-
1
-
-
0034254196
-
Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
-
Abrahart, R. J. and See, L. M.: Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments, Hydrol. Process., 14, 2157-2172, 2000.
-
(2000)
Hydrol. Process
, vol.14
, pp. 2157-2172
-
-
Abrahart, R.J.1
See, L.M.2
-
2
-
-
34249794005
-
Timing error correction procedure applied to neural network rainfall-runoff modelling
-
DOI 10.1623/hysj.52.3.414
-
Abrahart, R. J., Heppenstall, A. J. and See, L. M.: Timing error correction procedure applied to neural network rainfall-runoff modelling, Hydrol. Sci. J., 52, 414-431, doi:10.1623/hysj.52.3.414, 2007. (Pubitemid 46851531)
-
(2007)
Hydrological Sciences Journal
, vol.52
, Issue.3
, pp. 414-431
-
-
Abrahart, R.J.1
Heppenstall, A.J.2
See, L.M.3
-
3
-
-
84863764389
-
Two decades of anarchy Emerging themes and outstanding challenges for neural network river forecasting
-
doi:10.1177/0309133312444943
-
Abrahart, R. J., Anctil, F., Coulibaly, P., Dawson, C. W., Mount, N. J., See, L. M., Shamseldin, A. Y., Solomatine, D. P., Toth, E. and Wilby, R. L.: Two decades of anarchy Emerging themes and outstanding challenges for neural network river forecasting, Prog. Phys. Geog., 36, 480-513, doi:10.1177/ 0309133312444943, 2012a.
-
(2012)
Prog. Phys. Geog
, vol.36
, pp. 480-513
-
-
Abrahart, R.J.1
Anctil, F.2
Coulibaly, P.3
Dawson, C.W.4
Mount, N.J.5
See, L.M.6
Shamseldin, A.Y.7
Solomatine, D.P.8
Toth, E.9
Wilby, R.L.10
-
4
-
-
84856404995
-
Discussion of "reservoir Computing approach to Great Lakes water level forecasting" by P. Coulibaly
-
Abrahart, R. J., Mount, N. J. and Shamseldin, A. Y.: Discussion of "Reservoir Computing approach to Great Lakes water level forecasting" by P. Coulibaly [J. Hydrol. 381 (2010) 76-88].
-
(2010)
J. Hydrol.
, vol.381
, pp. 76-88
-
-
Abrahart, R.J.1
Mount, N.J.2
Shamseldin, A.Y.3
-
5
-
-
84856404995
-
-
doi:10.1016/j.jhydrol.2011.10.006
-
J. Hydrol., 422-423, 76-80, doi:10.1016/j.jhydrol.2011.10.006, 2012b.
-
(2012)
J. Hydrol
, vol.422-423
, pp. 76-80
-
-
-
6
-
-
1142294041
-
A soil moisture index as an auxiliary ANN input for stream flow forecasting
-
DOI 10.1016/j.jhydrol.2003.09.006
-
Anctil, F., Michel, C., Perrin, C., and Andreassian, V.: A soil moisture index as an auxiliary ANN input for stream flow forecasting, J. Hydrol., 286, 155-167, 2004. (Pubitemid 38203954)
-
(2004)
Journal of Hydrology
, vol.286
, Issue.1-4
, pp. 155-167
-
-
Anctil, F.1
Michel, C.2
Perrin, C.3
Andreassian, V.4
-
7
-
-
0034186923
-
New results on recurrent network training: Unifying the algorithms and accelerating convergence
-
Atiya, A. F. and Parlos, A. G.: New results on recurrent network training: unifying the algorithms and accelerating convergence, IEEE T. Neural Netw., 11, 697-709, 2000.
