메뉴 건너뛰기




Volumn 17, Issue 3, 2009, Pages 556-567

Improving generalization of fuzzy IF-THEN rules by maximizing fuzzy entropy

Author keywords

Classification; Fuzzy entropy; Fuzzy IF THEN rules; Maximum entropy principle; Parametric fuzzy IF THEN rules; Rule based reasoning

Indexed keywords

CLASSIFICATION; FUZZY ENTROPY; FUZZY IF-THEN RULES; MAXIMUM ENTROPY PRINCIPLE; PARAMETRIC FUZZY IF--THEN RULES; RULE-BASED REASONING;

EID: 67149088596     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2008.924342     Document Type: Article
Times cited : (205)

References (49)
  • 2
    • 0002197262 scopus 로고
    • Distributed representation of fuzzy rules and its application to pattern classification
    • Nov
    • H. Ishibuchi, K. Nozaki, and H. Tanaka, "Distributed representation of fuzzy rules and its application to pattern classification," Fuzzy Sets Syst., vol. 52, no. 1, pp. 21-32, Nov. 1992.
    • (1992) Fuzzy Sets Syst , vol.52 , Issue.1 , pp. 21-32
    • Ishibuchi, H.1    Nozaki, K.2    Tanaka, H.3
  • 3
    • 0029242750 scopus 로고
    • A method for fuzzy rules extraction directly from numerical data and its application to pattern classification
    • Feb
    • S. Abe and M.-S. Lan, "A method for fuzzy rules extraction directly from numerical data and its application to pattern classification," IEEE Trans. Fuzzy Syst., vol. 3, no. 1, pp. 18-28, Feb. 1995.
    • (1995) IEEE Trans. Fuzzy Syst , vol.3 , Issue.1 , pp. 18-28
    • Abe, S.1    Lan, M.-S.2
  • 4
    • 0000864293 scopus 로고    scopus 로고
    • A simple but powerful heuristic method for generating fuzzy rules from numerical data
    • Mar
    • K. Nozaki, H. Ishibuchi, and H. Tanaka, "A simple but powerful heuristic method for generating fuzzy rules from numerical data," Fuzzy Sets Syst., vol. 86, no. 3, pp. 251-270, Mar. 1997.
    • (1997) Fuzzy Sets Syst , vol.86 , Issue.3 , pp. 251-270
    • Nozaki, K.1    Ishibuchi, H.2    Tanaka, H.3
  • 5
    • 0035501962 scopus 로고    scopus 로고
    • A new approach to fuzzy rule generation: Fuzzy extension matrix
    • Nov
    • X.-Z. Wang, Y.-D. Wang, X.-F. Xu, W.-D. Ling, and D.-S. Yeung, "A new approach to fuzzy rule generation: Fuzzy extension matrix," Fuzzy Sets Syst., vol. 123, no. 3, pp. 291-306, Nov. 2001.
    • (2001) Fuzzy Sets Syst , vol.123 , Issue.3 , pp. 291-306
    • Wang, X.-Z.1    Wang, Y.-D.2    Xu, X.-F.3    Ling, W.-D.4    Yeung, D.-S.5
  • 6
    • 9244258580 scopus 로고    scopus 로고
    • Extracting fuzzy if-then rules by using the information matrix technique
    • Feb
    • C. Huang and C. Moraga, "Extracting fuzzy if-then rules by using the information matrix technique," J. Comput. Syst. Sci., vol. 70, no. 1, pp. 26-52, Feb. 2005.
    • (2005) J. Comput. Syst. Sci , vol.70 , Issue.1 , pp. 26-52
    • Huang, C.1    Moraga, C.2
  • 7
    • 0000868331 scopus 로고
    • Induction of fuzzy decision trees
    • Jan
    • Y. Yuan and M. Shaw, "Induction of fuzzy decision trees," Fuzzy Sets Syst., vol. 69, no. 2, pp. 125-139, Jan. 1995.
    • (1995) Fuzzy Sets Syst , vol.69 , Issue.2 , pp. 125-139
    • Yuan, Y.1    Shaw, M.2
  • 8
    • 0035310168 scopus 로고    scopus 로고
    • A comparative study on heuristic algorithms for generating fuzzy decision trees
    • Apr
    • X.-Z. Wang, E.-C.-C. Tsang, and D.-S. Yeung, "A comparative study on heuristic algorithms for generating fuzzy decision trees," IEEE Trans. Syst., Man, Cybern., B, vol. 31, no. 2, pp. 215-226, Apr. 2001.
