메뉴 건너뛰기




Volumn 2, Issue 3, 2013, Pages 158-177

Androgen receptor genomic regulation

Author keywords

Androgen receptor (AR); AR transcriptional regulation; AR target genes; ChIP seq assays; Combining chromatin immunoprecipitation (ChIP) on chip; Prostate cancer (PCa)

Indexed keywords


EID: 84901204000     PISSN: 22234683     EISSN: 22234691     Source Type: Journal    
DOI: 10.3978/j.issn.2223-4683.2013.09.01     Document Type: Review
Times cited : (84)

References (109)
  • 1
    • 2342558431 scopus 로고    scopus 로고
    • Androgen receptor in prostate cancer
    • Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev 2004;25:276-308.
    • (2004) Endocr Rev , vol.25 , pp. 276-308
    • Heinlein, C.A.1    Chang, C.2
  • 3
    • 0029778413 scopus 로고    scopus 로고
    • The androgen-specific probasin response element 2 interacts differentially with androgen and glucocorticoid receptors
    • Claessens F, Alen P, Devos A, et al. The androgen-specific probasin response element 2 interacts differentially with androgen and glucocorticoid receptors. J Biol Chem 1996;271:19013-6.
    • (1996) J Biol Chem , vol.271 , pp. 19013-19016
    • Claessens, F.1    Alen, P.2    Devos, A.3
  • 4
    • 0031919917 scopus 로고    scopus 로고
    • Isolation and androgen regulation of the human homeobox cDNA, NKX3.1
    • Prescott JL, Blok L, Tindall DJ. Isolation and androgen regulation of the human homeobox cDNA, NKX3.1. Prostate 1998;35:71-80.
    • (1998) Prostate , vol.35 , pp. 71-80
    • Prescott, J.L.1    Blok, L.2    Tindall, D.J.3
  • 5
    • 0036178556 scopus 로고    scopus 로고
    • Digital expression profiles of the prostate androgen-response program
    • Clegg N, Eroglu B, Ferguson C, et al. Digital expression profiles of the prostate androgen-response program. J Steroid Biochem Mol Biol 2002;80:13-23.
    • (2002) J Steroid Biochem Mol Biol , vol.80 , pp. 13-23
    • Clegg, N.1    Eroglu, B.2    Ferguson, C.3
  • 6
    • 0035342537 scopus 로고    scopus 로고
    • Quantitative expression profile of androgen-regulated genes in prostate cancer cells and identification of prostate-specific genes
    • Xu LL, Su YP, Labiche R, et al. Quantitative expression profile of androgen-regulated genes in prostate cancer cells and identification of prostate-specific genes. Int J Cancer 2001;92:322-8.
    • (2001) Int J Cancer , vol.92 , pp. 322-328
    • Xu, L.L.1    Su, Y.P.2    Labiche, R.3
  • 7
    • 0035488295 scopus 로고    scopus 로고
    • Identification of androgen-regulated genes in the prostate cancer cell line LNCaP by serial analysis of gene expression and proteomic analysis
    • Waghray A, Feroze F, Schober MS, et al. Identification of androgen-regulated genes in the prostate cancer cell line LNCaP by serial analysis of gene expression and proteomic analysis. Proteomics 2001;1:1327-38.
    • (2001) Proteomics , vol.1 , pp. 1327-1338
    • Waghray, A.1    Feroze, F.2    Schober, M.S.3
  • 8
    • 70449711211 scopus 로고    scopus 로고
    • Identification of novel androgen-responsive genes by sequencing of LongSAGE libraries
    • Romanuik TL, Wang G, Holt RA, et al. Identification of novel androgen-responsive genes by sequencing of LongSAGE libraries. BMC Genomics 2009;10:476.
    • (2009) BMC Genomics , vol.10 , pp. 476
    • Romanuik, T.L.1    Wang, G.2    Holt, R.A.3
  • 9
    • 17144444034 scopus 로고    scopus 로고
    • Transcriptional programs activated by exposure of human prostate cancer cells to androgen
    • RESEARCH0032
    • DePrimo SE, Diehn M, Nelson JB, et al. Transcriptional programs activated by exposure of human prostate cancer cells to androgen. Genome Biol 2002;3:RESEARCH0032.
    • (2002) Genome Biol , vol.3
    • DePrimo, S.E.1    Diehn, M.2    Nelson, J.B.3
  • 10
    • 3843091606 scopus 로고    scopus 로고
    • Identification and validation of novel androgen-regulated genes in prostate cancer
    • Velasco AM, Gillis KA, Li Y, et al. Identification and validation of novel androgen-regulated genes in prostate cancer. Endocrinology 2004;145:3913-24.
    • (2004) Endocrinology , vol.145 , pp. 3913-3924
    • Velasco, A.M.1    Gillis, K.A.2    Li, Y.3
  • 11
    • 66149105948 scopus 로고    scopus 로고
    • Microarray coupled to quantitative RT-PCR analysis of androgen-regulated genes in human LNCaP prostate cancer cells
    • Ngan S, Stronach EA, Photiou A, et al. Microarray coupled to quantitative RT-PCR analysis of androgen-regulated genes in human LNCaP prostate cancer cells. Oncogene 2009;28:2051-63.