-
(2000)
IEEE T. Neural Netw
, vol.11
, pp. 697-709
-
-
Atiya, A.F.1
Parlos, A.G.2
-
8
-
-
0034875916
-
A self-organizing NARX network and its application to prediction of chaotic time series
-
Barreto, G. de A. and Aráujo, A. F. R.: A self-organizing NARX network and its application to prediction of chaotic time series, in: Proceedings of the IEEE Intl. Joint Conference on Neural Networks, vol. 3, Washington D.C., USA, 2144-2149, 2001. (Pubitemid 32805231)
-
(2001)
Proceedings of the International Joint Conference on Neural Networks
, vol.3
, pp. 2144-2149
-
-
Barreto, G.A.1
Araujo, A.F.R.2
-
9
-
-
0028392483
-
Learning long-term dependencies with gradient-descent is difficult
-
Bengio, Y., Simard, P., and Frasconi, P.: Learning long-term dependencies with gradient-descent is difficult, IEEE T. Neural Netw., 5, 157-166, 1994.
-
(1994)
IEEE T. Neural Netw
, vol.5
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
10
-
-
0002497828
-
TOPMODEL
-
edited by: Singh V. P., Water Resources Publications, Colorado
-
Beven, K. J., Lamb, R., Quinn, P. F., Romanowicz, R., and Freer, J.: TOPMODEL, in: Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water Resources Publications, Colorado, 627-668, 1995.
-
(1995)
Computer Models of Watershed Hydrology
, pp. 627-668
-
-
Beven, K.J.1
Lamb, R.2
Quinn, P.F.3
Romanowicz, R.4
Freer, J.5
-
12
-
-
33646536035
-
A tighter bound for the echo state property
-
Buehner, M. and Young, P.: A tighter bound for the echo state property, Neural Netw., 17, 820-824, 2006.
-
(2006)
Neural Netw
, vol.17
, pp. 820-824
-
-
Buehner, M.1
Young, P.2
-
13
-
-
0001632928
-
The NWS river forecast system-catchment modeling
-
edited by: Singh V. P., Water Resources Publications, Colorado
-
Burnash, R. J. C.: The NWS river forecast system-catchment modeling, in: Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water Resources Publications, Colorado, 311-366, 1995.
-
(1995)
Computer Models of Watershed Hydrology
, pp. 311-366
-
-
Burnash, R.J.C.1
-
14
-
-
0032688155
-
River flood forecasting with a neural network model
-
Campolo, M., Andreussi, P., and Soldati, A.: River flood forecasting with a neural network model, Water Resour. Res., 35, 1191-1197, 1999.
-
(1999)
Water Resour. Res
, vol.35
, pp. 1191-1197
-
-
Campolo, M.1
Andreussi, P.2
Soldati, A.3
-
15
-
-
0036719845
-
Real-time recurrent learning network for stream-flow forecasting
-
Chang, F. J., Chiang, L. C., and Huang, H. L.: Real-time recurrent learning network for stream-flow forecasting, Hydrol. Process., 16, 2577-2588, 2002.
-
(2002)
Hydrol. Process
, vol.16
, pp. 2577-2588
-
-
Chang, F.J.1
Chiang, L.C.2
Huang, H.L.3
-
16
-
-
1842426595
-
Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling
-
Chiang, Y. M., Chiang, L. C., and Chang, F. J.: Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling, J. Hydrol., 290, 297-311, 2004.
-
(2004)
J. Hydrol
, vol.290
, pp. 297-311
-
-
Chiang, Y.M.1
Chiang, L.C.2
Chang, F.J.3
-
17
-
-
73649127943
-
Reservoir computing approach to Great Lakes water level forecasting
-
Coulibaly, P.: Reservoir computing approach to Great Lakes water level forecasting, J. Hydrol., 381, 76-88, 2010.
-
(2010)
J. Hydrol
, vol.381
, pp. 76-88
-
-
Coulibaly, P.1
-
18
-
-
0034298548
-
A recurrent neural networks approach using indices of low-frequency climatic variability to forecast regional annual runoff
-
Coulibaly, P., Anctil, F., Rasmussen, P., and Bobee, B.: A recurrent neural networks approach using indices of low-frequency climatic variability to forecast regional annual runoff, Hydrol. Process., 14, 2755-2777, 2000.
