메뉴 건너뛰기




Volumn 25, Issue 1, 2014, Pages 25-37

Flood flow forecasting using ANN, ANFIS and regression models

Author keywords

Antecedent flow; Area weighted precipitation; Iran; MLP; Neuro fuzzy; Regression analysis

Indexed keywords

FLOODS; LINEAR REGRESSION; NEURAL NETWORKS; REGRESSION ANALYSIS; TOPOLOGY; WATER MANAGEMENT;

EID: 84902475668     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-013-1443-6     Document Type: Article
Times cited : (185)

References (44)
  • 1
    • 33947572974 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff
    • Aqil M, Kita I, Yano A, Nishiyama S (2007) A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. J Hydrol 337: 22-34.
    • (2007) J Hydrol , vol.337 , pp. 22-34
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 2
    • 81155141234 scopus 로고    scopus 로고
    • ANFIS-based approach for predicting the scour depth at culvert outlets
    • Azamathulla HMD, Ab Ghani A (2011) ANFIS-based approach for predicting the scour depth at culvert outlets. ASCE J Pipeline Syst Eng Pract 2(1): 35-40.
    • (2011) ASCE J Pipeline Syst Eng Pract , vol.2 , Issue.1 , pp. 35-40
    • Azamathulla, H.M.D.1    Ab Ghani, A.2
  • 3
    • 42449132138 scopus 로고    scopus 로고
    • Estimation of peak streamflows through channel geometry
    • Bhatt VK, Tiwari AK (2008) Estimation of peak streamflows through channel geometry. Hydrol Sci J 53(2): 401-408.
    • (2008) Hydrol Sci J , vol.53 , Issue.2 , pp. 401-408
    • Bhatt, V.K.1    Tiwari, A.K.2
  • 4
    • 78650014065 scopus 로고    scopus 로고
    • Prediction of soil temperature using regression and artificial neural network models
    • Bilgili M (2010) Prediction of soil temperature using regression and artificial neural network models. Meteorol Atmos Phys 110: 59-70.
    • (2010) Meteorol Atmos Phys , vol.110 , pp. 59-70
    • Bilgili, M.1
  • 5
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in Yangtze River
    • Chau K, Wu C, Li Y (2005) Comparison of several flood forecasting models in Yangtze River. J Hydrol Eng 10(6): 485-491.
    • (2005) J Hydrol Eng , vol.10 , Issue.6 , pp. 485-491
    • Chau, K.1    Wu, C.2    Li, Y.3
  • 7
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson CW, Wilby R (1998) An artificial neural network approach to rainfall-runoff modeling. Hydrol Sci J 43(1): 47-66.
    • (1998) Hydrol Sci J , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 8
    • 69249127988 scopus 로고    scopus 로고
    • A comparison of low flow estimates in ungauged catchments using regional regression and the HBV-model
    • Engeland K, Hisdal H (2009) A comparison of low flow estimates in ungauged catchments using regional regression and the HBV-model. Water Resour Manag 23(12): 2567-2586.
    • (2009) Water Resour Manag , vol.23 , Issue.12 , pp. 2567-2586
    • Engeland, K.1    Hisdal, H.2
  • 9
    • 77955772140 scopus 로고    scopus 로고
    • A principal component regression method for estimating low flow index
    • Eslamian S, Ghasemizadeh M, Biabanaki M, Talebizadeh M (2010) A principal component regression method for estimating low flow index. Water Resour Manag 24(11): 2553-2566.
    • (2010) Water Resour Manag , vol.24 , Issue.11 , pp. 2553-2566
    • Eslamian, S.1    Ghasemizadeh, M.2    Biabanaki, M.3    Talebizadeh, M.4
  • 11
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3): 665-685.
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 13
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • Jang JSR, Sun CT (1995) Neuro-fuzzy modeling and control. Proc IEEE 83(3): 378-406.
    • (1995) Proc IEEE , vol.83 , Issue.3 , pp. 378-406
    • Jang, J.S.R.1    Sun, C.T.2
  • 14
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural network
