-
1
-
-
0346786584
-
Arcing classifiers (with discussion)
-
MR 1635406
-
BREIMAN, L. (1998). Arcing classifiers (with discussion). Ann. Statist. 26 801-849. MR 1635406
-
(1998)
Ann. Statist
, vol.26
, pp. 801-849
-
-
BREIMAN, L.1
-
2
-
-
0000275022
-
Prediction games and arcing algorithms
-
BREIMAN, L. (1999). Prediction games and arcing algorithms. Neural Computation 11 1493-1517.
-
(1999)
Neural Computation
, vol.11
, pp. 1493-1517
-
-
BREIMAN, L.1
-
4
-
-
0036643072
-
Logistic regression, AdaBoost and Bregman distances
-
COLLINS, M., SCHAPIRE, R. E. and SINGER, Y. (2002). Logistic regression, AdaBoost and Bregman distances. Machine Learning 48 253-285.
-
(2002)
Machine Learning
, vol.48
, pp. 253-285
-
-
COLLINS, M.1
SCHAPIRE, R.E.2
SINGER, Y.3
-
5
-
-
85156217048
-
Boosting decision trees
-
MIT Press, Cambridge, MA
-
DRUCKER, H. and CORTES, C. (1996). Boosting decision trees. In Advances in Neural Information Processing Systems 8 479-485. MIT Press, Cambridge, MA.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 479-485
-
-
DRUCKER, H.1
CORTES, C.2
-
6
-
-
84947765278
-
-
DUFFY, N. and HELMBOLD, D. (1999). A geometric approach to leveraging weak learners. Computational Learning Theory (Nordkirchen, 1999). Lecture Notes in Comput. Sci. 1572 18-33. Springer, Berlin. MR1724977
-
DUFFY, N. and HELMBOLD, D. (1999). A geometric approach to leveraging weak learners. Computational Learning Theory (Nordkirchen, 1999). Lecture Notes in Comput. Sci. 1572 18-33. Springer, Berlin. MR1724977
-
-
-
-
7
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
MR1473055
-
FREUND, Y. and SCHAPIRE, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. System Sci. 55 119-139. MR1473055
-
(1997)
J. Comput. System Sci
, vol.55
, pp. 119-139
-
-
FREUND, Y.1
SCHAPIRE, R.E.2
-
8
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting (with discussion)
-
MR1790002
-
FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2000). Additive logistic regression: A statistical view of boosting (with discussion). Ann. Statist. 28 337-407. MR1790002
-
(2000)
Ann. Statist
, vol.28
, pp. 337-407
-
-
FRIEDMAN, J.1
HASTIE, T.2
TIBSHIRANI, R.3
-
10
-
-
26444607491
-
Complexities of convex combinations and bounding the generalization error in classification
-
MR2166553
-
KOLTCHINSKII, V. and PANCHENKO, D. (2005). Complexities of convex combinations and bounding the generalization error in classification. Ann. Statist. 33 1455-1496. MR2166553
-
(2005)
Ann. Statist
, vol.33
, pp. 1455-1496
-
-
KOLTCHINSKII, V.1
PANCHENKO, D.2
-
12
-
-
84898978212
-
Boosting algorithms as gradient descent
-
MIT Press, Cambridge, MA
-
MASON, L., BAXTER, J., BARTLETT, P. and FREAN, M. (2000). Boosting algorithms as gradient descent. In Advances in Neural Information Processing Systems 12 512-518. MIT Press, Cambridge, MA.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 512-518
-
-
MASON, L.1
BAXTER, J.2
BARTLETT, P.3
FREAN, M.4
-
13
-
-
35248862907
-
An introduction to boosting and leveraging
-
Advanced Lectures on Machine Learning, Springer, Berlin
-
MEIR, R. and RÄTSCH, G. (2003). An introduction to boosting and leveraging. Advanced Lectures on Machine Learning. Lecture Notes in Comput. Sci. 2600 119-183. Springer, Berlin.
-
(2003)
Lecture Notes in Comput. Sci
, vol.2600
, pp. 119-183
-
-
MEIR, R.1
RÄTSCH, G.2
-
14
-
-
0030370417
-
Bagging, boosting, and C4.5
-
AAAI Press, Menlo Park, CA
-
QUINLAN, J. R. (1996). Bagging, boosting, and C4.5. In Proc. Thirteenth National Conference on Artificial Intelligence 725-730. AAAI Press, Menlo Park, CA.
-
(1996)
Proc. Thirteenth National Conference on Artificial Intelligence
, pp. 725-730
-
-
QUINLAN, J.R.1
-
15
-
-
50849088419
-
-
RÚTSCH, G. (2001). Robust boosting via convex optimization: Theory and applications. Ph.D. dissertation, Dept. Computer Science, Univ. Potsdam, Potsdam, Germany.
-
RÚTSCH, G. (2001). Robust boosting via convex optimization: Theory and applications. Ph.D. dissertation, Dept. Computer Science, Univ. Potsdam, Potsdam, Germany.
