메뉴 건너뛰기




Volumn 36, Issue 6, 2010, Pages 735-745

Simulation of river stage using artificial neural network and MIKE 11 hydrodynamic model

Author keywords

Artificial neural network; Back propagation training algorithms; Hydrodynamic model; LM algorithm

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CHANNEL ROUGHNESS; CONTROL STRUCTURE; FLOOD ROUTING; GOODNESS OF FIT; HIDDEN LAYERS; HIDDEN NEURONS; HYDRODYNAMIC MODEL; HYDROLOGIC SIMULATIONS; HYDROLOGIC TIME SERIES; LEVENBERG-MARQUARDT; LEVENBERG-MARQUARDT ALGORITHM; LM ALGORITHM; MODEL TESTING; MODEL VALIDATION; NEURAL NETWORK MODEL; PHYSICALLY BASED; RECORD KEEPING; RIVER GEOMETRY; ROOT MEAN SQUARE ERRORS; TRAINING ALGORITHMS; WATER-LEVEL DATA;

EID: 77953122265     PISSN: 00983004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cageo.2009.07.012     Document Type: Article
Times cited : (100)

References (25)
  • 1
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: hydrologic applications
    • ASCE Task Committee, ASCE, 124-137
    • ASCE Task Committee Artificial neural networks in hydrology. II: hydrologic applications. Journal of Hydrologic Engineering 2000, 5. ASCE, 124-137.
    • (2000) Journal of Hydrologic Engineering , vol.5
  • 2
    • 23444462420 scopus 로고    scopus 로고
    • Functional networks in real time flood forecasting-a novel application
    • Bruen M., Yang J. Functional networks in real time flood forecasting-a novel application. Advances in Water Resources 2005, 28:899-909.
    • (2005) Advances in Water Resources , vol.28 , pp. 899-909
    • Bruen, M.1    Yang, J.2
  • 3
    • 0003751357 scopus 로고
    • McGraw-Hill Book Co., New York, NY
    • Chow V.T. Open Channel Hydraulics 1959, McGraw-Hill Book Co., New York, NY,, 680pp.
    • (1959) Open Channel Hydraulics , pp. 680
    • Chow, V.T.1
  • 4
    • 0037783429 scopus 로고    scopus 로고
    • Incorporation of ARMA models into flow forecasting by artificial neural networks
    • Cigizoglu H.K. Incorporation of ARMA models into flow forecasting by artificial neural networks. Environmetrics 2003, 14:417-427.
    • (2003) Environmetrics , vol.14 , pp. 417-427
    • Cigizoglu, H.K.1
  • 5
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall modeling
    • Dawson C.W., Wilby R.L. An artificial neural network approach to rainfall modeling. Hydrological Sciences Journal 1998, 43(1):47-66.
    • (1998) Hydrological Sciences Journal , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.L.2
  • 6
    • 0033512986 scopus 로고    scopus 로고
    • A comparison of artificial river network used for river flow forecasting
    • Dawson C.W., Wilby R.L. A comparison of artificial river network used for river flow forecasting. Hydrology and Earth System Science 1999, 3(4):529-540.
    • (1999) Hydrology and Earth System Science , vol.3 , Issue.4 , pp. 529-540
    • Dawson, C.W.1    Wilby, R.L.2
  • 7
    • 62949110142 scopus 로고    scopus 로고
    • Flow forecast by SWAT model and ANN in Pracana basin, Portugal
    • Demirel M.C., Venancio A., Kahya E. Flow forecast by SWAT model and ANN in Pracana basin, Portugal. Advances in Engineering Software 2009, 40(7):467-473.
    • (2009) Advances in Engineering Software , vol.40 , Issue.7 , pp. 467-473
    • Demirel, M.C.1    Venancio, A.2    Kahya, E.3
  • 9
    • 0038502200 scopus 로고    scopus 로고
    • Artificial neural networks for stream flow prediction
    • Dolling O.R., Veras E.A. Artificial neural networks for stream flow prediction. Journal of Hydraulic Research 2002, 40:547-554.
    • (2002) Journal of Hydraulic Research , vol.40 , pp. 547-554
    • Dolling, O.R.1    Veras, E.A.2
  • 10
    • 0003425664 scopus 로고    scopus 로고
    • Support vector machines for classification and regression
    • University of Southampton, UK
    • Gunn R.R. Support vector machines for classification and regression. Technical Report 1998, University of Southampton, UK,, 66pp.
    • (1998) Technical Report , pp. 66
    • Gunn, R.R.1
  • 12
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K., Gupta H.V., Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 1995, 31:2517-2530.
    • (1995) Water Resources Research , vol.31 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 13
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: generalization beyond the calibration range
    • Imrie C.E., Durucan S., Korre A. River flow prediction using artificial neural networks: generalization beyond the calibration range. Journal of Hydrology 2000, 233:138-153.
    • (2000) Journal of Hydrology , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 14
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kisi O. River flow modeling using artificial neural networks. Journal of Hydrologic Engineering 2004, 9(1):60-63.