    • Kisi O (2004) River flow modeling using artificial neural network. ASCE J Hydrol Eng 9(1): 60-63.
    • (2004) ASCE J Hydrol Eng , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 15
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • Kisi O (2007) Streamflow forecasting using different artificial neural network algorithms. ASCE J Hydrol Eng 12(5): 532-539.
    • (2007) ASCE J Hydrol Eng , vol.12 , Issue.5 , pp. 532-539
    • Kisi, O.1
  • 16
    • 41949142664 scopus 로고    scopus 로고
    • River flow forecasting and estimation using different artificial neural network techniques
    • Kisi O (2008) River flow forecasting and estimation using different artificial neural network techniques. Hydrol Res 39(1): 27-40.
    • (2008) Hydrol Res , vol.39 , Issue.1 , pp. 27-40
    • Kisi, O.1
  • 17
    • 84855232291 scopus 로고    scopus 로고
    • Intermittent streamflow forecasting by using several data driven techniques
    • Kisi O, Nia AM, Gosheh MG, Tajabadi MRJ, Ahmadi A (2012) Intermittent streamflow forecasting by using several data driven techniques. Water Resour Manag 26(2): 457-474.
    • (2012) Water Resour Manag , vol.26 , Issue.2 , pp. 457-474
    • Kisi, O.1    Nia, A.M.2    Gosheh, M.G.3    Tajabadi, M.R.J.4    Ahmadi, A.5
  • 18
    • 16444365723 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks comparison of network types
    • Kumar APS, Sudheer KP, Jain SK, Agarwal PK (2005) Rainfall-runoff modeling using artificial neural networks comparison of network types. Hydrol Process 19: 1277-1291.
    • (2005) Hydrol Process , vol.19 , pp. 1277-1291
    • Kumar, A.P.S.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 20
    • 0032051569 scopus 로고    scopus 로고
    • The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study
    • Maier HR, Dandy GC (1998) The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study. Environ Model Softw 13(2): 193-209.
    • (1998) Environ Model Softw , vol.13 , Issue.2 , pp. 193-209
    • Maier, H.R.1    Dandy, G.C.2
  • 21
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications
    • Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ Model Softw 15: 101-123.
    • (2000) Environ Model Softw , vol.15 , pp. 101-123
    • Maier, H.R.1    Dandy, G.C.2
  • 22
    • 79952738488 scopus 로고    scopus 로고
    • Predicting spatial distribution of snow water equivalent using multivariate non-linear regression and computational intelligence methods
    • Marofi S, Tabari H, Abyaneh HZ (2011) Predicting spatial distribution of snow water equivalent using multivariate non-linear regression and computational intelligence methods. Water Resour Manag 25: 1417-1435.
    • (2011) Water Resour Manag , vol.25 , pp. 1417-1435
    • Marofi, S.1    Tabari, H.2    Abyaneh, H.Z.3
  • 23
    • 57549095413 scopus 로고    scopus 로고
    • Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system technique
    • Moghaddamnia A, Ghafari Gousheh M, Piri J, Amin S, Han D (2009) Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system technique. Adv Water Resour 32(1): 88-97.
    • (2009) Adv Water Resour , vol.32 , Issue.1 , pp. 88-97
    • Moghaddamnia, A.1    Ghafari Gousheh, M.2    Piri, J.3    Amin, S.4    Han, D.5
  • 24
    • 3142538909 scopus 로고    scopus 로고
    • Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
    • Moradkhani H, Hsu K, Gupta HV, Sorooshian S (2004) Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J Hydrol 295(1-4): 246-262.
    • (2004) J Hydrol , vol.295 , Issue.1-4 , pp. 246-262
    • Moradkhani, H.1    Hsu, K.2    Gupta, H.V.3    Sorooshian, S.4
  • 25
    • 0001362410 scopus 로고
    • The Levenberg-Marquardt algorithm: implementation and theory, numerical analysis