-
(2000)
Hydrol. Process
, vol.14
, pp. 2755-2777
-
-
Coulibaly, P.1
Anctil, F.2
Rasmussen, P.3
Bobee, B.4
-
19
-
-
33644495279
-
Of data and models
-
Cunge, J. A.: Of data and models, J. Hydroinform., 5, 75-98, 2003.
-
(2003)
J. Hydroinform
, vol.5
, pp. 75-98
-
-
Cunge, J.A.1
-
20
-
-
23744444467
-
Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation
-
de Vos, N. J. and Rientjes, T. H. M.: Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation, Hydrol. Earth Syst. Sci., 9, 111-126, doi:10.5194/hess-9-111-2005, 2005. (Pubitemid 41122744)
-
(2005)
Hydrology and Earth System Sciences
, vol.9
, Issue.1-2
, pp. 111-126
-
-
De Vos, N.J.1
Rientjes, T.H.M.2
-
21
-
-
53849110109
-
Correction of timing errors of artificial neural network rainfall-runoff models
-
edited by: Abrahart, R. J., See, L. M., and Solomatine D. P., Water Science and Technology Library, Springer
-
de Vos, N. J. and Rientjes, T. H. M.: Correction of timing errors of artificial neural network rainfall-runoff models, in: Practical Hydroinformatics, edited by: Abrahart, R. J., See, L. M., and Solomatine, D. P., Water Science and Technology Library, Springer, 2008a.
-
(2008)
Practical Hydroinformatics
-
-
De Vos, N.J.1
Rientjes, T.H.M.2
-
22
-
-
53849113979
-
Multi-objective training of artificial neural networks for rainfall-runoff modeling
-
doi:10.1029/2007WR006734
-
de Vos, N. J. and Rientjes, T. H. M.: Multi-objective training of artificial neural networks for rainfall-runoff modeling,Water Resour. Res., 44, W08434, doi:10.1029/2007WR006734, 2008b.
-
(2008)
Water Resour. Res
, vol.44
-
-
De Vos, N.J.1
Rientjes, T.H.M.2
-
23
-
-
0002223082
-
Bifurcations in the learning of recurrent neural networks
-
San Diego, CA, USA
-
Doya, K.: Bifurcations in the learning of recurrent neural networks, in: Proc. IEEE Int. Symposium on Circuits and Systems, vol. 6, San Diego, CA, USA, 2777-2780, 1992.
-
(1992)
Proc. IEEE Int. Symposium on Circuits and Systems
, vol.6
, pp. 2777-2780
-
-
Doya, K.1
-
24
-
-
33644551546
-
Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops
-
Duan, Q., Schaake, J., Andreassian, V., Franks, S., Goteti, G., Gupta, H. V., Gusev, Y. M., Habets, F., Hall, A., Hay, L., Hogue, T., Huang, M., Leavesley, G., Liang, X., Nasonova, O. N., Noilhan, J., Oudin, L., Sorooshian, S., Wagener, T., and Wood, E. F.: Model Parameter Estimation Experiment (MOPEX): an overview of science strategy and major results from the second and third workshops, J. Hydrol., 320, 3-17, 2006.
-
(2006)
J. Hydrol
, vol.320
, pp. 3-17
-
-
Duan, Q.1
Schaake, J.2
Andreassian, V.3
Franks, S.4
Goteti, G.5
Gupta, H.V.6
Gusev, Y.M.7
Habets, F.8
Hall, A.9
Hay, L.10
Hogue, T.11
Huang, M.12
Leavesley, G.13
Liang, X.14
Nasonova, O.N.15
Noilhan, J.16
Oudin, L.17
Sorooshian, S.18
Wagener, T.19
Wood, E.F.20
more..
-
25
-
-
26444565569
-
Finding structure in time
-
Elman, J. L.: Finding structure in time, Cognitive Sci., 14, 179-211, 1990.
-
(1990)
Cognitive Sci
, vol.14
, pp. 179-211
-
-
Elman, J.L.1
-
26
-
-
0028543366
-
Training feedforward networks with the Marquardt algorithm
-
Hagan, M. T. and Menhaj, M. B.: Training feedforward networks with the Marquardt algorithm, IEEE T. Neural Netw., 5, 989-993, 1994.