-
-
-
-
17
-
-
21844445229
-
Efficient margin maximizing with boosting
-
MR2249883
-
RÄTSCH, G. and WARMUTH, M. (2005). Efficient margin maximizing with boosting. J. Much. Learn. Res. 6 2131-2152. MR2249883
-
(2005)
J. Much. Learn. Res
, vol.6
, pp. 2131-2152
-
-
RÄTSCH, G.1
WARMUTH, M.2
-
19
-
-
12844274244
-
Boosting as a regularized path to a maximum margin classifier
-
MR2248005
-
ROSSET, S., ZHU, J. and HASTIE, T. (2004). Boosting as a regularized path to a maximum margin classifier. J. Mach. Learn. Res. 5 941-973. MR2248005
-
(2004)
J. Mach. Learn. Res
, vol.5
, pp. 941-973
-
-
ROSSET, S.1
ZHU, J.2
HASTIE, T.3
-
21
-
-
26944478552
-
-
RUDIN, C., CORTES, C., MOHRI, M. and SCHAPIRE, R. E. (2005). Margin-based ranking meets boosting in the middle. Learning Theory. Lecture Notes in Comput. Sci. 3559 63-78. Springer, Berlin. MR2203254
-
RUDIN, C., CORTES, C., MOHRI, M. and SCHAPIRE, R. E. (2005). Margin-based ranking meets boosting in the middle. Learning Theory. Lecture Notes in Comput. Sci. 3559 63-78. Springer, Berlin. MR2203254
-
-
-
-
22
-
-
47849088969
-
The dynamics of AdaBoost: Cyclic behavior and convergence of margins
-
MR2248027
-
RUDIN, C., DAUBECHIES, I. and SCHAPIRE, R. E. (2004). The dynamics of AdaBoost: Cyclic behavior and convergence of margins. J. Mach. Learn. Res. 5 1557-1595. MR2248027
-
(2004)
J. Mach. Learn. Res
, vol.5
, pp. 1557-1595
-
-
RUDIN, C.1
DAUBECHIES, I.2
SCHAPIRE, R.E.3
-
23
-
-
9444247113
-
On the dynamics of boosting
-
MIT Press, Cambridge, MA
-
RUDIN, C., DAUBECHIES, I. and SCHAPIRE, R. E. (2004). On the dynamics of boosting. In Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
-
-
RUDIN, C.1
DAUBECHIES, I.2
SCHAPIRE, R.E.3
-
24
-
-
50849144947
-
Margin-based ranking and why Adaboost is actually a ranking algorithm
-
To appear
-
RUDIN, C. and SCHAPIRE, R. E. (2007). Margin-based ranking and why Adaboost is actually a ranking algorithm. To appear.
-
(2007)
-
-
RUDIN, C.1
SCHAPIRE, R.E.2
-
25
-
-
9444251806
-
-
RUDIN, C., SCHAPIRE, R. E. and DAUBECHIES, I. (2004). Boosting based on a smooth margin. Learning Theory. Lecture Notes in Comput. Sci. 3120 502-517. Springer. Berlin. MR2177931
-
RUDIN, C., SCHAPIRE, R. E. and DAUBECHIES, I. (2004). Boosting based on a smooth margin. Learning Theory. Lecture Notes in Comput. Sci. 3120 502-517. Springer. Berlin. MR2177931
-
-
-
-
26
-
-
50849114252
-
Precise statements of convergence for AdaBoost and arc-gv
-
RUDIN, C., SCHAPIRE, R. E. and DAUBECHIES, I. (2007). Precise statements of convergence for AdaBoost and arc-gv. In Proc. AMS-IMS-SIAM Joint Summer Research Conference: Machine Learning, Statistics, and Discovery 131-145.
-
(2007)
Proc. AMS-IMS-SIAM Joint Summer Research Conference: Machine Learning, Statistics, and Discovery
, pp. 131-145
-
-
RUDIN, C.1
SCHAPIRE, R.E.2
DAUBECHIES, I.3
-
27
-
-
50849099894
-
-
SCHAPIRE, R. E. (2003). The boosting approach to machine learning: An overview. Nonlinear Estimation and Classification. Lecture Notes in Statist. 171 149-171. Springer, New York. MR2005788
-
SCHAPIRE, R. E. (2003). The boosting approach to machine learning: An overview. Nonlinear Estimation and Classification. Lecture Notes in Statist. 171 149-171. Springer, New York. MR2005788
-
-
-
-
28
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
MR 1673273
-
SCHAPIRE, R. E., FREUND, Y., BARTLETT, P. and LEE, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. Ann. Statist. 26 1651-1686. MR 1673273
-
(1998)
Ann. Statist
, vol.26
, pp. 1651-1686
-
-
SCHAPIRE, R.E.1
FREUND, Y.2
BARTLETT, P.3
LEE, W.S.4
-
29
-
-
26444493144
-
Boosting with early stopping: Convergence and consistency
-
MR2166555
-
ZHANG, T. and YU, B. (2005). Boosting with early stopping: Convergence and consistency. Ann. Statist. 33 1538-1579. MR2166555
-
(2005)
Ann. Statist
, vol.33
, pp. 1538-1579
-
-
ZHANG, T.1
YU, B.2
|