    • (2001) IEEE Trans. Syst., Man, Cybern., B , vol.31 , Issue.2 , pp. 215-226
    • Wang, X.-Z.1    Tsang, E.-C.-C.2    Yeung, D.-S.3
  • 9
    • 0030576819 scopus 로고    scopus 로고
    • Learning fuzzy rules and approximate reasoning in fuzzy neural networks and hybrid systems
    • Sep
    • N. Kasabov, "Learning fuzzy rules and approximate reasoning in fuzzy neural networks and hybrid systems," Fuzzy Sets Syst., vol. 82, no. 2, pp. 135-149, Sep. 1996.
    • (1996) Fuzzy Sets Syst , vol.82 , Issue.2 , pp. 135-149
    • Kasabov, N.1
  • 10
    • 0001703957 scopus 로고    scopus 로고
    • A neuro-fuzzy method to learn fuzzy classification rules from data
    • Aug
    • D. Nauck and R. Kruse, "A neuro-fuzzy method to learn fuzzy classification rules from data," Fuzzy Sets Syst., vol. 89, no. 3, pp. 77-288, Aug. 1997.
    • (1997) Fuzzy Sets Syst , vol.89 , Issue.3 , pp. 77-288
    • Nauck, D.1    Kruse, R.2
  • 11
    • 0034294201 scopus 로고    scopus 로고
    • Improving learning accuracy of fuzzy decision trees by hybrid neural networks
    • Oct
    • E.-C.-C. Tsang, X.-Z. Wang, and D.-S. Yeung, "Improving learning accuracy of fuzzy decision trees by hybrid neural networks," IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 601-614, Oct. 2000.
    • (2000) IEEE Trans. Fuzzy Syst , vol.8 , Issue.5 , pp. 601-614
    • Tsang, E.-C.-C.1    Wang, X.-Z.2    Yeung, D.-S.3
  • 12
    • 0029243916 scopus 로고
    • A neural network based fuzzy classifier
    • Feb
    • V. Uebele, S. Abe, and M.-S. Lan, "A neural network based fuzzy classifier," IEEE Trans. Syst., Man, Cybern., vol. 25, no. 2, pp. 353-361, Feb. 1995.
    • (1995) IEEE Trans. Syst., Man, Cybern , vol.25 , Issue.2 , pp. 353-361
    • Uebele, V.1    Abe, S.2    Lan, M.-S.3
  • 13
    • 0029254092 scopus 로고
    • Improving classification performance using fuzzy MLP and two level selective partitioning of the feature space
    • Feb
    • S. Mitra and L. I. Kuncheva, "Improving classification performance using fuzzy MLP and two level selective partitioning of the feature space," Fuzzy Sets Syst., vol. 70, no. 1, pp. 1-13, Feb. 1995.
    • (1995) Fuzzy Sets Syst , vol.70 , Issue.1 , pp. 1-13
    • Mitra, S.1    Kuncheva, L.I.2
  • 14
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: Survey in soft computing framework
    • May
    • S. Mitra and Y. Hayashi, "Neuro-fuzzy rule generation: Survey in soft computing framework," IEEE Trans. Neural Netw., vol. 11, no. 3, pp. 748-768, May 2000.
    • (2000) IEEE Trans. Neural Netw , vol.11 , Issue.3 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 15
    • 0037363497 scopus 로고    scopus 로고
    • Automatic generation of fuzzy rule based models from data by genetic algorithms
    • Mar
    • P.-P. Angelov and R.-A. Buswell, "Automatic generation of fuzzy rule based models from data by genetic algorithms," Inf. Sci., vol. 150, no. 1-2, pp. 17-31, Mar. 2003.
    • (2003) Inf. Sci , vol.150 , Issue.1-2 , pp. 17-31
    • Angelov, P.-P.1    Buswell, R.-A.2
  • 16
    • 0037361892 scopus 로고    scopus 로고
    • Learning fuzzy classification rules from labeled data
    • J.-A. Roubos, M. Setnes, and J. Abonyi, "Learning fuzzy classification rules from labeled data," Inf. Sci., vol. 150, pp. 77-93, 2003.
