메뉴 건너뛰기




Volumn 74, Issue 10, 2011, Pages 1585-1594

Neighborhood based sample and feature selection for SVM classification learning

Author keywords

Feature selection; Neighborhood relation; Rough set; Sample selection; Support vector machine

Indexed keywords

BOUNDARY SAMPLES; CLASSIFICATION ALGORITHM; CLASSIFICATION PERFORMANCE; DECISION BOUNDARY; FEATURE SELECTION; FEATURE SUBSPACE; GENERALIZATION ABILITY; IMPROVING LEARNING; INPUT FEATURES; LEARNING SAMPLES; LEARNING TASKS; NEIGHBORHOOD RELATION; OPTIMAL CLASSIFICATION; POSITIVE REGION; ROUGH SET; ROUGH SET MODELS; SAMPLE SELECTION; SAMPLE SPACE; SUPPORT VECTOR; SVM CLASSIFICATION; TRAINING SAMPLE; TRAINING TIME;

EID: 79954417238     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.01.019     Document Type: Article
Times cited : (57)

References (38)
  • 1
    • 84950251817 scopus 로고    scopus 로고
    • SVM-KM: Speeding SVMs learning with a priori cluster selection and k-means, in: Proceedings of the Sixth Brazilian Symposium on Neural Networks
    • M.B. Almeida, A. Braga, J.P. Braga, SVM-KM: Speeding SVMs learning with a priori cluster selection and k-means, in: Proceedings of the Sixth Brazilian Symposium on Neural Networks, 2000, pp. 162-167.
    • (2000) , pp. 162-167
    • Almeida, M.B.1    Braga A.Braga, J.P.2
  • 2
    • 0043234660 scopus 로고    scopus 로고
    • Variable precision rough set theory and data discretisation: an application to corporate failure prediction
    • Beynon M., Peel M.J. Variable precision rough set theory and data discretisation: an application to corporate failure prediction. Omega 2001, 29:561-576.
    • (2001) Omega , vol.29 , pp. 561-576
    • Beynon, M.1    Peel, M.J.2
  • 3
    • 0035502119 scopus 로고    scopus 로고
    • Reducts within the variable precision rough sets model: a further investigation
    • Beynon M. Reducts within the variable precision rough sets model: a further investigation. European Journal of Operational Research 2001, 134:592-605.
    • (2001) European Journal of Operational Research , vol.134 , pp. 592-605
    • Beynon, M.1
  • 4
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 1998, 2:121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 6
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • Dash M., Liu H. Consistency-based search in feature selection. Artificial Intelligence 2003, 151:155-176.
    • (2003) Artificial Intelligence , vol.151 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 7
    • 33646495490 scopus 로고    scopus 로고
    • Binary tree of SVM: a new fast multiclass training and classification algorithm
    • Fei B., Liu J.B. Binary tree of SVM: a new fast multiclass training and classification algorithm. IEEE Transactions on Neural Networks 2006, 17:696-704.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , pp. 696-704
    • Fei, B.1    Liu, J.B.2
  • 8
    • 0344235442 scopus 로고    scopus 로고
    • Feature selection for support vector machines by means of genetic algorithms, in: Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence
    • H. Fröhlich, O. Chapelle, B. Schölkopf, Feature selection for support vector machines by means of genetic algorithms, in: Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, 2003.
    • (2003)
    • Fröhlich, H.1    Chapelle, O.2    Schölkopf, B.3
  • 9
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., et al. Gene selection for cancer classification using support vector machines. Machine Learning 2002, 46:389-422.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3
  • 13
    • 32644440353 scopus 로고    scopus 로고
    • Information-preserving hybrid data reduction based on fuzzy-rough techniques
    • Hu Q.H., Yu D.R., Xie Z.X. Information-preserving hybrid data reduction based on fuzzy-rough techniques. Pattern Recognition Letters 2006, 27:414-423.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 414-423
    • Hu, Q.H.1    Yu, D.R.2    Xie, Z.X.3
  • 14
    • 0002714543 scopus 로고    scopus 로고
    • Making large scale support vector machine learning practical
    • MIT Press, Cambridge, MA
    • Joachims T. Making large scale support vector machine learning practical. Advances in Kernel Methods: Support Vector Machines 1999, MIT Press, Cambridge, MA, pp. 169-184.
    • (1999) Advances in Kernel Methods: Support Vector Machines , pp. 169-184
    • Joachims, T.1
  • 15
    • 15944402058 scopus 로고    scopus 로고
    • Reducing the number of training samples for fast support vector machine classification
    • Koggalage R., Halgamuge S. Reducing the number of training samples for fast support vector machine classification. Neural Information Processing 2004, 2(3):57-65.
    • (2004) Neural Information Processing , vol.2 , Issue.3 , pp. 57-65
    • Koggalage, R.1    Halgamuge, S.2
  • 16
    • 79954425104 scopus 로고    scopus 로고
    • RSVM: Reduced Support Vector Machines, Data Mining Institute Technical Report 00-07, July, 2000, in: Proceedings of the First SIAM International Conference on Data Mining, Chicago
    • Y.J. Lee, O.L. Mangasarian, RSVM: Reduced Support Vector Machines, Data Mining Institute Technical Report 00-07, July, 2000, in: Proceedings of the First SIAM International Conference on Data Mining, Chicago, 2001.
    • (2001)
    • Lee, Y.J.1    Mangasarian, O.L.2
  • 18
    • 79954414943 scopus 로고    scopus 로고
    • Neighborhood systems and relational database, in: Proceedings of 1988 ACM 16th Annual Computer Science Conference
