메뉴 건너뛰기




Volumn 5, Issue 3, 2014, Pages 339-367

Comparative analysis on margin based feature selection algorithms

Author keywords

Classification learning; Feature selection; Margin; Robustness; Search strategy

Indexed keywords

FEATURE EXTRACTION; FUNCTION EVALUATION; ROBUSTNESS (CONTROL SYSTEMS);

EID: 84901359435     PISSN: 18688071     EISSN: 1868808X     Source Type: Journal    
DOI: 10.1007/s13042-013-0164-6     Document Type: Article
Times cited : (9)

References (65)
  • 1
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash M, Liu H (1997) Feature selection for classification. Intell Data Anal 1: 131-156.
    • (1997) Intell Data Anal , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 3
    • 79952313704 scopus 로고    scopus 로고
    • Genetic Algorithm-Neural Network (GANN): a study of neural network activation functions and depth of genetic algorithm search applied to feature selection
    • Tong DL, Mintram R (2010) Genetic Algorithm-Neural Network (GANN): a study of neural network activation functions and depth of genetic algorithm search applied to feature selection. Int J Mach Learn Cybern 1(1-4): 75-87.
    • (2010) Int J Mach Learn Cybern , vol.1 , Issue.1-4 , pp. 75-87
    • Tong, D.L.1    Mintram, R.2
  • 4
    • 80051989247 scopus 로고    scopus 로고
    • Classifying cognitive states of brain activity via one-class neural networks with feature selection by genetic algorithms
    • Boehm O, Hardoon DR, Manevitz LM (2011) Classifying cognitive states of brain activity via one-class neural networks with feature selection by genetic algorithms. Int J Mach Learn Cybern 2(3): 125-134.
    • (2011) Int J Mach Learn Cybern , vol.2 , Issue.3 , pp. 125-134
    • Boehm, O.1    Hardoon, D.R.2    Manevitz, L.M.3
  • 5
    • 84868119274 scopus 로고    scopus 로고
    • Null space based feature selection method for gene expression data
    • Sharma A, Imoto S, Miyano S, Sharma V (2012) Null space based feature selection method for gene expression data. Int J Mach Learn Cybern 3(4): 269-276.
    • (2012) Int J Mach Learn Cybern , vol.3 , Issue.4 , pp. 269-276
    • Sharma, A.1    Imoto, S.2    Miyano, S.3    Sharma, V.4
  • 6
    • 63749121988 scopus 로고    scopus 로고
    • Margin-based feature selection for hyperspectral data
    • Pal M (2009) Margin-based feature selection for hyperspectral data. Int J Appl Earth Observ Geoinf 11: 212-220.
    • (2009) IntJ Appl Earth Observ Geoinf , vol.11 , pp. 212-220
    • Pal, M.1
  • 8
    • 42949143535 scopus 로고    scopus 로고
    • Fault detection and identification with a new feature selection based on mutual information
    • Verron S, Tiplica T, Kobi A (2008) Fault detection and identification with a new feature selection based on mutual information. J Process Control 5: 479-490.
    • (2008) J Process Control , vol.5 , pp. 479-490
    • Verron, S.1    Tiplica, T.2    Kobi, A.3
  • 11
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • Dash M, Liu H (2003) Consistency-based search in feature selection. Artif Intell 11: 155-176.
    • (2003) Artif Intell , vol.11 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 12
    • 67149088596 scopus 로고    scopus 로고
    • Improving generalization of fuzzy if-then rules by maximizing fuzzy entropy
    • Wang X, Dong C (2009) Improving generalization of fuzzy if-then rules by maximizing fuzzy entropy. IEEE Trans Fuzzy Syst 17(3): 556-567.
    • (2009) IEEE Trans Fuzzy Syst , vol.17 , Issue.3 , pp. 556-567
    • Wang, X.1    Dong, C.2
  • 13
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27: 1226-1238.
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 14
    • 12144251725 scopus 로고    scopus 로고
    • Effective feature selection scheme using mutual information
    • Huang D, Chow TWS (2005) Effective feature selection scheme using mutual information. Neurocomputing 63: 325-343.