    • (2003) Inf. Sci , vol.150 , pp. 77-93
    • Roubos, J.-A.1    Setnes, M.2    Abonyi, J.3
  • 17
    • 0033116171 scopus 로고    scopus 로고
    • SLAVE: A genetic learning system based on an iterative approach
    • Apr
    • A. Gonzalez and R. Perez, "SLAVE: A genetic learning system based on an iterative approach," IEEE Trans. Fuzzy Syst., vol. 7, no. 2, pp. 176-191, Apr. 1999.
    • (1999) IEEE Trans. Fuzzy Syst , vol.7 , Issue.2 , pp. 176-191
    • Gonzalez, A.1    Perez, R.2
  • 18
    • 0000919523 scopus 로고    scopus 로고
    • Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems
    • Jul
    • H. Ishibuchi, T. Murata, and I. B. Turksen, "Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems," Fuzzy Sets Syst., vol. 89, no. 2, pp. 135-149, Jul. 1997.
    • (1997) Fuzzy Sets Syst , vol.89 , Issue.2 , pp. 135-149
    • Ishibuchi, H.1    Murata, T.2    Turksen, I.B.3
  • 19
    • 0346781550 scopus 로고    scopus 로고
    • Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining
    • H. Ishibuchi and T. Yamamoto, "Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining," Fuzzy Sets Syst., vol. 141, pp. 59-88, 2004.
    • (2004) Fuzzy Sets Syst , vol.141 , pp. 59-88
    • Ishibuchi, H.1    Yamamoto, T.2
  • 20
    • 0034247248 scopus 로고    scopus 로고
    • Learning a coverage set of maximally general fuzzy rules by rough sets
    • Aug
    • T.-P. Hong, T.-T. Wang, S.-L. Wang, and B.-C. Chien, "Learning a coverage set of maximally general fuzzy rules by rough sets," Exp. Syst. Appl., vol. 19, no. 2, pp. 97-103, Aug. 2000.
    • (2000) Exp. Syst. Appl , vol.19 , Issue.2 , pp. 97-103
    • Hong, T.-P.1    Wang, T.-T.2    Wang, S.-L.3    Chien, B.-C.4
  • 21
    • 0037230859 scopus 로고    scopus 로고
    • Finding fuzzy classification rules using data mining techniques
    • Y.-C. Hu, R.-S. Chen, and G.-H. Tzeng, "Finding fuzzy classification rules using data mining techniques," Pattern Recogn. Lett., vol. 24, pp. 509-519, 2003.
    • (2003) Pattern Recogn. Lett , vol.24 , pp. 509-519
    • Hu, Y.-C.1    Chen, R.-S.2    Tzeng, G.-H.3
  • 22
    • 11144275998 scopus 로고    scopus 로고
    • Heuristic extraction of fuzzy classification rules using data ming techniques: An empirical study on benchmark data sets
    • Jul
    • H. Ishibuchi and T. Yamamoto, "Heuristic extraction of fuzzy classification rules using data ming techniques: An empirical study on benchmark data sets," in Proc. IEEE Int. Conf. Fuzzy Syst., 25-29, Jul. 2004, vol. 1, pp. 161-167.
    • (2004) Proc. IEEE Int. Conf. Fuzzy Syst , vol.1
    • Ishibuchi, H.1    Yamamoto, T.2
  • 23
    • 0344614423 scopus 로고    scopus 로고
    • F. Guély, R. La, and P. Siarry, Fuzzy rule base learning through simulated annealing, Fuzzy Sets Syst., 105, no. 3, pp. 353-363, Aug. 1999.
    • F. Guély, R. La, and P. Siarry, "Fuzzy rule base learning through simulated annealing," Fuzzy Sets Syst., vol. 105, no. 3, pp. 353-363, Aug. 1999.
  • 24
    • 0033728494 scopus 로고    scopus 로고
    • Hierarchical fuzzy partition for pattern classification with fuzzy if-then rules
    • Jun
    • M.-A. Kbir, H. Benkirane, K. Maalmi, and R. Benslimane, "Hierarchical fuzzy partition for pattern classification with fuzzy if-then rules," Pattern Recogn. Lett., vol. 21, no. 6-7, pp. 503-509, Jun. 2000.