    • (2004) Journal of Hydrologic Engineering , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 15
    • 12544259920 scopus 로고    scopus 로고
    • Daily river flow forecasting using artificial neural network and auto-regressive models
    • Kisi O. Daily river flow forecasting using artificial neural network and auto-regressive models. Turkish Journal of Engineering and Environmental Sciences 2005, 29:9-20.
    • (2005) Turkish Journal of Engineering and Environmental Sciences , vol.29 , pp. 9-20
    • Kisi, O.1
  • 16
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall runoff models
    • Minns A.W., Hall M.J. Artificial neural networks as rainfall runoff models. Hydrological Sciences Journal 1996, 41(3):399-417.
    • (1996) Hydrological Sciences Journal , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 17
    • 69949143939 scopus 로고    scopus 로고
    • Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction
    • Pramanik N., Panda R.K. Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction. Hydrological Sciences Journal 2009, 54(2):247-260.
    • (2009) Hydrological Sciences Journal , vol.54 , Issue.2 , pp. 247-260
    • Pramanik, N.1    Panda, R.K.2
  • 18
    • 0036698155 scopus 로고    scopus 로고
    • Comparison of different forms of multi-layer feed-forward neural network method used for river flow forecasting
    • Shamseldin A.Y., Nasr A.E., O'connor K.M. Comparison of different forms of multi-layer feed-forward neural network method used for river flow forecasting. Hydrology and Earth System Science 2002, 6(4):671-684.
    • (2002) Hydrology and Earth System Science , vol.6 , Issue.4 , pp. 671-684
    • Shamseldin, A.Y.1    Nasr, A.E.2    O'connor, K.M.3
  • 19
    • 77953120343 scopus 로고    scopus 로고
    • Flood routing using artificial neural network. In: Proceedings XXX International Association of Hydro-Environment Engineering and Research Congress. JF Kennedy Paper Student Paper Competition, Thessaloniki, Greece, 20030824-20030829.
    • Shrestha, R.R., 2003. Flood routing using artificial neural network. In: Proceedings XXX International Association of Hydro-Environment Engineering and Research Congress. JF Kennedy Paper Student Paper Competition, Thessaloniki, Greece, 20030824-20030829.
    • (2003)
    • Shrestha, R.R.1
  • 20
    • 78751663789 scopus 로고    scopus 로고
    • Appropriate data normalization range for daily river flow forecasting using an artificial neural network
    • International Association of Hydrological Sciences Publication, UK, I.D. Cluckie, Y. Chen, V. Babovic, L. Konikow, A. Mynett, S. Demuth, D. Savic (Eds.)
    • Singh A., Panda R.K., Pramanik N. Appropriate data normalization range for daily river flow forecasting using an artificial neural network. Hydroinformatics in Hydrology, Hydrogeology and Water Resources 2009, 51-57. International Association of Hydrological Sciences Publication, UK. I.D. Cluckie, Y. Chen, V. Babovic, L. Konikow, A. Mynett, S. Demuth, D. Savic (Eds.).
    • (2009) Hydroinformatics in Hydrology, Hydrogeology and Water Resources , pp. 51-57
    • Singh, A.1    Panda, R.K.2    Pramanik, N.3
  • 21
    • 0001857840 scopus 로고    scopus 로고
    • Streamflow forecasting based on artificial neural network
    • Kluwer Academic Publishers, Dordrecht, R.S. Govindaraju, A.R. Rao (Eds.)
    • Solas J.D., Markus M., Tokar A.S. Streamflow forecasting based on artificial neural network. Artificial Neural Networks in Hydrology 2000, 23-51. Kluwer Academic Publishers, Dordrecht. R.S. Govindaraju, A.R. Rao (Eds.).
    • (2000) Artificial Neural Networks in Hydrology , pp. 23-51
    • Solas, J.D.1    Markus, M.2    Tokar, A.S.3
  • 22
    • 0034298851 scopus 로고    scopus 로고
    • Application of tank, NAM, ARMA and neural network models to flood forecasting
    • Tingsanchali T., Gautam M.R. Application of tank, NAM, ARMA and neural network models to flood forecasting. Hydrological Processes 2000, 14:2473-2487.
    • (2000) Hydrological Processes , vol.14 , pp. 2473-2487
    • Tingsanchali, T.1    Gautam, M.R.2
  • 24
    • 0037200134 scopus 로고    scopus 로고
    • Short-term inflow forecasting using an artificial neural network model
    • Xu X.Z., Li J.Y. Short-term inflow forecasting using an artificial neural network model. Hydrological Processes 2002, 16:2423-2439.
    • (2002) Hydrological Processes , vol.16 , pp. 2423-2439
    • Xu, X.Z.1    Li, J.Y.2
  • 25
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand C.M., Burn D.H., Simonovic S.P. Short term streamflow forecasting using artificial neural networks. Journal of Hydrology 1999, 214:32-48.
    • (1999) Journal of Hydrology , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.