    • (2005) Neurocomputing , vol.63 , pp. 325-343
    • Huang, D.1    Chow, T.W.S.2
  • 15
    • 0001765951 scopus 로고    scopus 로고
    • A direct LDA algorithm for high-dimensional data-with application to face recognition
    • Yu H, Yang J (2001) A direct LDA algorithm for high-dimensional data-with application to face recognition. Pattern Recognit 34: 2067-2070.
    • (2001) Pattern Recognit , vol.34 , pp. 2067-2070
    • Yu, H.1    Yang, J.2
  • 16
    • 0019608020 scopus 로고
    • On an extended Fisher criterion for feature selection
    • Witold M (1981) On an extended Fisher criterion for feature selection. IEEE Trans Pattern Anal Mach Intell 5: 611-614.
    • (1981) IEEE Trans Pattern Anal Mach Intell , vol.5 , pp. 611-614
    • Witold, M.1
  • 17
    • 80053240887 scopus 로고    scopus 로고
    • Kernelized fuzzy rough sets and their applications
    • Hu Q, Yu D, Pedrycz W, Chen D (2011) Kernelized fuzzy rough sets and their applications. IEEE Trans Knowl Data Eng 11: 1649-1667.
    • (2011) IEEE Trans Knowl Data Eng , vol.11 , pp. 1649-1667
    • Hu, Q.1    Yu, D.2    Pedrycz, W.3    Chen, D.4
  • 18
    • 79954417238 scopus 로고    scopus 로고
    • Boundary instance selection based on neighborhood model
    • He Q, Xie Z, Hu Q, Wu C (2011) Boundary instance selection based on neighborhood model. Neurocomputing 10: 1585-1594.
    • (2011) Neurocomputing , vol.10 , pp. 1585-1594
    • He, Q.1    Xie, Z.2    Hu, Q.3    Wu, C.4
  • 19
    • 84863463582 scopus 로고    scopus 로고
    • Maximum ambiguity based sample selection in fuzzy decision tree induction
    • Wang X, Dong L, Yan J (2012) Maximum ambiguity based sample selection in fuzzy decision tree induction. IEEE Trans Knowl Data Eng 24(8): 1491-1505.
    • (2012) IEEE Trans Knowl Data Eng , vol.24 , Issue.8 , pp. 1491-1505
    • Wang, X.1    Dong, L.2    Yan, J.3
  • 20
    • 45649085354 scopus 로고    scopus 로고
    • Induction of multiple fuzzy decision trees based on rough set technique
    • Wang X, Zhai J, Lu S (2008) Induction of multiple fuzzy decision trees based on rough set technique. Inf Sci 178(16): 3188-3202.
    • (2008) Inf Sci , vol.178 , Issue.16 , pp. 3188-3202
    • Wang, X.1    Zhai, J.2    Lu, S.3
  • 21
    • 84890447445 scopus 로고    scopus 로고
    • Variable selection using SVM-based criteria
    • Rakotomamonjy A (2003) Variable selection using SVM-based criteria. J Mach Learn Res 3: 1357-1370.
    • (2003) J Mach Learn Res , vol.3 , pp. 1357-1370
    • Rakotomamonjy, A.1
  • 23
    • 34247622378 scopus 로고    scopus 로고
    • Iterative RELIEF for feature weighting: algorithms, theories, and applications
    • Sun Y. (2007) Iterative RELIEF for feature weighting: algorithms, theories, and applications. IEEE Trans Pattern Anal Mach Intell 6: 1-17.
    • (2007) IEEE Trans Pattern Anal Mach Intell , vol.6 , pp. 1-17
    • Sun, Y.1
  • 25
    • 0002094343 scopus 로고    scopus 로고
    • Generalization performance of support vector machines and other pattern classifiers
    • MIT Press, Cambridge
    • Bartlett PL, Shawe-Taylor J (1999) Generalization performance of support vector machines and other pattern classifiers. In: Advances in Kernel methods: support vector learning. MIT Press, Cambridge, pp 43-54.
    • (1999) Advances in Kernel methods: Support vector learning , pp. 43-54
    • Bartlett, P.L.1    Shawe-Taylor, J.2
  • 26
    • 67349250195 scopus 로고    scopus 로고
    • Feature selection based on loss-margin of nearest neighbor classification
    • Li Y, Lu B (2009) Feature selection based on loss-margin of nearest neighbor classification. Pattern Recognit 42: 1914-1921.
    • (2009) Pattern Recognit , vol.42 , pp. 1914-1921
    • Li, Y.1    Lu, B.2
  • 27
    • 70349303676 scopus 로고    scopus 로고
    • Large margin feature weighting method via linear programming
