-
1
-
-
0000275022
-
Prediction games and arcing algorithms
-
Also Technical Report 504, Statistics Department, University of California Berkeley
-
L. Breiman. Prediction games and arcing algorithms. Neural Computation, 11(7):1493-1518, 1999. Also Technical Report 504, Statistics Department, University of California Berkeley.
-
(1999)
Neural Computation
, vol.11
, Issue.7
, pp. 1493-1518
-
-
Breiman, L.1
-
3
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
4
-
-
0036161257
-
Linear programming boosting via column generation
-
DOI 10.1023/A:1012470815092
-
A. Demiriz, K.P. Bennett, and J. Shawe-Taylor. Linear programming boosting via column generation. Machine Learning, 46(1-3):225-254, 2002. (Pubitemid 34129970)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 225-254
-
-
Demiriz, A.1
Bennett, K.P.2
Shawe-Taylor, J.3
-
5
-
-
0005271994
-
Madaboost: A modification of Adaboost
-
C. Domingo and O. Watanabe. Madaboost: A modification of Adaboost. In Proc. COLT '00, pages 180-189, 2000.
-
(2000)
Proc. COLT '
, vol.0
, pp. 180-189
-
-
Domingo, C.1
Watanabe, O.2
-
6
-
-
0035371148
-
An adaptive version of the boost by majority algorithm
-
DOI 10.1023/A:1010852229904
-
Y. Freund. An adaptive version of the boost by majority algorithm. Mach. Learn., 43(3):293-318, 2001. (Pubitemid 32471836)
-
(2001)
Machine Learning
, vol.43
, Issue.3
, pp. 293-318
-
-
Freund, Y.1
-
7
-
-
0031211090
-
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
-
Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997. (Pubitemid 127433398)
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
9
-
-
0042496213
-
Tracking the best linear predictor
-
DOI 10.1162/153244301753683726
-
Mark Herbster andManfred K.Warmuth. Tracking the best linear predictor. Journal ofMachine Learning Research, 1:281-309, 2001. (Pubitemid 33687205)
-
(2001)
Journal of Machine Learning Research
, vol.1
, Issue.4
, pp. 281-309
-
-
Herbster, M.1
Warmuth, M.K.2
-
10
-
-
0027657329
-
Semi-infinite programming: Theory, methods, and applications
-
R. Hettich and K.O. Kortanek. Semi-infinite programming: Theory, methods and applications. SIAM Review, 3:380-429, September 1993. (Pubitemid 23712350)
-
(1993)
SIAM Review
, vol.35
, Issue.3
, pp. 380-429
-
-
Hettich, R.1
Kortanek, K.O.2
-
13
-
-
1542276975
-
An introduction to boosting and leveraging
-
S. Mendelson and A. Smola, editors, LNCS. Springer
-
R. Meir and G. Rätsch. An introduction to boosting and leveraging. In S. Mendelson and A. Smola, editors, Proc. 1st Machine Learning Summer School, Canberra, LNCS, pages 119-184. Springer, 2003.
-
(2003)
Proc. 1st Machine Learning Summer School, Canberra
, pp. 119-184
-
-
Meir, R.1
Rätsch, G.2
-
15
-
-
0342502195
-
Soft margins for AdaBoost
-
DOI 10.1023/A:1007618119488
-
G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine Learning, 42(3):287-320, 2001. (Pubitemid 32188795)
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Ratsch, G.1
Onoda, T.2
Muller, K.-R.3
-
16
-
-
0002829165
-
Robust ensemble learning
-
A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors. MIT Press, Cambridge, MA
-
G. Rätsch, B. Schölkopf, A.J. Smola, S. Mika, T. Onoda, and K.-R. Müller. Robust ensemble learning. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 207-219. MIT Press, Cambridge, MA, 2000.
-
(2000)
Advances in Large Margin Classifiers
, pp. 207-219
-
-
Rätsch, G.1
Schölkopf, B.2
Smola, A.J.3
Mika, S.4
Onoda, T.5
Müller, K.-R.6
-
17
-
-
21844445229
-
Efficient margin maximizing with boosting
-
G. Rätsch and M. K.Warmuth. Efficient margin maximizing with boosting. Journal of Machine Learning Research, 6:2131-2152, December 2005. (Pubitemid 41798123)
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 2131-2152
-
-
Ratsch, G.1
Warmuth, M.K.2
-
19
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
R.E. Schapire, Y. Freund, P.L. Bartlett, and W.S. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651-1686, 1998. (Pubitemid 128376902)
-
(1998)
Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
20
-
-
17444438778
-
New support vector algorithms
-
B. Schölkopf, A.J. Smola, R.C. Williamson, and P.L. Bartlett. New support vector algorithms. Neural Comput., 12(5):1207-1245, 2000.
-
(2000)
Neural Comput.
, vol.12
, Issue.5
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.J.2
Williamson, R.C.3
Bartlett, P.L.4
-
21
-
-
2542488394
-
Servedio. Smooth boosting and learning with malicious noise
-
Rocco A. Servedio. Smooth boosting and learning with malicious noise. Journal of Machine Learning Research, 4:633-648, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 633-648
-
-
Rocco, A.1
-
22
-
-
34250707319
-
Totally corrective boosting algorithms that maximize the margin
-
ACM Press
-
M.K. Warmuth, J. Liao, and G. Rätsch. Totally corrective boosting algorithms that maximize the margin. In Proc. ICML '06, pages 1001-1008. ACM Press, 2006.
-
(2006)
Proc. ICML '06
, pp. 1001-1008
-
-
Warmuth, M.K.1
Liao, J.2
Rätsch, G.3
|