메뉴 건너뛰기




Volumn 35, Issue 6, 2007, Pages 2723-2768

Analysis of boosting algorithms using the smooth margin function

Author keywords

AdaBoost; Arc gv; Boosting; Convergence rates; Coordinate descent; Large margin classification

Indexed keywords


EID: 50849110153     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/009053607000000785     Document Type: Article
Times cited : (23)

References (29)
  • 1
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers (with discussion)
    • MR 1635406
    • BREIMAN, L. (1998). Arcing classifiers (with discussion). Ann. Statist. 26 801-849. MR 1635406
    • (1998) Ann. Statist , vol.26 , pp. 801-849
    • BREIMAN, L.1
  • 2
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • BREIMAN, L. (1999). Prediction games and arcing algorithms. Neural Computation 11 1493-1517.
    • (1999) Neural Computation , vol.11 , pp. 1493-1517
    • BREIMAN, L.1
  • 4
    • 0036643072 scopus 로고    scopus 로고
    • Logistic regression, AdaBoost and Bregman distances
    • COLLINS, M., SCHAPIRE, R. E. and SINGER, Y. (2002). Logistic regression, AdaBoost and Bregman distances. Machine Learning 48 253-285.
    • (2002) Machine Learning , vol.48 , pp. 253-285
    • COLLINS, M.1    SCHAPIRE, R.E.2    SINGER, Y.3
  • 6
    • 84947765278 scopus 로고    scopus 로고
    • DUFFY, N. and HELMBOLD, D. (1999). A geometric approach to leveraging weak learners. Computational Learning Theory (Nordkirchen, 1999). Lecture Notes in Comput. Sci. 1572 18-33. Springer, Berlin. MR1724977
    • DUFFY, N. and HELMBOLD, D. (1999). A geometric approach to leveraging weak learners. Computational Learning Theory (Nordkirchen, 1999). Lecture Notes in Comput. Sci. 1572 18-33. Springer, Berlin. MR1724977
  • 7
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • MR1473055
    • FREUND, Y. and SCHAPIRE, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. System Sci. 55 119-139. MR1473055
    • (1997) J. Comput. System Sci , vol.55 , pp. 119-139
    • FREUND, Y.1    SCHAPIRE, R.E.2
  • 8
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussion)
    • MR1790002
    • FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2000). Additive logistic regression: A statistical view of boosting (with discussion). Ann. Statist. 28 337-407. MR1790002
    • (2000) Ann. Statist , vol.28 , pp. 337-407
    • FRIEDMAN, J.1    HASTIE, T.2    TIBSHIRANI, R.3
  • 10
    • 26444607491 scopus 로고    scopus 로고
    • Complexities of convex combinations and bounding the generalization error in classification
    • MR2166553
    • KOLTCHINSKII, V. and PANCHENKO, D. (2005). Complexities of convex combinations and bounding the generalization error in classification. Ann. Statist. 33 1455-1496. MR2166553
    • (2005) Ann. Statist , vol.33 , pp. 1455-1496
    • KOLTCHINSKII, V.1    PANCHENKO, D.2
  • 13
    • 35248862907 scopus 로고    scopus 로고
    • An introduction to boosting and leveraging
    • Advanced Lectures on Machine Learning, Springer, Berlin
    • MEIR, R. and RÄTSCH, G. (2003). An introduction to boosting and leveraging. Advanced Lectures on Machine Learning. Lecture Notes in Comput. Sci. 2600 119-183. Springer, Berlin.
    • (2003) Lecture Notes in Comput. Sci , vol.2600 , pp. 119-183
    • MEIR, R.1    RÄTSCH, G.2
  • 15
    • 50849088419 scopus 로고    scopus 로고
    • RÚTSCH, G. (2001). Robust boosting via convex optimization: Theory and applications. Ph.D. dissertation, Dept. Computer Science, Univ. Potsdam, Potsdam, Germany.
    • RÚTSCH, G. (2001). Robust boosting via convex optimization: Theory and applications. Ph.D. dissertation, Dept. Computer Science, Univ. Potsdam, Potsdam, Germany.
