메뉴 건너뛰기




Volumn 19, Issue 8, 2007, Pages 2183-2244

Robust loss functions for boosting

Author keywords

[No Author keywords available]

Indexed keywords


EID: 34548033981     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2007.19.8.2183     Document Type: Article
Times cited : (40)

References (35)
  • 2
    • 1542367492 scopus 로고    scopus 로고
    • Convexity, classification, and risk bounds
    • 638, Berkeley: Statistics Department, University of California, Berkeley
    • Bartlett, P. L., Jordan, M. I., & McAuliffe, J. D. (2003). Convexity, classification, and risk bounds (Tech. rep. 638). Berkeley: Statistics Department, University of California, Berkeley.
    • (2003) Tech. rep
    • Bartlett, P.L.1    Jordan, M.I.2    McAuliffe, J.D.3
  • 3
  • 4
    • 85039187967 scopus 로고    scopus 로고
    • Optimal dyadic decision trees
    • Berlin: Fraunhofer FIRST, 2005. Available online at
    • Blanchard, G., Schäfer, C., Rozenholc, Y., & Müller, K.-R. (2005). Optimal dyadic decision trees (Tech. rep.) Berlin: Fraunhofer FIRST, 2005. Available online at http://ida.first.fraunhofer.de/blanchard/publi/ index.html.
    • (2005) Tech. rep
    • Blanchard, G.1    Schäfer, C.2    Rozenholc, Y.3    Müller, K.-R.4
  • 5
    • 0003495934 scopus 로고
    • Bagging predictors
    • 421, Berkeley: Statistics Department, University of California, Berkeley
    • Breiman, L. (1994). Bagging predictors (Tech. rep. 421). Berkeley: Statistics Department, University of California, Berkeley.
    • (1994) Tech. rep
    • Breiman, L.1
  • 7
    • 0000889845 scopus 로고
    • Binary regression models for contaminated data
    • Copas, J. (1988). Binary regression models for contaminated data. J. Royal Statist. Soc. B., 50, 225-265.
    • (1988) J. Royal Statist. Soc. B , vol.50 , pp. 225-265
    • Copas, J.1
  • 8
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 0036161257 scopus 로고    scopus 로고
    • Linear programming boosting via column generation
    • Demiriz, A., Bennett, K. P., & Shawe-Taylor, J. (2002). Linear programming boosting via column generation. Machine Learning, 46(1-3), 225-254.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 225-254
    • Demiriz, A.1    Bennett, K.P.2    Shawe-Taylor, J.3
  • 11
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences, 55(1), 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 12
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman, J. H., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28, 337-407.
    • (2000) Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 13
    • 6344274901 scopus 로고    scopus 로고
    • Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory
    • Grünwald, P. D., & Dawid, A. P. (2004). Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory. Annals of Statistics, 32(4), 1367-1433.
    • (2004) Annals of Statistics , vol.32 , Issue.4 , pp. 1367-1433
    • Grünwald, P.D.1    Dawid, A.P.2
  • 14
  • 18
    • 84898999495 scopus 로고    scopus 로고
    • Boosting and maximum likelihood for exponential models
    • T. G. Dieterrich, S. Becker, & Z. Ghahramani Eds, Cambridge, MA: MIT Press
    • Lebanon, G., & Lafferty, J. (2002). Boosting and maximum likelihood for exponential models. In T. G. Dieterrich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14. Cambridge, MA: MIT Press.
    • (2002) Advances in neural information processing systems , vol.14
    • Lebanon, G.1    Lafferty, J.2
  • 20
  • 23
    • 2942627097 scopus 로고    scopus 로고
    • Information geometry of u-boost and Bregman divergence
    • Murata, N., Takenouchi, T., Kanamori, T., & Eguchi, S. (2004). Information geometry of u-boost and Bregman divergence. Neural Computation, 16(7), 1437-1481.
    • (2004) Neural Computation , vol.16 , Issue.7 , pp. 1437-1481
    • Murata, N.1    Takenouchi, T.2    Kanamori, T.3    Eguchi, S.4
  • 25
    • 0036643047 scopus 로고    scopus 로고
    • Sparse regression ensembles in infinite and finite hypothesis spaces
    • Rätsch, G., Demiriz, A., & Bennett, K. (2002). Sparse regression ensembles in infinite and finite hypothesis spaces. Machine Learning, 48, 193-221.
    • (2002) Machine Learning , vol.48 , pp. 193-221
    • Rätsch, G.1    Demiriz, A.2    Bennett, K.3
  • 29
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26(5), 1651-1686.
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 31
    • 2542488394 scopus 로고    scopus 로고
    • Smooth boosting and learning with malicious noise
    • Servedio, R. (2003). Smooth boosting and learning with malicious noise. Journal of Machine Learning Research, 4, 633-648.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 633-648
    • Servedio, R.1
  • 32
    • 1542291080 scopus 로고    scopus 로고
    • Robustifying Adaboost by adding the naive error rate
    • Takenouchi, T., & Eguchi, S. (2004). Robustifying Adaboost by adding the naive error rate. Neural Computation, 16(4), 767-787.
    • (2004) Neural Computation , vol.16 , Issue.4 , pp. 767-787
    • Takenouchi, T.1    Eguchi, S.2
  • 35
    • 0036011442 scopus 로고    scopus 로고
    • Robust inference with binary data
    • Victoria-Feser, M.-P. (2002). Robust inference with binary data. Psychometrika, 67(1), 21-32.
    • (2002) Psychometrika , vol.67 , Issue.1 , pp. 21-32
    • Victoria-Feser, M.-P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.