-
(1994)
IEEE T. Neural Netw.
, vol.5
, pp. 989-993
-
-
Hagan, M.T.1
Menhaj, M.B.2
-
27
-
-
84887010605
-
Recent advances in efficient learning of recurrent networks
-
Bruges, Belgium
-
Hammer, B., Schrauwen, B., and Steil, J. J.: Recent advances in efficient learning of recurrent networks, in: European Symposium on Artificial Neural Networks, Bruges, Belgium, 213-226, 2009.
-
(2009)
European Symposium on Artificial Neural Networks
, pp. 213-226
-
-
Hammer, B.1
Schrauwen, B.2
Steil, J.J.3
-
30
-
-
0029413797
-
Artificial neural network modeling of the rainfall-runoff process
-
DOI 10.1029/95WR01955
-
Hsu, K.-L., Gupta, H. V., and Sorooshian, S.: Artificial neural network modeling of the rainfall-runoff process,Water Resour. Res., 31, 2517-2530, 1995. (Pubitemid 26475080)
-
(1995)
Water Resources Research
, vol.31
, Issue.10
, pp. 2517-2530
-
-
Kuo-Lin Hsu1
Gupta, H.V.2
Sorooshian, S.3
-
31
-
-
0030645841
-
Application of a recurrent neural network to rainfall-runoff modeling
-
Houston, TX, USA
-
Hsu, K.-L., Gupta, H. V., and Sorooshian, S.: Application of a recurrent neural network to rainfall-runoff modeling, in: 24th Annual Water Resources Planning and Management Conference, Houston, TX, USA, 68-73, 1997.
-
(1997)
24th Annual Water Resources Planning and Management Conference
, pp. 68-73
-
-
Hsu, K.-L.1
Gupta, H.V.2
Sorooshian, S.3
-
32
-
-
1842436050
-
The echo state approach to analysing and training recurrent neural networks
-
German National Research Center for Information Technology, St. Augustin, Germany
-
Jaeger, H.: The echo state approach to analysing and training recurrent neural networks, Tech. Report GMD Report 148, German National Research Center for Information Technology, St. Augustin, Germany, 2001.
-
(2001)
Tech. Report GMD Report 148
-
-
Jaeger, H.1
-
33
-
-
33749833931
-
A tutorial on training recurrent neural networks covering BPPT RTRL EKF and the "echo state network" approach
-
German National Research Center for Information Technology, St. Augustin, Germany
-
Jaeger, H.: A tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the "echo state network" approach, Tech. Report GMD Report 159, German National Research Center for Information Technology, St. Augustin, Germany, 2002.
-
(2002)
Tech. Report GMD Report 159
-
-
Jaeger, H.1
-
34
-
-
1842421269
-
Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication
-
DOI 10.1126/science.1091277
-
Jaeger, H. and Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication, Science, 304, 78-80, 2004. (Pubitemid 38455427)
-
(2004)
Science
, vol.304
, Issue.5667
, pp. 78-80
-
-
Jaeger, H.1
Haas, H.2
-
35
-
-
2442639370
-
Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
-
doi:10.1029/2003WR002355
-
Jain, A. and Srinivasulu, S.: Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques, Water Resour. Res., 40, W04302, doi:10.1029/2003WR002355, 2004.
-
(2004)
Water Resour. Res
, vol.40
-
-
Jain, A.1
Srinivasulu, S.2
-
36
-
-
0027601884
-
ANFIS: Adaptive-network-based fuzzy inference systems
-
Jang, J. S., R.: ANFIS: Adaptive-network-based fuzzy inference systems, IEEE T. Syst. Man. Cyb., 23, 665-685, 1993.
