul. Div. ASCE , vol.96 , pp. 2481-2500
    • Amein, M.1    Fang, C.S.2
  • 41
    • 33646690536 scopus 로고    scopus 로고
    • Dynamic routing model with real-time roughness updating for flood forecasting
    • Hsu, M.H.; Fu, J.C.; Liu, W.C. Dynamic routing model with real-time roughness updating for flood forecasting. J. Hydraul. Eng. ASCE 2006, 132, 605-619.
    • (2006) J. Hydraul. Eng. ASCE , vol.132 , pp. 605-619
    • Hsu, M.H.1    Fu, J.C.2    Liu, W.C.3
  • 42
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 43
    • 77955735474 scopus 로고    scopus 로고
    • Daily outflow prediction by multi layer perceptron with logistic sigmoid and tangent sigmoid activation functions
    • Zadeh, R.M.; Amin, S.; Khalili, D.; Singh, V.P. Daily outflow prediction by multi layer perceptron with logistic sigmoid and tangent sigmoid activation functions. Water Resour. Manag. 2010, 24, 2673-2688.
    • (2010) Water Resour. Manag. , vol.24 , pp. 2673-2688
    • Zadeh, R.M.1    Amin, S.2    Khalili, D.3    Singh, V.P.4
  • 44
    • 77953342831 scopus 로고    scopus 로고
    • Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting
    • Yonaba, H.; Anctil, F.; Fortin, V. Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting. J. Hydrol. Eng. ASCE 2010, 15, 275-283.
    • (2010) J. Hydrol. Eng. ASCE , vol.15 , pp. 275-283
    • Yonaba, H.1    Anctil, F.2    Fortin, V.3
  • 45
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan, M.T.; Menhaj, M. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5, 989-993.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 46
    • 33750365224 scopus 로고    scopus 로고
    • Multi-population genetic algorithm for feature selection
    • Zhu, H.; Jiao, L.; Pan, J. Multi-population genetic algorithm for feature selection. Lect. Notes Comput. Sci. 2006, 422, 480-487.
    • (2006) Lect. Notes Comput. Sci. , vol.422 , pp. 480-487
    • Zhu, H.1    Jiao, L.2    Pan, J.3
  • 47
    • 84880034929 scopus 로고    scopus 로고
    • Fuzzy genetic approach for estimating reference evapotranspiration of Turkey: Mediterranean region
    • Kisi, O.; Cengiz, T.M. Fuzzy genetic approach for estimating reference evapotranspiration of Turkey: Mediterranean region. Water Resour. Manag. 2013, 27, 3541-3553.
    • (2013) Water Resour. Manag. , vol.27 , pp. 3541-3553
    • Kisi, O.1    Cengiz, T.M.2
  • 48
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for predicting monthly discharge time series
    • Wang, W.C.; Chau, K.W.; Cheng, C.T.; Qiu, L. A comparison of performance of several artificial intelligence methods for predicting monthly discharge time series. J. Hydrol. 2009, 374, 294-306.
    • (2009) J. Hydrol. , vol.374 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 49
    • 84871813763 scopus 로고    scopus 로고
    • Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model
    • Chen, W.B.; Liu, W.C.; Hsu, M.H. Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model. Nat. Hazards Earth Syst. Sci. 2012, 12, 3799-3809.
    • (2012) Nat. Hazards Earth Syst. Sci. , vol.12 , pp. 3799-3809
    • Chen, W.B.1    Liu, W.C.2    Hsu, M.H.3
  • 50
    • 78149414476 scopus 로고    scopus 로고
    • Prediction of water table depth in western region, Oissa using BPNN and RBFN neural networks
    • Ghose, D.K.; Panda, S.S.; Swain, P.C. Prediction of water table depth in western region, Oissa using BPNN and RBFN neural networks. J. Hydrol. 2010, 394, 296-304.
    • (2010) J. Hydrol. , vol.394 , pp. 296-304
    • Ghose, D.K.1    Panda, S.S.2    Swain, P.C.3
  • 51
    • 33747291202 scopus 로고
    • Genetic Algorithm in Search, Optimization and Machine Learning; Addison-Wesley:Boston
    • MA, USA
    • Goldberg, D. Genetic Algorithm in Search, Optimization and Machine Learning; Addison-Wesley:Boston, MA, USA, 1989.
    • (1989)
    • Goldberg, D.1
  • 52
    • 84888138641 scopus 로고    scopus 로고
    • Hybrid ANN-GA for predicting turbidity and chlorophyll-a concentrations
    • Mulia, I.E.; Tay, H.; Roopsekhar, K.; Tkalich, P. Hybrid ANN-GA for predicting turbidity and chlorophyll-a concentrations. J. Hydro Environ. Res. 2013, 7, 279-299.