    • (2009) Oncogene , vol.28 , pp. 2051-2063
    • Ngan, S.1    Stronach, E.A.2    Photiou, A.3
  • 12
    • 79960071366 scopus 로고    scopus 로고
    • The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis
    • Massie CE, Lynch A, Ramos-Montoya A, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 2011;30:2719-33.
    • (2011) EMBO J , vol.30 , pp. 2719-2733
    • Massie, C.E.1    Lynch, A.2    Ramos-Montoya, A.3
  • 13
    • 33748787116 scopus 로고    scopus 로고
    • Ligand-independent androgen receptor activity is activation function-2-independent and resistant to antiandrogens in androgen refractory prostate cancer cells
    • Dehm SM, Tindall DJ. Ligand-independent androgen receptor activity is activation function-2-independent and resistant to antiandrogens in androgen refractory prostate cancer cells. J Biol Chem 2006;281:27882-93.
    • (2006) J Biol Chem , vol.281 , pp. 27882-27893
    • Dehm, S.M.1    Tindall, D.J.2
  • 14
    • 70350445957 scopus 로고    scopus 로고
    • Androgen-responsive gene database: integrated knowledge on androgen-responsive genes
    • Jiang M, Ma Y, Chen C, et al. Androgen-responsive gene database: integrated knowledge on androgen-responsive genes. Mol Endocrinol 2009;23:1927-33.
    • (2009) Mol Endocrinol , vol.23 , pp. 1927-1933
    • Jiang, M.1    Ma, Y.2    Chen, C.3
  • 16
    • 0037387184 scopus 로고    scopus 로고
    • Identification of androgen-responsive genes in the rat ventral prostate by complementary deoxyribonucleic acid subtraction and microarray
    • Jiang F, Wang Z. Identification of androgen-responsive genes in the rat ventral prostate by complementary deoxyribonucleic acid subtraction and microarray. Endocrinology 2003;144:1257-65.
    • (2003) Endocrinology , vol.144 , pp. 1257-1265
    • Jiang, F.1    Wang, Z.2
  • 17
    • 19444362976 scopus 로고    scopus 로고
    • Identification of androgen-responsive genes that are alternatively regulated in androgen-dependent and androgen-independent rat prostate tumors
    • Pfundt R, Smit F, Jansen C, et al. Identification of androgen-responsive genes that are alternatively regulated in androgen-dependent and androgen-independent rat prostate tumors. Genes Chromosomes Cancer 2005;43:273-83.
    • (2005) Genes Chromosomes Cancer , vol.43 , pp. 273-283
    • Pfundt, R.1    Smit, F.2    Jansen, C.3
  • 18
    • 33947233837 scopus 로고    scopus 로고
    • Expression profiling of the mouse prostate after castration and hormone replacement: implication of H-cadherin in prostate tumorigenesis
    • Wang XD, Wang BE, Soriano R, et al. Expression profiling of the mouse prostate after castration and hormone replacement: implication of H-cadherin in prostate tumorigenesis. Differentiation 2007;75:219-34.
    • (2007) Differentiation , vol.75 , pp. 219-234
    • Wang, X.D.1    Wang, B.E.2    Soriano, R.3
  • 19
    • 0037015040 scopus 로고    scopus 로고
    • The program of androgen-responsive genes in neoplastic prostate epithelium
    • Nelson PS, Clegg N, Arnold H, et al. The program of androgen-responsive genes in neoplastic prostate epithelium. Proc Natl Acad Sci U S A 2002;99:11890-5.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 11890-11895
    • Nelson, P.S.1    Clegg, N.2    Arnold, H.3
  • 20
    • 78751475852 scopus 로고    scopus 로고
    • CaM kinase kinase beta-mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells
    • Frigo DE, Howe MK, Wittmann BM, et al. CaM kinase kinase beta-mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells. Cancer Res 2011;71:528-37.
    • (2011) Cancer Res , vol.71 , pp. 528-537
    • Frigo, D.E.1    Howe, M.K.2    Wittmann, B.M.3
  • 21
    • 67650758019 scopus 로고    scopus 로고
    • Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer
    • Wang Q, Li W, Zhang Y, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 2009;138:245-56.
    • (2009) Cell , vol.138 , pp. 245-256
    • Wang, Q.1    Li, W.2    Zhang, Y.3
  • 22
    • 1542574202 scopus 로고    scopus 로고
    • Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance
    • Holzbeierlein J, Lal P, LaTulippe E, et al. Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol 2004;164:217-27.
    • (2004) Am J Pathol , vol.164 , pp. 217-227
    • Holzbeierlein, J.1    Lal, P.2    LaTulippe, E.3
  • 23
    • 34250331066 scopus 로고    scopus 로고
    • Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer
    • Mostaghel EA, Page ST, Lin DW, et al. Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res 2007;67:5033-41.
    • (2007) Cancer Res , vol.67 , pp. 5033-5041
    • Mostaghel, E.A.1    Page, S.T.2    Lin, D.W.3
  • 24
    • 84863979005 scopus 로고    scopus 로고
    • Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer
    • Hu R, Lu C, Mostaghel EA, et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 2012;72:3457-62.
    • (2012) Cancer Res , vol.72 , pp. 3457-3462
    • Hu, R.1    Lu, C.2    Mostaghel, E.A.3
  • 25
    • 27344451557 scopus 로고    scopus 로고
    • Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer
    • Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005;310:644-8.