    • (2000) Pattern Recogn. Lett , vol.21 , Issue.6-7 , pp. 503-509
    • Kbir, M.-A.1    Benkirane, H.2    Maalmi, K.3    Benslimane, R.4
  • 25
  • 26
    • 0036571268 scopus 로고    scopus 로고
    • Extracting compact fuzzy rules based on adaptive data approximation using B-splines
    • May
    • J. Zhang, S. Köper, and A. Knoll, "Extracting compact fuzzy rules based on adaptive data approximation using B-splines," Inf. Sci., vol. 142, no. 1-4, pp. 227-248, May 2002.
    • (2002) Inf. Sci , vol.142 , Issue.1-4 , pp. 227-248
    • Zhang, J.1    Köper, S.2    Knoll, A.3
  • 27
    • 0035415473 scopus 로고    scopus 로고
    • Effect of rule weights in fuzzy rule-based classification systems
    • Aug
    • H. Ishibuchi and T. Nakashima, "Effect of rule weights in fuzzy rule-based classification systems," IEEE Trans. Fuzzy Syst., vol. 9, no. 4, pp. 506-515, Aug. 2001.
    • (2001) IEEE Trans. Fuzzy Syst , vol.9 , Issue.4 , pp. 506-515
    • Ishibuchi, H.1    Nakashima, T.2
  • 28
    • 26844469668 scopus 로고    scopus 로고
    • Rule weight specification in fuzzy rule-based classification systems
    • Aug
    • H. Ishibuchi and T. Yamamoto, "Rule weight specification in fuzzy rule-based classification systems," IEEE Trans. Fuzzy Syst., vol. 13, no. 4, pp. 428-435, Aug. 2005.
    • (2005) IEEE Trans. Fuzzy Syst , vol.13 , Issue.4 , pp. 428-435
    • Ishibuchi, H.1    Yamamoto, T.2
  • 29
    • 0347206828 scopus 로고
    • The fuzzy weighted additive rule
    • R. Ramakrishnan and C.-J.-M. Rao, "The fuzzy weighted additive rule," Fuzzy Sets Syst., vol. 46, pp. 177-187, 1992.
    • (1992) Fuzzy Sets Syst , vol.46 , pp. 177-187
    • Ramakrishnan, R.1    Rao, C.-J.-M.2
  • 30
    • 11144349027 scopus 로고    scopus 로고
    • A note on the fuzzy weighted additive rule
    • K.-S. Park and S.-H. Kim, "A note on the fuzzy weighted additive rule," Fuzzy Sets Syst., vol. 77, pp. 315-320, 1996.
    • (1996) Fuzzy Sets Syst , vol.77 , pp. 315-320
    • Park, K.-S.1    Kim, S.-H.2
  • 31
    • 0029230506 scopus 로고
    • A learning procedure to identify weighted rules by neural networks
    • A. Blanco, M. Delgado, and I. Requena, "A learning procedure to identify weighted rules by neural networks," Fuzzy Set Syst., vol. 69, pp. 29-36, 1995.
    • (1995) Fuzzy Set Syst , vol.69 , pp. 29-36
    • Blanco, A.1    Delgado, M.2    Requena, I.3
  • 32
    • 33947267482 scopus 로고    scopus 로고
    • Weighting fuzzy classification rules using receiver operating characteristics (ROC) analysis
    • M.-J. Zolghadri and E.-G. Mansoori, "Weighting fuzzy classification rules using receiver operating characteristics (ROC) analysis," Inf. Sci., vol. 177, pp. 2296-2307, 2007.
    • (2007) Inf. Sci , vol.177 , pp. 2296-2307
    • Zolghadri, M.-J.1    Mansoori, E.-G.2
  • 33
    • 0031186275 scopus 로고    scopus 로고
    • An enhanced weighted fuzzy reasoning algorithm for engineering applications
    • P. Lau and C.-W. Chan, "An enhanced weighted fuzzy reasoning algorithm for engineering applications," Comput. Math. Appl., vol. 34, no. 1, pp. 81-87, 1997.
    • (1997) Comput. Math. Appl , vol.34 , Issue.1 , pp. 81-87
    • Lau, P.1    Chan, C.-W.2
  • 34
    • 0000499483 scopus 로고    scopus 로고
    • Weighted fuzzy production rules
    • D. S. Yeung and E.-C.-C. Tsang, "Weighted fuzzy production rules," Fuzzy Sets Syst., vol. 88, pp. 299-313, 1997.