  • 17
    • 21844445229 scopus 로고    scopus 로고
    • Efficient margin maximizing with boosting
    • MR2249883
    • RÄTSCH, G. and WARMUTH, M. (2005). Efficient margin maximizing with boosting. J. Much. Learn. Res. 6 2131-2152. MR2249883
    • (2005) J. Much. Learn. Res , vol.6 , pp. 2131-2152
    • RÄTSCH, G.1    WARMUTH, M.2
  • 19
    • 12844274244 scopus 로고    scopus 로고
    • Boosting as a regularized path to a maximum margin classifier
    • MR2248005
    • ROSSET, S., ZHU, J. and HASTIE, T. (2004). Boosting as a regularized path to a maximum margin classifier. J. Mach. Learn. Res. 5 941-973. MR2248005
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 941-973
    • ROSSET, S.1    ZHU, J.2    HASTIE, T.3
  • 21
    • 26944478552 scopus 로고    scopus 로고
    • RUDIN, C., CORTES, C., MOHRI, M. and SCHAPIRE, R. E. (2005). Margin-based ranking meets boosting in the middle. Learning Theory. Lecture Notes in Comput. Sci. 3559 63-78. Springer, Berlin. MR2203254
    • RUDIN, C., CORTES, C., MOHRI, M. and SCHAPIRE, R. E. (2005). Margin-based ranking meets boosting in the middle. Learning Theory. Lecture Notes in Comput. Sci. 3559 63-78. Springer, Berlin. MR2203254
  • 22
    • 47849088969 scopus 로고    scopus 로고
    • The dynamics of AdaBoost: Cyclic behavior and convergence of margins
    • MR2248027
    • RUDIN, C., DAUBECHIES, I. and SCHAPIRE, R. E. (2004). The dynamics of AdaBoost: Cyclic behavior and convergence of margins. J. Mach. Learn. Res. 5 1557-1595. MR2248027
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1557-1595
    • RUDIN, C.1    DAUBECHIES, I.2    SCHAPIRE, R.E.3
  • 24
    • 50849144947 scopus 로고    scopus 로고
    • Margin-based ranking and why Adaboost is actually a ranking algorithm
    • To appear
    • RUDIN, C. and SCHAPIRE, R. E. (2007). Margin-based ranking and why Adaboost is actually a ranking algorithm. To appear.
    • (2007)
    • RUDIN, C.1    SCHAPIRE, R.E.2
  • 25
    • 9444251806 scopus 로고    scopus 로고
    • RUDIN, C., SCHAPIRE, R. E. and DAUBECHIES, I. (2004). Boosting based on a smooth margin. Learning Theory. Lecture Notes in Comput. Sci. 3120 502-517. Springer. Berlin. MR2177931
    • RUDIN, C., SCHAPIRE, R. E. and DAUBECHIES, I. (2004). Boosting based on a smooth margin. Learning Theory. Lecture Notes in Comput. Sci. 3120 502-517. Springer. Berlin. MR2177931
  • 27
    • 50849099894 scopus 로고    scopus 로고
    • SCHAPIRE, R. E. (2003). The boosting approach to machine learning: An overview. Nonlinear Estimation and Classification. Lecture Notes in Statist. 171 149-171. Springer, New York. MR2005788
    • SCHAPIRE, R. E. (2003). The boosting approach to machine learning: An overview. Nonlinear Estimation and Classification. Lecture Notes in Statist. 171 149-171. Springer, New York. MR2005788
  • 28
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • MR 1673273
    • SCHAPIRE, R. E., FREUND, Y., BARTLETT, P. and LEE, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. Ann. Statist. 26 1651-1686. MR 1673273
    • (1998) Ann. Statist , vol.26 , pp. 1651-1686
    • SCHAPIRE, R.E.1    FREUND, Y.2    BARTLETT, P.3    LEE, W.S.4
  • 29
    • 26444493144 scopus 로고    scopus 로고
    • Boosting with early stopping: Convergence and consistency
    • MR2166555
    • ZHANG, T. and YU, B. (2005). Boosting with early stopping: Convergence and consistency. Ann. Statist. 33 1538-1579. MR2166555
    • (2005) Ann. Statist , vol.33 , pp. 1538-1579
    • ZHANG, T.1    YU, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.