    • G. A. Watson (Ed.), New York: Springer
    • More JJ (1977) The Levenberg-Marquardt algorithm: implementation and theory, numerical analysis. In: Watson GA (ed) Lecture notes in mathematics, vol 630. Springer, New York, pp 105-116.
    • (1977) Lecture Notes in Mathematics , vol.630 , pp. 105-116
    • More, J.J.1
  • 26
    • 66249107437 scopus 로고    scopus 로고
    • Flood forecasting using ANN, neuro-fuzzy, and neuro-GA Models
    • Mukerji A, Chatterjee C, Raghuwanshi N (2009) Flood forecasting using ANN, neuro-fuzzy, and neuro-GA Models. J Hydrol Eng 14(6): 647-652.
    • (2009) J Hydrol Eng , vol.14 , Issue.6 , pp. 647-652
    • Mukerji, A.1    Chatterjee, C.2    Raghuwanshi, N.3
  • 27
    • 67650293317 scopus 로고    scopus 로고
    • Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed
    • Mutlu E, Chaubey I, Hexmoor H, Bajwa SG (2008) Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrol Process 22(26): 5097-5106.
    • (2008) Hydrol Process , vol.22 , Issue.26 , pp. 5097-5106
    • Mutlu, E.1    Chaubey, I.2    Hexmoor, H.3    Bajwa, S.G.4
  • 28
    • 27744435513 scopus 로고    scopus 로고
    • A new approach for the prediction of ash fusion temperatures: a case study using Turkish lignites
    • Ozbayoglu G, Ozbayoglu ME (2006) A new approach for the prediction of ash fusion temperatures: a case study using Turkish lignites. Fuel 85: 545-552.
    • (2006) Fuel , vol.85 , pp. 545-552
    • Ozbayoglu, G.1    Ozbayoglu, M.E.2
  • 29
    • 77955735474 scopus 로고    scopus 로고
    • Daily outflow prediction by multi layer perceptron with logistic sigmoid and tangent sigmoid activation functions
    • Rezaeian Zadeh M, Amin S, Khalili D, Singh VP (2010) Daily outflow prediction by multi layer perceptron with logistic sigmoid and tangent sigmoid activation functions. Water Resour Manag 24(11): 2673-2688.
    • (2010) Water Resour Manag , vol.24 , Issue.11 , pp. 2673-2688
    • Rezaeian Zadeh, M.1    Amin, S.2    Khalili, D.3    Singh, V.P.4
  • 31
    • 84902487222 scopus 로고    scopus 로고
    • Comparison of artificial neural network models and non-linear regression methods for estimation of potato crop evapotranspiration in a semi-arid region of Iran
    • Nov 26-28, Kuala Lumpur, Malaysia
    • Sabziparvar A A, Tabari H (2010) Comparison of artificial neural network models and non-linear regression methods for estimation of potato crop evapotranspiration in a semi-arid region of Iran. In: The international conference on intelligent network and computing, Nov 26-28, Kuala Lumpur, Malaysia.
    • (2010) The International Conference On Intelligent Network and Computing
    • Sabziparvar, A.A.1    Tabari, H.2
  • 32
    • 78649378383 scopus 로고    scopus 로고
    • Mid-level synoptic analysis of flood-generating systems in South-west of Iran (case study: Dalaki watershed river basin)
    • Sabziparvar AA, Parandeh A, Lashkari H, Yazdanpanah H (2010) Mid-level synoptic analysis of flood-generating systems in South-west of Iran (case study: Dalaki watershed river basin). Nat Hazards Earth Syst Sci 10: 2269-2279. http://www. nat-hazards-earth-syst-sci. net/10/2269/2010/nhess-10-2269-2010. pdf.
    • (2010) Nat Hazards Earth Syst Sci , vol.10 , pp. 2269-2279
    • Sabziparvar, A.A.1    Parandeh, A.2    Lashkari, H.3    Yazdanpanah, H.4
  • 33
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modeling
    • Shamseldin AY (1997) Application of a neural network technique to rainfall-runoff modeling. J Hydrol 199: 272-294.
    • (1997) J Hydrol , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 34
    • 75149184952 scopus 로고    scopus 로고
    • Artificial neural network model for river flow forecasting in a developing country