-
(1993)
IEEE T. Syst. Man. Cyb
, vol.23
, pp. 665-685
-
-
Jang, J.S.R.1
-
37
-
-
0031581519
-
Development and test of the distributed HBV-96 hydrological model
-
DOI 10.1016/S0022-1694(97)00041-3, PII S0022169497000413
-
Lindstrom, G., Johansson, B., Persson, M., Gardelin, M., and Bergstrom, S.: Development and test of the distributed HBV-96 hydrological model, J. Hydrol., 201, 272-288, 1997. (Pubitemid 28037764)
-
(1997)
Journal of Hydrology
, vol.201
, Issue.1-4
, pp. 272-288
-
-
Lindstrom, G.1
Johansson, B.2
Persson, M.3
Gardelin, M.4
Bergstrom, S.5
-
38
-
-
68649096445
-
Echo state networks with trained feedbacks
-
Jacobs University Bremen
-
Lukosevicius, M.: Echo state networks with trained feedbacks, Tech. Report No. 4, Jacobs University Bremen, 2007.
-
(2007)
Tech. Report No. 4
-
-
Lukosevicius, M.1
-
39
-
-
68649088777
-
Reservoir computing approaches to recurrent neural network training
-
Lukosevicius, M. and Jaeger, H.: Reservoir computing approaches to recurrent neural network training, Comput. Sci. Rev., 3, 127-149, 2009.
-
(2009)
Comput. Sci. Rev
, vol.3
, pp. 127-149
-
-
Lukosevicius, M.1
Jaeger, H.2
-
40
-
-
0036834701
-
Real-time computing without stable states: A new framework for neural computation based on perturbations
-
Maass,W., Natschl̈ager, T., and Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations, Neural Comput., 14, 2531-2560, 2002.
-
(2002)
Neural Comput
, vol.14
, pp. 2531-2560
-
-
Maass, W.1
Natschlager, T.2
Markram, H.3
-
41
-
-
0027205884
-
A scaled conjugate gradient algorithm for fast supervised learning
-
Møller, M. F.: A scaled conjugate gradient algorithm for fast supervised learning, Neural Netw., 6, 525-533, 1993.
-
(1993)
Neural Netw
, vol.6
, pp. 525-533
-
-
Møller, M.F.1
-
42
-
-
0028401031
-
Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
-
Puskorius, G. V. and Feldkamp, L. A.: Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks, IEEE T. Neural Netw., 5, 279-297, 1994.
-
(1994)
IEEE T. Neural Netw
, vol.5
, pp. 279-297
-
-
Puskorius, G.V.1
Feldkamp, L.A.2
-
43
-
-
0003444646
-
-
MIT Press, Cambridge
-
Rumelhart, D. E. and McLelland, J. L.: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, MIT Press, Cambridge, 1986.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
, vol.1
-
-
Rumelhart, D.E.1
McLelland, J.L.2
-
44
-
-
0032207527
-
Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks
-
IEEE
-
Saad, E. W., Prokhorov, D. V., and Wunsch, I.: Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks, IEEE T. Neural Netw., 9, 1456-1470, 1998.
-
(1998)
Neural Netw.
, vol.9
, pp. 1456-1470
-
-
Saad, E.W.1
Prokhorov, D.V.2
Wunsch, I.3
-
45
-
-
84879050581
-
A RBF network trained by the SONARX model and applied to obtain the operation policies of the hydropower systems
-
Brazil
-
Sacchi, R., Carneiro, A. A. F. M., and Aráujo, A. F. R.: A RBF network trained by the SONARX model and applied to obtain the operation policies of the hydropower systems, in: Brazilian Symposium on Neural Networks-SBRN, Brazil, 2004.
-
(2004)
Brazilian Symposium on Neural Networks-SBRN
-
-
Sacchi, R.1
Carneiro, A.A.F.M.2
Araujo, A.F.R.3
-
46
-
-
51749116529
-
Water inflow forecasting using the Echo State Network: A Brazilian case study
-
Orlando, FL, USA
-
Sacchi, R., Ozturk, M. C., Principe, J. C., Carneiro, A. A. F., and da Silva, I. N.: Water inflow forecasting using the Echo State Network: a Brazilian case study, in: Proceedings of the IEEE Intl. Joint Conference on Neural Networks, Orlando, FL, USA, 2403-2408, 2007.
