-
2
-
-
1542367492
-
Convexity, classification, and risk bounds
-
638, Berkeley: Statistics Department, University of California, Berkeley
-
Bartlett, P. L., Jordan, M. I., & McAuliffe, J. D. (2003). Convexity, classification, and risk bounds (Tech. rep. 638). Berkeley: Statistics Department, University of California, Berkeley.
-
(2003)
Tech. rep
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
3
-
-
0003713964
-
-
2nd ed, Belmont, MA: Athena Scientific
-
Bertsekas, D. P. (1999). Nonlinear programming (2nd ed.). Belmont, MA: Athena Scientific.
-
(1999)
Nonlinear programming
-
-
Bertsekas, D.P.1
-
4
-
-
85039187967
-
Optimal dyadic decision trees
-
Berlin: Fraunhofer FIRST, 2005. Available online at
-
Blanchard, G., Schäfer, C., Rozenholc, Y., & Müller, K.-R. (2005). Optimal dyadic decision trees (Tech. rep.) Berlin: Fraunhofer FIRST, 2005. Available online at http://ida.first.fraunhofer.de/blanchard/publi/ index.html.
-
(2005)
Tech. rep
-
-
Blanchard, G.1
Schäfer, C.2
Rozenholc, Y.3
Müller, K.-R.4
-
5
-
-
0003495934
-
Bagging predictors
-
421, Berkeley: Statistics Department, University of California, Berkeley
-
Breiman, L. (1994). Bagging predictors (Tech. rep. 421). Berkeley: Statistics Department, University of California, Berkeley.
-
(1994)
Tech. rep
-
-
Breiman, L.1
-
6
-
-
0003802343
-
-
Belmont, CA: Wadsworth and Brooks/Cole
-
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Belmont, CA: Wadsworth and Brooks/Cole.
-
(1984)
Classification and regression trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
7
-
-
0000889845
-
Binary regression models for contaminated data
-
Copas, J. (1988). Binary regression models for contaminated data. J. Royal Statist. Soc. B., 50, 225-265.
-
(1988)
J. Royal Statist. Soc. B
, vol.50
, pp. 225-265
-
-
Copas, J.1
-
8
-
-
34249753618
-
Support-vector networks
-
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
9
-
-
0036161257
-
Linear programming boosting via column generation
-
Demiriz, A., Bennett, K. P., & Shawe-Taylor, J. (2002). Linear programming boosting via column generation. Machine Learning, 46(1-3), 225-254.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 225-254
-
-
Demiriz, A.1
Bennett, K.P.2
Shawe-Taylor, J.3
-
11
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences, 55(1), 119-139.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
12
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
Friedman, J. H., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28, 337-407.
-
(2000)
Annals of Statistics
, vol.28
, pp. 337-407
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
13
-
-
6344274901
-
Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory
-
Grünwald, P. D., & Dawid, A. P. (2004). Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory. Annals of Statistics, 32(4), 1367-1433.
-
(2004)
Annals of Statistics
, vol.32
, Issue.4
, pp. 1367-1433
-
-
Grünwald, P.D.1
Dawid, A.P.2
-
14
-
-
0004207439
-
-
New York: Springer-Verlag
-
Halmos, P. R. (1974). Measure theory. New York: Springer-Verlag.
-
(1974)
Measure theory
-
-
Halmos, P.R.1
-
15
-
-
0003841907
-
-
New York: Wiley
-
Hampel, F. R., Rousseeuw, P. J., Ronchetti, E. M., & Stahel, W. A. (1986). Robust statistics: The approach based on influence functions. New York: Wiley.
-
(1986)
Robust statistics: The approach based on influence functions
-
-
Hampel, F.R.1
Rousseeuw, P.J.2
Ronchetti, E.M.3
Stahel, W.A.4
-
17
-
-
35048894955
-
The most robust loss function for boosting
-
Berlin: Springer
-
Kanamori, T., Takenouchi, T., Eguchi, S., & Murata, N. (2004). The most robust loss function for boosting. In Neural information Processing: 11th International Conference, ICONIP (pp. 496-501). Berlin: Springer.