    • (2013) J. Hydro Environ. Res. , vol.7 , pp. 279-299
    • Mulia, I.E.1    Tay, H.2    Roopsekhar, K.3    Tkalich, P.4
  • 53
    • 84861190001 scopus 로고    scopus 로고
    • Reliability estimation using a genetic algorithm-based artificial neural network: An application to a load-haul-dump machine
    • Chatterjee, S.; Bandopadhyay, S. Reliability estimation using a genetic algorithm-based artificial neural network: An application to a load-haul-dump machine. Expert. Syst. Appl. 2012, 39, 10943-10951.
    • (2012) Expert. Syst. Appl. , vol.39 , pp. 10943-10951
    • Chatterjee, S.1    Bandopadhyay, S.2
  • 54
    • 84866689487 scopus 로고    scopus 로고
    • Application of artificial neural network-genetic algorithm (ANN-GA) to correlation of density in nanofluids
    • Karimi, H.; Yousefi, F. Application of artificial neural network-genetic algorithm (ANN-GA) to correlation of density in nanofluids. Fluid Phase Equilibr. 2012, 336, 79-83.
    • (2012) Fluid Phase Equilibr. , vol.336 , pp. 79-83
    • Karimi, H.1    Yousefi, F.2
  • 55
    • 60649118396 scopus 로고    scopus 로고
    • Artificial neural network modeling of the river water quality-A case study
    • Singh, K.P.; Basant, A.; Malik, A.; Jain, G. Artificial neural network modeling of the river water quality-A case study. Ecol. Model. 2009, 220, 888-895.
    • (2009) Ecol. Model. , vol.220 , pp. 888-895
    • Singh, K.P.1    Basant, A.2    Malik, A.3    Jain, G.4
  • 56
    • 84862139051 scopus 로고    scopus 로고
    • Hybrid wavelet-genetic programming approach to optimize ANN modeling of rainfall-runoff process
    • Nourani, V.; Komasi, M.; Alami, M.T. Hybrid wavelet-genetic programming approach to optimize ANN modeling of rainfall-runoff process. J. Hydrol. Eng. ASCE 2012, 17, 724-741.
    • (2012) J. Hydrol. Eng. ASCE , vol.17 , pp. 724-741
    • Nourani, V.1    Komasi, M.2    Alami, M.T.3
  • 57
    • 0036845179 scopus 로고    scopus 로고
    • Combining a fuzzy optimal with a genetic algorithm to solve multiobjective rainfall-runoff model calibration
    • Cheng, C.T.; Ou, C.P.; Chau, K.W. Combining a fuzzy optimal with a genetic algorithm to solve multiobjective rainfall-runoff model calibration. J. Hydrol. 2002, 268, 72-86.
    • (2002) J. Hydrol. , vol.268 , pp. 72-86
    • Cheng, C.T.1    Ou, C.P.2    Chau, K.W.3
  • 58
    • 33845384467 scopus 로고    scopus 로고
    • Neural network and genetic programming for modelling coastal algal blooms
    • Muttil, N.; Chau, K.W. Neural network and genetic programming for modelling coastal algal blooms. Int. J. Environ. Pollut. 2006, 28, 223-238.
    • (2006) Int. J. Environ. Pollut. , vol.28 , pp. 223-238
    • Muttil, N.1    Chau, K.W.2
  • 59
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin, J.Y.; Cheng, C.T.; Chau, K.W. Using support vector machines for long-term discharge prediction. Hydrol. Sci. J. 2006, 51, 599-612.
    • (2006) Hydrol. Sci. J. , vol.51 , pp. 599-612
    • Lin, J.Y.1    Cheng, C.T.2    Chau, K.W.3
  • 60
    • 84861225166 scopus 로고    scopus 로고
    • SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climate data in a semi-arid highland environment
    • Tabari, H.; Kisi, O.; Ezani, A.; Hosseinzadeh, T.P. SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climate data in a semi-arid highland environment. J. Hydrol. 2012, 444, 78-89.
    • (2012) J. Hydrol. , vol.444 , pp. 78-89
    • Tabari, H.1    Kisi, O.2    Ezani, A.3    Hosseinzadeh, T.P.4
  • 61
    • 34250774983 scopus 로고    scopus 로고
    • Machine-learning paradigms for selecting ecologically significant input variables
    • Muttil, N.; Chau, K.W. Machine-learning paradigms for selecting ecologically significant input variables. Eng. Appl. Artif. Intel. 2007, 20, 735-744.
    • (2007) Eng. Appl. Artif. Intel. , vol.20 , pp. 735-744
    • Muttil, N.1    Chau, K.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.