-
(2007)
Proceedings of the IEEE Intl. Joint Conference on Neural Networks
, pp. 2403-2408
-
-
Sacchi, R.1
Ozturk, M.C.2
Principe, J.C.3
Carneiro, A.A.F.4
Da Silva, I.N.5
-
47
-
-
0342506462
-
Application of a neural network technique to rainfall-runoff modelling
-
DOI 10.1016/S0022-1694(96)03330-6, PII S0022169496033306
-
Shamseldin, A. Y.: Application of a neural network technique to rainfall-runoff modelling, J. Hydrol., 199, 272-294, 1997. (Pubitemid 27492871)
-
(1997)
Journal of Hydrology
, vol.199
, Issue.3-4
, pp. 272-294
-
-
Shamseldin, A.Y.1
-
48
-
-
10944225085
-
Backpropagation-decorrelation: Recurrent Learning with O(N) Complexity
-
Budapest, Hungary
-
Steil, J. J.: Backpropagation-decorrelation: recurrent learning with O(N) complexity, in: Proceedings of the IEEE Intl. Joint Conference on Neural Networks, vol. 2, Budapest, Hungary, 843-848, 2004.
-
(2004)
Proceedings of the IEEE Intl. Joint Conference on Neural Networks
, vol.2
, pp. 843-848
-
-
Steil, J.J.1
-
49
-
-
0000647608
-
Extended Kalman filter-based pruning method for recurrent neural networks
-
Sum, J., Chan, L., Leung, C., and Young, G.: Extended Kalman filter-based pruning method for recurrent neural networks, Neural Comput., 10, 1481-1506, 1998.
-
(1998)
Neural Comput
, vol.10
, pp. 1481-1506
-
-
Sum, J.1
Chan, L.2
Leung, C.3
Young, G.4
-
50
-
-
34249815487
-
An experimental unification of reservoir computing methods
-
DOI 10.1016/j.neunet.2007.04.003, PII S089360800700038X, Echo State Networks and Liquid State Machines
-
Verstraeten, D., Schrauwen, B., D'Haene, M., and Stroobandt, D.: An experimental unification of reservoir computing methods, Neural Netw., 20, 391-403, 2007. (Pubitemid 46856109)
-
(2007)
Neural Networks
, vol.20
, Issue.3
, pp. 391-403
-
-
Verstraeten, D.1
Schrauwen, B.2
D'Haene, M.3
Stroobandt, D.4
-
51
-
-
0025503558
-
Backpropagation through time: What it does and how to do it
-
Werbos, P. J.: Backpropagation through time: what it does and how to do it, Proc. IEEE, 78, 1550-1560, 1990.
-
(1990)
Proc IEEE
, vol.78
, pp. 1550-1560
-
-
Werbos, P.J.1
-
52
-
-
0001202594
-
A learning algorithm for continually running fully recurrent neural networks
-
Williams, R. J. and Zipser, D.: A learning algorithm for continually running fully recurrent neural networks, Neural Comput., 1, 270-280, 1989.
-
(1989)
Neural Comput
, vol.1
, pp. 270-280
-
-
Williams, R.J.1
Zipser, D.2
-
53
-
-
58849145264
-
Stable output feedback in reservoir computing using ridge regression
-
Prague, Czech Republic
-
Wyffels, F., Schrauwen, B., and Stroobandt, D.: Stable output feedback in reservoir computing using ridge regression, in: Proc. 18th Int. Conference on Artificial Neural Networks, vol. 5163, Prague, Czech Republic, 808-817, 2008.
-
(2008)
Proc. 18th Int. Conference on Artificial Neural Networks
, vol.5163
, pp. 808-817
-
-
Wyffels, F.1
Schrauwen, B.2
Stroobandt, D.3
-
54
-
-
77953342831
-
Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting
-
Yonaba, H., Anctil, F., and Fortin, V.: Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting, J. Hydrol. Eng., 15, 275-283, 2010.
-
(2010)
J. Hydrol. Eng
, vol.15
, pp. 275-283
-
-
Yonaba, H.1
Anctil, F.2
Fortin, V.3
|