    • (2005) Science , vol.310 , pp. 644-648
    • Tomlins, S.A.1    Rhodes, D.R.2    Perner, S.3
  • 26
    • 67649425225 scopus 로고    scopus 로고
    • ETS gene fusions in prostate cancer: from discovery to daily clinical practice
    • Tomlins SA, Bjartell A, Chinnaiyan AM, et al. ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol 2009;56:275-86.
    • (2009) Eur Urol , vol.56 , pp. 275-286
    • Tomlins, S.A.1    Bjartell, A.2    Chinnaiyan, A.M.3
  • 27
    • 34547642493 scopus 로고    scopus 로고
    • Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer
    • Tomlins SA, Laxman B, Dhanasekaran SM, et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 2007;448:595-9.
    • (2007) Nature , vol.448 , pp. 595-599
    • Tomlins, S.A.1    Laxman, B.2    Dhanasekaran, S.M.3
  • 29
    • 84860842223 scopus 로고    scopus 로고
    • ETS rearrangements in prostate cancer
    • Rubin MA. ETS rearrangements in prostate cancer. Asian J Androl 2012;14:393-9.
    • (2012) Asian J Androl , vol.14 , pp. 393-399
    • Rubin, M.A.1
  • 30
    • 80053078529 scopus 로고    scopus 로고
    • Common gene rearrangements in prostate cancer
    • Rubin MA, Maher CA, Chinnaiyan AM. Common gene rearrangements in prostate cancer. J Clin Oncol 2011;29:3659-68.
    • (2011) J Clin Oncol , vol.29 , pp. 3659-3668
    • Rubin, M.A.1    Maher, C.A.2    Chinnaiyan, A.M.3
  • 31
    • 36049049840 scopus 로고    scopus 로고
    • TMPRSS2-ETS fusion prostate cancer: biological and clinical implications
    • Demichelis F, Rubin MA. TMPRSS2-ETS fusion prostate cancer: biological and clinical implications. J Clin Pathol 2007;60:1185-6.
    • (2007) J Clin Pathol , vol.60 , pp. 1185-1186
    • Demichelis, F.1    Rubin, M.A.2
  • 33
    • 71249101060 scopus 로고    scopus 로고
    • Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer
    • Lin C, Yang L, Tanasa B, et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 2009;139:1069-83.
    • (2009) Cell , vol.139 , pp. 1069-1083
    • Lin, C.1    Yang, L.2    Tanasa, B.3
  • 34
    • 70849135782 scopus 로고    scopus 로고
    • Induced chromosomal proximity and gene fusions in prostate cancer
    • Mani RS, Tomlins SA, Callahan K, et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science 2009;326:1230.
    • (2009) Science , vol.326 , pp. 1230
    • Mani, R.S.1    Tomlins, S.A.2    Callahan, K.3
  • 35
    • 77955069195 scopus 로고    scopus 로고
    • Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements
    • Haffner MC, Aryee MJ, Toubaji A, et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet 2010;42:668-75.
    • (2010) Nat Genet , vol.42 , pp. 668-675
    • Haffner, M.C.1    Aryee, M.J.2    Toubaji, A.3
  • 36
    • 83355176377 scopus 로고    scopus 로고
    • Identification of novel androgen-regulated pathways and mRNA isoforms through genome-wide exon-specific profiling of the LNCaP transcriptome
    • Rajan P, Dalgliesh C, Carling PJ, et al. Identification of novel androgen-regulated pathways and mRNA isoforms through genome-wide exon-specific profiling of the LNCaP transcriptome. PLoS One 2011;6:e29088.
    • (2011) PLoS One , vol.6
    • Rajan, P.1    Dalgliesh, C.2    Carling, P.J.3
  • 37
    • 48549089747 scopus 로고    scopus 로고
    • Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance
    • Dehm SM, Schmidt LJ, Heemers HV, et al. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 2008;68:5469-77.
    • (2008) Cancer Res , vol.68 , pp. 5469-5477
    • Dehm, S.M.1    Schmidt, L.J.2    Heemers, H.V.3
  • 38
    • 58249110391 scopus 로고    scopus 로고
    • Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer
    • Hu R, Dunn TA, Wei S, et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 2009;69:16-22.
    • (2009) Cancer Res , vol.69 , pp. 16-22
    • Hu, R.1    Dunn, T.A.2    Wei, S.3
  • 39
    • 77955296562 scopus 로고    scopus 로고
    • Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant
    • Sun S, Sprenger CC, Vessella RL, et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 2010;120:2715-30.
    • (2010) J Clin Invest , vol.120 , pp. 2715-2730
    • Sun, S.1    Sprenger, C.C.2    Vessella, R.L.3
  • 40
    • 65549168746 scopus 로고    scopus 로고
    • A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth
    • Guo Z, Yang X, Sun F, et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 2009;69:2305-13.