-
(2004)
Neural information Processing: 11th International Conference, ICONIP
, pp. 496-501
-
-
Kanamori, T.1
Takenouchi, T.2
Eguchi, S.3
Murata, N.4
-
18
-
-
84898999495
-
Boosting and maximum likelihood for exponential models
-
T. G. Dieterrich, S. Becker, & Z. Ghahramani Eds, Cambridge, MA: MIT Press
-
Lebanon, G., & Lafferty, J. (2002). Boosting and maximum likelihood for exponential models. In T. G. Dieterrich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14. Cambridge, MA: MIT Press.
-
(2002)
Advances in neural information processing systems
, vol.14
-
-
Lebanon, G.1
Lafferty, J.2
-
20
-
-
0000034034
-
Boosting algorithms as gradient descent
-
M. S. Stearns, S. Solla, & D. Cohen Eds, Cambridge, MA: MIT Press
-
Mason, L., Baxter, J., Bartlett, P. L., & Frean, M. (1999). Boosting algorithms as gradient descent. In M. S. Stearns, S. Solla, & D. Cohen (Eds.), Advances in neural information processing systems, 11. Cambridge, MA: MIT Press.
-
(1999)
Advances in neural information processing systems
, vol.11
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.L.3
Frean, M.4
-
23
-
-
2942627097
-
Information geometry of u-boost and Bregman divergence
-
Murata, N., Takenouchi, T., Kanamori, T., & Eguchi, S. (2004). Information geometry of u-boost and Bregman divergence. Neural Computation, 16(7), 1437-1481.
-
(2004)
Neural Computation
, vol.16
, Issue.7
, pp. 1437-1481
-
-
Murata, N.1
Takenouchi, T.2
Kanamori, T.3
Eguchi, S.4
-
25
-
-
0036643047
-
Sparse regression ensembles in infinite and finite hypothesis spaces
-
Rätsch, G., Demiriz, A., & Bennett, K. (2002). Sparse regression ensembles in infinite and finite hypothesis spaces. Machine Learning, 48, 193-221.
-
(2002)
Machine Learning
, vol.48
, pp. 193-221
-
-
Rätsch, G.1
Demiriz, A.2
Bennett, K.3
-
26
-
-
0342502195
-
Soft margins for Adaboost
-
Rätsch, G., Onoda, T., & Müller, K.-R. (2001). Soft margins for Adaboost. Machine Learning, 42(3), 287-320.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.-R.3
-
27
-
-
0002829165
-
-
Cambridge, MA: MIT Press
-
Rätsch, G., Schölkopf, B., Smola, A. J., Mika, S., Onoda, T., & Müller, K.-R. (2000). Robust ensemble learning. Cambridge, MA: MIT Press.
-
(2000)
Robust ensemble learning
-
-
Rätsch, G.1
Schölkopf, B.2
Smola, A.J.3
Mika, S.4
Onoda, T.5
Müller, K.-R.6
-
29
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26(5), 1651-1686.
-
(1998)
Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
30
-
-
0003408420
-
-
Cambridge, MA: MIT Press
-
Schölkopf, B., & Smola, A. J. (2001). Learning with kernels: Support vector machines, regularization, optimization, and beyond. Cambridge, MA: MIT Press.
-
(2001)
Learning with kernels: Support vector machines, regularization, optimization, and beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
31
-
-
2542488394
-
Smooth boosting and learning with malicious noise
-
Servedio, R. (2003). Smooth boosting and learning with malicious noise. Journal of Machine Learning Research, 4, 633-648.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 633-648
-
-
Servedio, R.1
-
32
-
-
1542291080
-
Robustifying Adaboost by adding the naive error rate
-
Takenouchi, T., & Eguchi, S. (2004). Robustifying Adaboost by adding the naive error rate. Neural Computation, 16(4), 767-787.
-
(2004)
Neural Computation
, vol.16
, Issue.4
, pp. 767-787
-
-
Takenouchi, T.1
Eguchi, S.2
-
35
-
-
0036011442
-
Robust inference with binary data
-
Victoria-Feser, M.-P. (2002). Robust inference with binary data. Psychometrika, 67(1), 21-32.
-
(2002)
Psychometrika
, vol.67
, Issue.1
, pp. 21-32
-
-
Victoria-Feser, M.-P.1
|