    • Chen B, Liu H, Chai J, Bao Z (2009) Large margin feature weighting method via linear programming. IEEE Trans Knowl Data Eng 10: 1475-1486.
    • (2009) IEEE Trans Knowl Data Eng , vol.10 , pp. 1475-1486
    • Chen, B.1    Liu, H.2    Chai, J.3    Bao, Z.4
  • 28
    • 78650231105 scopus 로고    scopus 로고
    • Large-margin nearest neighbor classifiers via sample weight learning
    • Hu Q, Zhu P, Yang Y, Yu D (2011) Large-margin nearest neighbor classifiers via sample weight learning. Neurocomputing 7: 656-660.
    • (2011) Neurocomputing , vol.7 , pp. 656-660
    • Hu, Q.1    Zhu, P.2    Yang, Y.3    Yu, D.4
  • 30
    • 65349190055 scopus 로고    scopus 로고
    • On surrogate loss functions and f-divergences
    • Nguyen X, Wainwright MJ, Jordan MI (2009) On surrogate loss functions and f-divergences. Ann Stat 2: 876-904.
    • (2009) Ann Stat , vol.2 , pp. 876-904
    • Nguyen, X.1    Wainwright, M.J.2    Jordan, M.I.3
  • 31
    • 50849110153 scopus 로고    scopus 로고
    • Analysis of boosting algorithms using the smooth margin function
    • Rudin C, Schapire RE, Daubechies I (2007) Analysis of boosting algorithms using the smooth margin function. Ann Stat 6: 2723-2768.
    • (2007) Ann Stat , vol.6 , pp. 2723-2768
    • Rudin, C.1    Schapire, R.E.2    Daubechies, I.3
  • 32
    • 0035371148 scopus 로고    scopus 로고
    • An adaptive version of the boost by majority algorithm
    • Freund Y (2001) An adaptive version of the boost by majority algorithm. Int Conf Mach Learn 43: 293-318.
    • (2001) Int Conf Mach Learn , vol.43 , pp. 293-318
    • Freund, Y.1
  • 33
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Friedman JH, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28: 337-407.
    • (2000) Ann Stat , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 34
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Knowl Discov Data Min 2: 121-167.
    • (1998) Knowl Discov Data Min , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 38
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting (with discussion)
    • Friedman JH, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting (with discussion). Ann Stat 28: 337-407.
    • (2000) Ann Stat , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 39
    • 1542680908 scopus 로고    scopus 로고
    • Margin maximization with feed-forward neural networks: a comparative study with SVM and AdaBoost
    • Romero E, Marquez L, Carreras X (2004) Margin maximization with feed-forward neural networks: a comparative study with SVM and AdaBoost. Neurocomputing 57: 313-344.
    • (2004) Neurocomputing , vol.57 , pp. 313-344
    • Romero, E.1    Marquez, L.2    Carreras, X.3
  • 41
    • 84901351454 scopus 로고    scopus 로고
    • Automatic feature extraction via weighted Kernels and regularization
    • (to appear)
    • Allen GI (2012) Automatic feature extraction via weighted Kernels and regularization. J Comput Graph Stat (to appear).
    • (2012) J Comput Graph Stat
    • Allen, G.I.1
  • 42
    • 40249089904 scopus 로고    scopus 로고
    • Stepwise feature selection using generalized logistic loss
    • Parka C, Koob JY, Kimc PT, Leeb JW (2008) Stepwise feature selection using generalized logistic loss. Comput Stat Data Anal 52(7): 3709-3718.
    • (2008) Comput Stat Data Anal , vol.52 , Issue.7 , pp. 3709-3718
    • Parka, C.1    Koob, J.Y.2    Kimc, P.T.3    Leeb, J.W.4
  • 43
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Weinberger KQ, Blitzer J, Saul LK (2009) Distance metric learning for large margin nearest neighbor classification. J Mach Learn Res 10: 207-244.
    • (2009) J Mach Learn Res , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Blitzer, J.2    Saul, L.K.3
  • 45
    • 64149088421 scopus 로고    scopus 로고
    • On the consistency of feature selection using Greedy least squares regression