    • (2009) Cancer Res , vol.69 , pp. 2305-2313
    • Guo, Z.1    Yang, X.2    Sun, F.3
  • 41
    • 58149490714 scopus 로고    scopus 로고
    • Determination of tag density required for digital transcriptome analysis: application to an androgen-sensitive prostate cancer model
    • Li H, Lovci MT, Kwon YS, et al. Determination of tag density required for digital transcriptome analysis: application to an androgen-sensitive prostate cancer model. Proc Natl Acad Sci U S A 2008;105:20179-84.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 20179-20184
    • Li, H.1    Lovci, M.T.2    Kwon, Y.S.3
  • 42
    • 70349320158 scopus 로고    scopus 로고
    • Causes and consequences of microRNA dysregulation in cancer
    • Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009;10:704-14.
    • (2009) Nat Rev Genet , vol.10 , pp. 704-714
    • Croce, C.M.1
  • 43
    • 81355142141 scopus 로고    scopus 로고
    • Non-coding RNAs in human disease
    • Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011;12:861-74.
    • (2011) Nat Rev Genet , vol.12 , pp. 861-874
    • Esteller, M.1
  • 44
    • 0035656688 scopus 로고    scopus 로고
    • Non-coding RNA genes and the modern RNA world
    • Eddy SR. Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2001;2:919-29.
    • (2001) Nat Rev Genet , vol.2 , pp. 919-929
    • Eddy, S.R.1
  • 45
    • 51049123624 scopus 로고    scopus 로고
    • Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer
    • Ambs S, Prueitt RL, Yi M, et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 2008;68:6162-70.
    • (2008) Cancer Res , vol.68 , pp. 6162-6170
    • Ambs, S.1    Prueitt, R.L.2    Yi, M.3
  • 46
    • 84857372726 scopus 로고    scopus 로고
    • Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer
    • Martens-Uzunova ES, Jalava SE, Dits NF, et al. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene 2012;31:978-91.
    • (2012) Oncogene , vol.31 , pp. 978-991
    • Martens-Uzunova, E.S.1    Jalava, S.E.2    Dits, N.F.3
  • 47
    • 84880154515 scopus 로고    scopus 로고
    • Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer
    • Du Z, Fei T, Verhaak RG, et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol 2013;20:908-13.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 908-913
    • Du, Z.1    Fei, T.2    Verhaak, R.G.3
  • 48
    • 70349750196 scopus 로고    scopus 로고
    • miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth
    • Ribas J, Ni X, Haffner M, et al. miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 2009;69:7165-9.
    • (2009) Cancer Res , vol.69 , pp. 7165-7169
    • Ribas, J.1    Ni, X.2    Haffner, M.3
  • 49
    • 84874309132 scopus 로고    scopus 로고
    • Identification of novel AR-targeted microRNAs mediating androgen signalling through critical pathways to regulate cell viability in prostate cancer
    • Mo W, Zhang J, Li X, et al. Identification of novel AR-targeted microRNAs mediating androgen signalling through critical pathways to regulate cell viability in prostate cancer. PLoS One 2013;8:e56592.
    • (2013) PLoS One , vol.8
    • Mo, W.1    Zhang, J.2    Li, X.3
  • 50
    • 33847193479 scopus 로고    scopus 로고
    • Androgen responsive intronic non-coding RNAs
    • Louro R, Nakaya HI, Amaral PP, et al. Androgen responsive intronic non-coding RNAs. BMC Biol 2007;5:4.
    • (2007) BMC Biol , vol.5 , pp. 4
    • Louro, R.1    Nakaya, H.I.2    Amaral, P.P.3
  • 51
    • 0033429470 scopus 로고    scopus 로고
    • DD3: a new prostate-specific gene, highly overexpressed in prostate cancer
    • Bussemakers MJ, van Bokhoven A, Verhaegh GW, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 1999;59:5975-9.
    • (1999) Cancer Res , vol.59 , pp. 5975-5979
    • Bussemakers, M.J.1    van Bokhoven, A.2    Verhaegh, G.W.3
  • 52
    • 12944252955 scopus 로고    scopus 로고
    • PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer
    • Srikantan V, Zou Z, Petrovics G, et al. PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc Natl Acad Sci U S A 2000;97:12216-21.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , pp. 12216-12221
    • Srikantan, V.1    Zou, Z.2    Petrovics, G.3
  • 53
    • 77953096072 scopus 로고    scopus 로고
    • Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a
    • Yap KL, Li S, Muñoz-Cabello AM, et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 2010;38:662-74.
    • (2010) Mol Cell , vol.38 , pp. 662-674
    • Yap, K.L.1    Li, S.2    Muñoz-Cabello, A.M.3
  • 54
    • 79961202865 scopus 로고    scopus 로고
    • Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression
    • Prensner JR, Iyer MK, Balbin OA, et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 2011;29:742-9.
    • (2011) Nat Biotechnol , vol.29 , pp. 742-749
    • Prensner, J.R.1    Iyer, M.K.2    Balbin, O.A.3
  • 55
    • 84879462680 scopus 로고    scopus 로고
    • Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer
    • Takayama K, Horie-Inoue K, Katayama S, et al. Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. EMBO J 2013;32:1665-80.
    • (2013) EMBO J , vol.32 , pp. 1665-1680
    • Takayama, K.1    Horie-Inoue, K.2    Katayama, S.3
  • 56
    • 24044540381 scopus 로고    scopus 로고
    • Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking
    • Wang Q, Carroll JS, Brown M. Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 2005;19:631-42.