    • T.Y. Lin, Neighborhood systems and relational database, in: Proceedings of 1988 ACM 16th Annual Computer Science Conference, 1998, pp. 23-25.
    • (1998) , pp. 23-25
    • Lin, T.Y.1
  • 19
    • 0001225112 scopus 로고    scopus 로고
    • Neighborhood systems-a qualitative theory for fuzzy and rough sets, in: P. Wang (Ed.), Advances in machine intelligence and soft computing
    • T.Y. Lin, Neighborhood systems-a qualitative theory for fuzzy and rough sets, in: P. Wang (Ed.), Advances in machine intelligence and soft computing, vol. 4, 1997, pp. 132-155.
    • (1997) , vol.4 , pp. 132-155
    • Lin, T.Y.1
  • 20
    • 0001225112 scopus 로고    scopus 로고
    • Neighborhood systems-application to qualitative fuzzy and rough sets, in: P. Wang (Ed.), Advances in Machine Intelligence and Soft-Computing
    • T.Y. Lin, Neighborhood systems-application to qualitative fuzzy and rough sets, in: P. Wang (Ed.), Advances in Machine Intelligence and Soft-Computing, 1997 pp. 132-155.
    • (1997) , pp. 132-155
    • Lin, T.Y.1
  • 23
    • 30044438683 scopus 로고    scopus 로고
    • Combined SVM-based feature selection and classification
    • Neumann J., Schnorr C., Steidl G. Combined SVM-based feature selection and classification. Machine Learning 2005, 61:129-150.
    • (2005) Machine Learning , vol.61 , pp. 129-150
    • Neumann, J.1    Schnorr, C.2    Steidl, G.3
  • 24
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge, MA
    • Platt J.C. Fast training of support vector machines using sequential minimal optimization. Adv. Kernel Methods: Support Vector Machines 1999, MIT Press, Cambridge, MA, pp. 185-208.
    • (1999) Adv. Kernel Methods: Support Vector Machines , pp. 185-208
    • Platt, J.C.1
  • 25
    • 32544451454 scopus 로고    scopus 로고
    • Support vector machine for functional data classification
    • Rossi F., Villa N. Support vector machine for functional data classification. Neurocomputing 2006, 69:730-742.
    • (2006) Neurocomputing , vol.69 , pp. 730-742
    • Rossi, F.1    Villa, N.2
  • 26
    • 17644437641 scopus 로고    scopus 로고
    • Advanced support vector machines and kernel methods
    • Sanchez V.D. Advanced support vector machines and kernel methods. Neurocomputing 2003, 55:5-20.
    • (2003) Neurocomputing , vol.55 , pp. 5-20
    • Sanchez, V.D.1
  • 27
    • 85118436573 scopus 로고
    • Extracting support data for a given task, in: Proceedings of First International Conference on Knowledge Discovery and Data Mining. AAAI press, Menlo Park, CA
    • B. Scholkopf, C. Burges, V. Vapnik, Extracting support data for a given task, in: Proceedings of First International Conference on Knowledge Discovery and Data Mining. AAAI press, Menlo Park, CA, 1995, pp. 252-257.
    • (1995) , pp. 252-257
    • Scholkopf, B.1    Burges, C.2    Vapnik, V.3
  • 28
    • 7444235468 scopus 로고    scopus 로고
    • Fast pattern selection for support vector classifiers, in: Proceedings. of the Seventh Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Lecture Notes in Artificial Intelligence (LNAI 2637), Seoul, Korea
    • H. Shin, S. Cho, Fast pattern selection for support vector classifiers, in: Proceedings. of the Seventh Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Lecture Notes in Artificial Intelligence (LNAI 2637), Seoul, Korea, 2003, pp. 376-387.
    • (2003) , pp. 376-387
    • Shin, H.1    Cho, S.2
  • 29
    • 15944383412 scopus 로고    scopus 로고
    • Invariance of neighborhood relation under input space to feature space mapping
    • Shin H., Cho S. Invariance of neighborhood relation under input space to feature space mapping. Pattern Recognition Letters 2005, 26:707-718.
    • (2005) Pattern Recognition Letters , vol.26 , pp. 707-718
    • Shin, H.1    Cho, S.2
  • 31
    • 0036825901 scopus 로고    scopus 로고
    • Modified support vector machines in financial time series forecasting
    • Tay F.E.H., Cao L.J. Modified support vector machines in financial time series forecasting. Neurocomputing 2002, 48:847-861.
    • (2002) Neurocomputing , vol.48 , pp. 847-861
    • Tay, F.E.H.1    Cao, L.J.2
  • 32
    • 23044525572 scopus 로고    scopus 로고
    • Scaling kernel-based systems to large data sets
    • Tresp V. Scaling kernel-based systems to large data sets. Data Mining and Knowledge Discovery 2001, 5:197-211.
    • (2001) Data Mining and Knowledge Discovery , vol.5 , pp. 197-211
    • Tresp, V.1
  • 34
    • 0036646071 scopus 로고    scopus 로고
    • Neighborhood operator systems and approximations
    • Wu W.Z., Zhang W.X. Neighborhood operator systems and approximations. Information Sciences 2002, 144:201-217.
    • (2002) Information Sciences , vol.144 , pp. 201-217
    • Wu, W.Z.1    Zhang, W.X.2
  • 35
    • 0032204205 scopus 로고    scopus 로고
    • Relational interpretations of neighborhood operators and rough set approximation operators
    • Yao Y.Y. Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences 1998, 111:239-259.
    • (1998) Information Sciences , vol.111 , pp. 239-259
    • Yao, Y.Y.1
  • 36
    • 33748157879 scopus 로고    scopus 로고
    • Neighborhood systems and approximate retrieval
    • Yao Y.Y. Neighborhood systems and approximate retrieval. Information Sciences 2006, 176:3431-3452.
    • (2006) Information Sciences , vol.176 , pp. 3431-3452
    • Yao, Y.Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.