    • (1997) Fuzzy Sets Syst , vol.88 , pp. 299-313
    • Yeung, D.S.1    Tsang, E.-C.-C.2
  • 36
    • 0033893809 scopus 로고    scopus 로고
    • Thresholding using two-dimensional histogram and fuzzy entropy principle
    • Apr
    • H.-D. Cheng, Y.-H. Chen, and X.-H. Jiang, "Thresholding using two-dimensional histogram and fuzzy entropy principle," IEEE Trans. Image Process., vol. 9, no. 4, pp. 732-735, Apr. 2000.
    • (2000) IEEE Trans. Image Process , vol.9 , Issue.4 , pp. 732-735
    • Cheng, H.-D.1    Chen, Y.-H.2    Jiang, X.-H.3
  • 37
    • 0142088890 scopus 로고    scopus 로고
    • Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm
    • Dec
    • W.-B. Tao, J.-W. Tian, and J. Liu, "Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm," Pattern Recogn. Lett., vol. 24, no. 16, pp. 3069-3078, Dec. 2003.
    • (2003) Pattern Recogn. Lett , vol.24 , Issue.16 , pp. 3069-3078
    • Tao, W.-B.1    Tian, J.-W.2    Liu, J.3
  • 38
    • 0004197396 scopus 로고    scopus 로고
    • Fundamentals of fuzzy sets
    • D. Dubois and H. Prade, Eds, Boston, MA: Kluwer
    • D. Dubois and H. Prade, Eds., "Fundamentals of fuzzy sets," in The Handbooks of Fuzzy Sets, vol. 7. Boston, MA: Kluwer, 2000.
    • (2000) The Handbooks of Fuzzy Sets , vol.7
  • 39
    • 4844229545 scopus 로고    scopus 로고
    • Handling interaction in fuzzy production rule reasoning
    • Oct
    • D.-S. Yeung, X.-Z. Wang, and E.-C.-C. Tsang, "Handling interaction in fuzzy production rule reasoning," IEEE Trans. Syst., Man Cybern., B vol. 34, no. 5, pp. 1979-1987, Oct. 2004.
    • (2004) IEEE Trans. Syst., Man Cybern., B , vol.34 , Issue.5 , pp. 1979-1987
    • Yeung, D.-S.1    Wang, X.-Z.2    Tsang, E.-C.-C.3
  • 40
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • and, Jun
    • C.-E. Shannon, "A mathematical theory of communication," Bell Syst. Tech., vol. 27, pp. 379-423 and 623-656, Jun, 1948.
    • (1948) Bell Syst. Tech , vol.27
    • Shannon, C.-E.1
  • 41
    • 0015340630 scopus 로고
    • A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory
    • A.-D. Luca and S. Termin, "A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory," Int. J. Control, vol. 20, pp. 301-312, 1972.
    • (1972) Int. J. Control , vol.20 , pp. 301-312
    • Luca, A.-D.1    Termin, S.2
  • 42
    • 67149115452 scopus 로고    scopus 로고
    • UCI repository of machine learning databases and domain theories, OnlinF, Available
    • UCI repository of machine learning databases and domain theories, FTP address: [OnlinF]. Available: ftp://ftp.ics.uci.edu/pub/ machine-learning-databases.
    • FTP address
  • 43
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R.-A. Fisher, "The use of multiple measurements in taxonomic problems," Ann. Eugenics, vol. 7, pp. 179-188, 1936.
    • (1936) Ann. Eugenics , vol.7 , pp. 179-188
    • Fisher, R.-A.1
  • 44
    • 0027098279 scopus 로고
    • Fuzzy set theoretic measures for automatic feature evaluation
    • S.-K. Pal, "Fuzzy set theoretic measures for automatic feature evaluation," Inf. Sci., vol. 64, pp. 165-179, 1992.
    • (1992) Inf. Sci , vol.64 , pp. 165-179
    • Pal, S.-K.1
  • 47
    • 0034294243 scopus 로고    scopus 로고
    • GA-fuzzy modeling and classification: Complexity and performance
    • Oct
    • M. Setnes and H. Roubos, "GA-fuzzy modeling and classification: Complexity and performance," IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 509-522, Oct. 2000.
    • (2000) IEEE Trans. Fuzzy Syst , vol.8 , Issue.5 , pp. 509-522
    • Setnes, M.1    Roubos, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.