    • (2005) Mol Cell , vol.19 , pp. 631-642
    • Wang, Q.1    Carroll, J.S.2    Brown, M.3
  • 57
    • 84879116722 scopus 로고    scopus 로고
    • CCN3/NOV gene expression in human prostate cancer is directly suppressed by the androgen receptor
    • [Epub ahead of print].
    • Wu L, Runkle C, Jin HJ, et al. CCN3/NOV gene expression in human prostate cancer is directly suppressed by the androgen receptor. Oncogene 2013. [Epub ahead of print].
    • (2013) Oncogene
    • Wu, L.1    Runkle, C.2    Jin, H.J.3
  • 58
    • 34347324035 scopus 로고    scopus 로고
    • Identification of novel androgen response genes in prostate cancer cells by coupling chromatin immunoprecipitation and genomic microarray analysis
    • Takayama K, Kaneshiro K, Tsutsumi S, et al. Identification of novel androgen response genes in prostate cancer cells by coupling chromatin immunoprecipitation and genomic microarray analysis. Oncogene 2007;26:4453-63.
    • (2007) Oncogene , vol.26 , pp. 4453-4463
    • Takayama, K.1    Kaneshiro, K.2    Tsutsumi, S.3
  • 59
    • 35548958147 scopus 로고    scopus 로고
    • New androgen receptor genomic targets show an interaction with the ETS1 transcription factor
    • Massie CE, Adryan B, Barbosa-Morais NL, et al. New androgen receptor genomic targets show an interaction with the ETS1 transcription factor. EMBO Rep 2007;8:871-8.
    • (2007) EMBO Rep , vol.8 , pp. 871-878
    • Massie, C.E.1    Adryan, B.2    Barbosa-Morais, N.L.3
  • 60
    • 34547931715 scopus 로고    scopus 로고
    • Cell-and gene-specific regulation of primary target genes by the androgen receptor
    • Bolton EC, So AY, Chaivorapol C, et al. Cell-and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev 2007;21:2005-17.
    • (2007) Genes Dev , vol.21 , pp. 2005-2017
    • Bolton, E.C.1    So, A.Y.2    Chaivorapol, C.3
  • 61
    • 34547214787 scopus 로고    scopus 로고
    • A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth
    • Wang Q, Li W, Liu XS, et al. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 2007;27:380-92.
    • (2007) Mol Cell , vol.27 , pp. 380-392
    • Wang, Q.1    Li, W.2    Liu, X.S.3
  • 62
    • 58149234445 scopus 로고    scopus 로고
    • Genomic androgen receptor-occupied regions with different functions, defined by histone acetylation, coregulators and transcriptional capacity
    • Jia L, Berman BP, Jariwala U, et al. Genomic androgen receptor-occupied regions with different functions, defined by histone acetylation, coregulators and transcriptional capacity. PLoS One 2008;3:e3645.
    • (2008) PLoS One , vol.3
    • Jia, L.1    Berman, B.P.2    Jariwala, U.3
  • 63
    • 78649820197 scopus 로고    scopus 로고
    • Genome-wide analysis of androgen receptor binding and gene regulation in two CWR22-derived prostate cancer cell lines
    • Chen H, Libertini SJ, George M, et al. Genome-wide analysis of androgen receptor binding and gene regulation in two CWR22-derived prostate cancer cell lines. Endocr Relat Cancer 2010;17:857-73.
    • (2010) Endocr Relat Cancer , vol.17 , pp. 857-873
    • Chen, H.1    Libertini, S.J.2    George, M.3
  • 64
    • 34249026300 scopus 로고    scopus 로고
    • High-resolution profiling of histone methylations in the human genome
    • Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome. Cell 2007;129:823-37.
    • (2007) Cell , vol.129 , pp. 823-837
    • Barski, A.1    Cuddapah, S.2    Cui, K.3
  • 65
    • 34547633677 scopus 로고    scopus 로고
    • Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing
    • Robertson G, Hirst M, Bainbridge M, et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 2007;4:651-7.
    • (2007) Nat Methods , vol.4 , pp. 651-657
    • Robertson, G.1    Hirst, M.2    Bainbridge, M.3
  • 66
    • 68749084845 scopus 로고    scopus 로고
    • Integrated expression profiling and ChIP-seq analyses of the growth inhibition response program of the androgen receptor
    • Lin B, Wang J, Hong X, et al. Integrated expression profiling and ChIP-seq analyses of the growth inhibition response program of the androgen receptor. PLoS One 2009;4:e6589.
    • (2009) PLoS One , vol.4
    • Lin, B.1    Wang, J.2    Hong, X.3
  • 67
    • 77952103123 scopus 로고    scopus 로고
    • An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression
    • Yu J, Yu J, Mani RS, et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 2010;17:443-54.
    • (2010) Cancer Cell , vol.17 , pp. 443-454
    • Yu, J.1    Yu, J.2    Mani, R.S.3
  • 68
    • 79961029891 scopus 로고    scopus 로고
    • Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1
    • Robinson JL, Macarthur S, Ross-Innes CS, et al. Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. EMBO J 2011;30:3019-27.
    • (2011) EMBO J , vol.30 , pp. 3019-3027
    • Robinson, J.L.1    Macarthur, S.2    Ross-Innes, C.S.3
  • 69
    • 83255192190 scopus 로고    scopus 로고
    • Dynamic nucleosome-depleted regions at androgen receptor enhancers in the absence of ligand in prostate cancer cells
    • Andreu-Vieyra C, Lai J, Berman BP, et al. Dynamic nucleosome-depleted regions at androgen receptor enhancers in the absence of ligand in prostate cancer cells. Mol Cell Biol 2011;31:4648-62.