    • Zhang T (2009) On the consistency of feature selection using Greedy least squares regression. J Mach Learn Res 10: 555-568.
    • (2009) J Mach Learn Res , vol.10 , pp. 555-568
    • Zhang, T.1
  • 48
    • 50649114155 scopus 로고    scopus 로고
    • Gradient feature selection for online boosting
    • Gen. Electr, Global Res. Niskayuna
    • Liu X, Yu T, Gen. Electr, Global Res. Niskayuna (2007) Gradient feature selection for online boosting. IEEE 11th international conference on computer vision, pp 1-8.
    • (2007) IEEE 11th international conference on computer vision , pp. 1-8
    • Liu, X.1    Yu, T.2
  • 49
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos P, Pazzani M (1997) On the optimality of the simple Bayesian classifier under zero-one loss. Mach Learn 29: 103-130.
    • (1997) Mach Learn , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 50
    • 0001868572 scopus 로고    scopus 로고
    • Text categorization based on regularized linear classification methods
    • Zhang T, Oles FJ (2001) Text categorization based on regularized linear classification methods. Inf Retriev 4: 5-31.
    • (2001) Inf Retriev , vol.4 , pp. 5-31
    • Zhang, T.1    Oles, F.J.2
  • 51
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2: 121-167.
    • (1998) Data Min Knowl Discov , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 52
    • 0035479871 scopus 로고    scopus 로고
    • SSVM: a smooth support vector machine for classification
    • Lee Y-J, Mangasarian OL (2001) SSVM: a smooth support vector machine for classification. Comput Optim Appl 1: 320-344.
    • (2001) Comput Optim Appl , vol.1 , pp. 320-344
    • Lee, Y.-J.1    Mangasarian, O.L.2
  • 55
    • 77956456333 scopus 로고    scopus 로고
    • Sparse ensembles using weighted combination methods based on linear programming
    • Zhang L, Zhou WD (2011) Sparse ensembles using weighted combination methods based on linear programming. Pattern Recognit 1: 97-106.
    • (2011) Pattern Recognit , vol.1 , pp. 97-106
    • Zhang, L.1    Zhou, W.D.2
  • 57
    • 1942418470 scopus 로고    scopus 로고
    • Grafting: fast incremental feature selection by gradient descent in function space
    • Perkins S, Lacker K, Theiler J (2003) Grafting: fast incremental feature se- lection by gradient descent in function space. J Mach Learn Res 3: 1333-1356.
    • (2003) J Mach Learn Res , vol.3 , pp. 1333-1356
    • Perkins, S.1    Lacker, K.2    Theiler, J.3
  • 61
    • 0034680102 scopus 로고    scopus 로고
    • Molecular portraits of human breast tumours
    • Perou CM, Solie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406: 747-752.
    • (2000) Nature , vol.406 , pp. 747-752
    • Perou, C.M.1    Solie, T.2    Eisen, M.B.3
  • 62
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • Alizadeh A et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 405: 503-511.
    • (2000) Nature , vol.405 , pp. 503-511
    • Alizadeh, A.1
  • 63
    • 18544365698 scopus 로고    scopus 로고
    • Gene-expression profiles predict survival of patients with lung adenocarcinoma
    • Beer DG, Kardia SLR, Huang CC et al (2008) Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 8: 816-824.
    • (2008) Nat Med , vol.8 , pp. 816-824
    • Beer, D.G.1    Kardia, S.L.R.2    Huang, C.C.3
  • 64
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    • Khan J, Weil JS, Ringner M, Saall LH, Ladanyi M et al (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7: 673-679.
    • (2001) Nat Med , vol.7 , pp. 673-679
    • Khan, J.1    Weil, J.S.2    Ringner, M.3    Saall, L.H.4    Ladanyi, M.5
  • 65
    • 84992726552 scopus 로고
    • Estimating attributes: analysis and extensions of RELIEF
    • Kononenko I (1994) Estimating attributes: analysis and extensions of RELIEF. Eur Conf Mach Learn, 171-182.
    • (1994) Eur Conf Mach Learn , pp. 171-182
    • Kononenko, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.