    • Shamseldin AY (2010) Artificial neural network model for river flow forecasting in a developing country. J Hydroinform 12(1): 22-35.
    • (2010) J Hydroinform , vol.12 , Issue.1 , pp. 22-35
    • Shamseldin, A.Y.1
  • 35
    • 36248976674 scopus 로고    scopus 로고
    • Natural disasters, economic development, and humanitarian aid
    • Stromberg D (2007) Natural disasters, economic development, and humanitarian aid. J Econ Perspect 21(3): 199-222.
    • (2007) J Econ Perspect , vol.21 , Issue.3 , pp. 199-222
    • Stromberg, D.1
  • 36
    • 0037197571 scopus 로고    scopus 로고
    • A data driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer KP, Gosain AK, Ramasastri KS (2002) A data driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol Process 16(6): 1325-1330.
    • (2002) Hydrol Process , vol.16 , Issue.6 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 37
    • 77952883472 scopus 로고    scopus 로고
    • Comparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami basin of Iran
    • Tabari H, Marofi S, Abyaneh HZ, Sharifi MR (2010) Comparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami basin of Iran. Neural Comput Appl 19: 625-635.
    • (2010) Neural Comput Appl , vol.19 , pp. 625-635
    • Tabari, H.1    Marofi, S.2    Abyaneh, H.Z.3    Sharifi, M.R.4
  • 38
    • 77953692036 scopus 로고    scopus 로고
    • Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression
    • Tabari H, Marofi S, Sabziparvar AA (2010) Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrig Sci 28: 399-406.
    • (2010) Irrig Sci , vol.28 , pp. 399-406
    • Tabari, H.1    Marofi, S.2    Sabziparvar, A.A.3
  • 39
    • 78650738248 scopus 로고    scopus 로고
    • Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region
    • Tabari H, Sabziparvar AA, Ahmadi M (2011) Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region. Meteorol Atmos Phys 110: 135-142.
    • (2011) Meteorol Atmos Phys , vol.110 , pp. 135-142
    • Tabari, H.1    Sabziparvar, A.A.2    Ahmadi, M.3
  • 40
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar AS, Johnson A (1999) Rainfall-runoff modeling using artificial neural networks. ASCE J Hydrol Eng 4(3): 232-239.
    • (1999) ASCE J Hydrol Eng , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, A.2
  • 41
    • 0033080872 scopus 로고    scopus 로고
    • Flood discharge estimation from river channel dimensions: results of applications in Java, Burundi, Ghana and Tanzania
    • Wharton G, Tomlinson JJ (1999) Flood discharge estimation from river channel dimensions: results of applications in Java, Burundi, Ghana and Tanzania. Hydrol Sci J 44(1): 1-17.
    • (1999) Hydrol Sci J , vol.44 , Issue.1 , pp. 1-17
    • Wharton, G.1    Tomlinson, J.J.2
  • 42
    • 0002919951 scopus 로고
    • Progress and directions in rainfall-runoff modeling
    • A. J. Jakeman, M. B. Beck, and M. J. McAleer (Eds.), Chichester: Wiley
    • Wheater HS, Jakeman AJ, Beven KJ (1993) Progress and directions in rainfall-runoff modeling. In: Jakeman AJ, Beck MB, McAleer MJ (eds) Modelling change in environmental systems. Wiley, Chichester.
    • (1993) Modelling Change in Environmental Systems
    • Wheater, H.S.1    Jakeman, A.J.2    Beven, K.J.3
  • 43
    • 77953342831 scopus 로고    scopus 로고
    • Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting
    • Yonaba H, Anctil F, Fortin V (2010) Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting. ASCE J Hydrol Eng 15(4): 275-283.
    • (2010) ASCE J Hydrol Eng , vol.15 , Issue.4 , pp. 275-283
    • Yonaba, H.1    Anctil, F.2    Fortin, V.3
  • 44
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3): 338-353.
    • (1965) Inf Control , vol.8 , Issue.3 , pp. 338-353
    • Zadeh, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.