    • (2011) Mol Cell Biol , vol.31 , pp. 4648-4662
    • Andreu-Vieyra, C.1    Lai, J.2    Berman, B.P.3
  • 70
    • 80053610846 scopus 로고    scopus 로고
    • Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer
    • Sahu B, Laakso M, Ovaska K, et al. Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J 2011;30:3962-76.
    • (2011) EMBO J , vol.30 , pp. 3962-3976
    • Sahu, B.1    Laakso, M.2    Ovaska, K.3
  • 71
    • 79959198166 scopus 로고    scopus 로고
    • Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA
    • Wang D, Garcia-Bassets I, Benner C, et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 2011;474:390-4.
    • (2011) Nature , vol.474 , pp. 390-394
    • Wang, D.1    Garcia-Bassets, I.2    Benner, C.3
  • 72
    • 79960050587 scopus 로고    scopus 로고
    • Targeting androgen receptor in estrogen receptor-negative breast cancer
    • Ni M, Chen Y, Lim E, et al. Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell 2011;20:119-31.
    • (2011) Cancer Cell , vol.20 , pp. 119-131
    • Ni, M.1    Chen, Y.2    Lim, E.3
  • 73
    • 83255164884 scopus 로고    scopus 로고
    • Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution
    • Rhee HS, Pugh BF. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 2011;147:1408-19.
    • (2011) Cell , vol.147 , pp. 1408-1419
    • Rhee, H.S.1    Pugh, B.F.2
  • 74
    • 84858165145 scopus 로고    scopus 로고
    • Genome-wide structure and organization of eukaryotic pre-initiation complexes
    • Rhee HS, Pugh BF. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 2012;483:295-301.
    • (2012) Nature , vol.483 , pp. 295-301
    • Rhee, H.S.1    Pugh, B.F.2
  • 75
    • 84862778059 scopus 로고    scopus 로고
    • Spatial organization of the mouse genome and its role in recurrent chromosomal translocations
    • Zhang Y, McCord RP, Ho YJ, et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 2012;148:908-21.
    • (2012) Cell , vol.148 , pp. 908-921
    • Zhang, Y.1    McCord, R.P.2    Ho, Y.J.3
  • 76
    • 84862908850 scopus 로고    scopus 로고
    • Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation
    • Li G, Ruan X, Auerbach RK, et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 2012;148:84-98.
    • (2012) Cell , vol.148 , pp. 84-98
    • Li, G.1    Ruan, X.2    Auerbach, R.K.3
  • 77
    • 84879264708 scopus 로고    scopus 로고
    • ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
    • Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013;31:397-405.
    • (2013) Trends Biotechnol , vol.31 , pp. 397-405
    • Gaj, T.1    Gersbach, C.A.2    Barbas III, C.F.3
  • 78
    • 84868342049 scopus 로고    scopus 로고
    • In vivo genome editing using a high-efficiency TALEN system
    • Bedell VM, Wang Y, Campbell JM, et al. In vivo genome editing using a high-efficiency TALEN system. Nature 2012;491:114-8.
    • (2012) Nature , vol.491 , pp. 114-118
    • Bedell, V.M.1    Wang, Y.2    Campbell, J.M.3
  • 79
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339:819-23.
    • (2013) Science , vol.339 , pp. 819-823
    • Cong, L.1    Ran, F.A.2    Cox, D.3
  • 80
    • 0042266417 scopus 로고    scopus 로고
    • The role of hepatocyte nuclear factor-3 alpha (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genes
    • Gao N, Zhang J, Rao MA, et al. The role of hepatocyte nuclear factor-3 alpha (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genes. Mol Endocrinol 2003;17:1484-507.
    • (2003) Mol Endocrinol , vol.17 , pp. 1484-1507
    • Gao, N.1    Zhang, J.2    Rao, M.A.3
  • 81
    • 0036184236 scopus 로고    scopus 로고
    • Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4
    • Cirillo LA, Lin FR, Cuesta I, et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell 2002;9:279-89.
    • (2002) Mol Cell , vol.9 , pp. 279-289
    • Cirillo, L.A.1    Lin, F.R.2    Cuesta, I.3
  • 82
    • 13844310310 scopus 로고    scopus 로고
    • Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer
    • Wang Y, Klijn JG, Zhang Y, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005;365:671-9.
    • (2005) Lancet , vol.365 , pp. 671-679
    • Wang, Y.1    Klijn, J.G.2    Zhang, Y.3
  • 83
    • 40849085514 scopus 로고    scopus 로고
    • FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription
    • Lupien M, Eeckhoute J, Meyer CA, et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 2008;132:958-70.
    • (2008) Cell , vol.132 , pp. 958-970
    • Lupien, M.1    Eeckhoute, J.2    Meyer, C.A.3
  • 84
    • 61849119137 scopus 로고    scopus 로고
    • Cell-type selective chromatin remodeling defines the active subset of FOXA1-bound enhancers
    • Eeckhoute J, Lupien M, Meyer CA, et al. Cell-type selective chromatin remodeling defines the active subset of FOXA1-bound enhancers. Genome Res 2009;19:372-80.
    • (2009) Genome Res , vol.19 , pp. 372-380
    • Eeckhoute, J.1    Lupien, M.2    Meyer, C.A.3
  • 85
    • 0029865240 scopus 로고    scopus 로고
    • Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter
    • Cleutjens KB, van Eekelen CC, van der Korput HA, et al. Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter. J Biol Chem 1996;271:6379-88.
    • (1996) J Biol Chem , vol.271 , pp. 6379-6388
    • Cleutjens, K.B.1    van Eekelen, C.C.2    van der Korput, H.A.3
  • 86
    • 0036208492 scopus 로고    scopus 로고
    • Formation of the androgen receptor transcription complex
    • Shang Y, Myers M, Brown M. Formation of the androgen receptor transcription complex. Mol Cell 2002;9:601-10.
    • (2002) Mol Cell , vol.9 , pp. 601-610
    • Shang, Y.1    Myers, M.2    Brown, M.3
  • 87
    • 8344272750 scopus 로고    scopus 로고
    • Coregulator recruitment and histone modifications in transcriptional regulation by the androgen receptor
    • Kang Z, Jänne OA, Palvimo JJ. Coregulator recruitment and histone modifications in transcriptional regulation by the androgen receptor. Mol Endocrinol 2004;18:2633-48.
    • (2004) Mol Endocrinol , vol.18 , pp. 2633-2648
    • Kang, Z.1    Jänne, O.A.2    Palvimo, J.J.3
  • 88
    • 0032511224 scopus 로고    scopus 로고
    • Perturbation of nucleosome structure by the erythroid transcription factor GATA-1
    • Boyes J, Omichinski J, Clark D, et al. Perturbation of nucleosome structure by the erythroid transcription factor GATA-1. J Mol Biol 1998;279:529-44.
    • (1998) J Mol Biol , vol.279 , pp. 529-544
    • Boyes, J.1    Omichinski, J.2    Clark, D.3
  • 89
    • 0343714601 scopus 로고    scopus 로고
    • A role for GATA transcription factors in the androgen regulation of the prostate-specific antigen gene enhancer
    • Perez-Stable CM, Pozas A, Roos BA. A role for GATA transcription factors in the androgen regulation of the prostate-specific antigen gene enhancer. Mol Cell Endocrinol 2000;167:43-53.
    • (2000) Mol Cell Endocrinol , vol.167 , pp. 43-53
    • Perez-Stable, C.M.1    Pozas, A.2    Roos, B.A.3
  • 90
    • 33847068858 scopus 로고    scopus 로고
    • Posterior Hox gene expression and differential androgen regulation in the developing and adult rat prostate lobes
    • Huang L, Pu Y, Hepps D, et al. Posterior Hox gene expression and differential androgen regulation in the developing and adult rat prostate lobes. Endocrinology 2007;148:1235-45.
    • (2007) Endocrinology , vol.148 , pp. 1235-1245
    • Huang, L.1    Pu, Y.2    Hepps, D.3
  • 91
    • 70449123571 scopus 로고    scopus 로고
    • The homeodomain protein HOXB13 regulates the cellular response to androgens
    • Norris JD, Chang CY, Wittmann BM, et al. The homeodomain protein HOXB13 regulates the cellular response to androgens. Mol Cell 2009;36:405-16.
    • (2009) Mol Cell , vol.36 , pp. 405-416
    • Norris, J.D.1    Chang, C.Y.2    Wittmann, B.M.3
  • 92
    • 37349118115 scopus 로고    scopus 로고
    • Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex
    • Heemers HV, Tindall DJ. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 2007;28:778-808.
    • (2007) Endocr Rev , vol.28 , pp. 778-808
    • Heemers, H.V.1    Tindall, D.J.2
  • 93
    • 0033957171 scopus 로고    scopus 로고
    • PDEF, a novel prostate epithelium-specific ets transcription factor, interacts with the androgen receptor and activates prostate-specific antigen gene expression
    • Oettgen P, Finger E, Sun Z, et al. PDEF, a novel prostate epithelium-specific ets transcription factor, interacts with the androgen receptor and activates prostate-specific antigen gene expression. J Biol Chem 2000;275:1216-25.
    • (2000) J Biol Chem , vol.275 , pp. 1216-1225
    • Oettgen, P.1    Finger, E.2    Sun, Z.3
  • 94
    • 84863072810 scopus 로고    scopus 로고
    • Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival
    • Tan PY, Chang CW, Chng KR, et al. Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival. Mol Cell Biol 2012;32:399-414.
    • (2012) Mol Cell Biol , vol.32 , pp. 399-414
    • Tan, P.Y.1    Chang, C.W.2    Chng, K.R.3
  • 95
    • 77956285565 scopus 로고    scopus 로고
    • ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer
    • Kunderfranco P, Mello-Grand M, Cangemi R, et al. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer. PLoS One 2010;5:e10547.
    • (2010) PLoS One , vol.5
    • Kunderfranco, P.1    Mello-Grand, M.2    Cangemi, R.3
  • 96
    • 84862161257 scopus 로고    scopus 로고
    • A transcriptional repressor co-regulatory network governing androgen response in prostate cancers
    • Chng KR, Chang CW, Tan SK, et al. A transcriptional repressor co-regulatory network governing androgen response in prostate cancers. EMBO J 2012;31:2810-23.
    • (2012) EMBO J , vol.31 , pp. 2810-2823
    • Chng, K.R.1    Chang, C.W.2    Tan, S.K.3
  • 97
    • 80054761058 scopus 로고    scopus 로고
    • Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1
    • Cai C, He HH, Chen S, et al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell 2011;20:457-71.
    • (2011) Cancer Cell , vol.20 , pp. 457-471
    • Cai, C.1    He, H.H.2    Chen, S.3
  • 98
    • 33847057016 scopus 로고    scopus 로고
    • The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression
    • Verras M, Lee J, Xue H, et al. The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression. Cancer Res 2007;67:967-75.
    • (2007) Cancer Res , vol.67 , pp. 967-975
    • Verras, M.1    Lee, J.2    Xue, H.3
  • 99
    • 84872241633 scopus 로고    scopus 로고
    • Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer
    • Kregel S, Kiriluk KJ, Rosen AM, et al. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer. PLoS One 2013;8:e53701.
    • (2013) PLoS One , vol.8
    • Kregel, S.1    Kiriluk, K.J.2    Rosen, A.M.3
  • 100
    • 34447288490 scopus 로고    scopus 로고
    • Androgen-regulated genes differentially modulated by the androgen receptor coactivator L-dopa decarboxylase in human prostate cancer cells
    • Margiotti K, Wafa LA, Cheng H, et al. Androgen-regulated genes differentially modulated by the androgen receptor coactivator L-dopa decarboxylase in human prostate cancer cells. Mol Cancer 2007;6:38.
    • (2007) Mol Cancer , vol.6 , pp. 38
    • Margiotti, K.1    Wafa, L.A.2    Cheng, H.3
  • 101
    • 84863041971 scopus 로고    scopus 로고
    • Cooperation between Polycomb and androgen receptor during oncogenic transformation
    • Zhao JC, Yu J, Runkle C, et al. Cooperation between Polycomb and androgen receptor during oncogenic transformation. Genome Res 2012;22:322-31.
    • (2012) Genome Res , vol.22 , pp. 322-331
    • Zhao, J.C.1    Yu, J.2    Runkle, C.3
  • 102
    • 84870591476 scopus 로고    scopus 로고
    • Persistent androgen receptor-mediated transcription in castration-resistant prostate cancer under androgen-deprived conditions
    • Decker KF, Zheng D, He Y, et al. Persistent androgen receptor-mediated transcription in castration-resistant prostate cancer under androgen-deprived conditions. Nucleic Acids Res 2012;40:10765-79.
    • (2012) Nucleic Acids Res , vol.40 , pp. 10765-10779
    • Decker, K.F.1    Zheng, D.2    He, Y.3
  • 103
    • 84863723010 scopus 로고    scopus 로고
    • The mutational landscape of lethal castration-resistant prostate cancer
    • Grasso CS, Wu YM, Robinson DR, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012;487:239-43.
    • (2012) Nature , vol.487 , pp. 239-243
    • Grasso, C.S.1    Wu, Y.M.2    Robinson, D.R.3
  • 104
    • 84861581164 scopus 로고    scopus 로고
    • Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer
    • Barbieri CE, Baca SC, Lawrence MS, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 2012;44:685-9.
    • (2012) Nat Genet , vol.44 , pp. 685-689
    • Barbieri, C.E.1    Baca, S.C.2    Lawrence, M.S.3
  • 105
    • 84879085247 scopus 로고    scopus 로고
    • Androgen receptor-independent function of FoxA1 in prostate cancer metastasis
    • Jin HJ, Zhao JC, Ogden I, et al. Androgen receptor-independent function of FoxA1 in prostate cancer metastasis. Cancer Res 2013;73:3725-36.
    • (2013) Cancer Res , vol.73 , pp. 3725-3736
    • Jin, H.J.1    Zhao, J.C.2    Ogden, I.3
  • 106
    • 84872391385 scopus 로고    scopus 로고
    • The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man
    • Sharma NL, Massie CE, Ramos-Montoya A, et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell 2013;23:35-47.
    • (2013) Cancer Cell , vol.23 , pp. 35-47
    • Sharma, N.L.1    Massie, C.E.2    Ramos-Montoya, A.3
  • 107
    • 0035328474 scopus 로고    scopus 로고
    • Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer
    • Linja MJ, Savinainen KJ, Saramäki OR, et al. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 2001;61:3550-5.
    • (2001) Cancer Res , vol.61 , pp. 3550-3555
    • Linja, M.J.1    Savinainen, K.J.2    Saramäki, O.R.3
  • 108
    • 84871052080 scopus 로고    scopus 로고
    • EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent
    • Xu K, Wu ZJ, Groner AC, et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 2012;338:1465-9.
    • (2012) Science , vol.338 , pp. 1465-1469
    • Xu, K.1    Wu, Z.J.2    Groner, A.C.3
  • 109
    • 18644382388 scopus 로고    scopus 로고
    • The polycomb group protein EZH2 is involved in progression of prostate cancer
    • Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002;419:624-9.
    • (2002) Nature , vol.419 , pp. 624-629
    • Varambally, S.1    Dhanasekaran, S.M.2    Zhou, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.