-
1
-
-
2342558431
-
Androgen receptor in prostate cancer
-
Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev 2004;25:276-308.
-
(2004)
Endocr Rev
, vol.25
, pp. 276-308
-
-
Heinlein, C.A.1
Chang, C.2
-
3
-
-
0029778413
-
The androgen-specific probasin response element 2 interacts differentially with androgen and glucocorticoid receptors
-
Claessens F, Alen P, Devos A, et al. The androgen-specific probasin response element 2 interacts differentially with androgen and glucocorticoid receptors. J Biol Chem 1996;271:19013-6.
-
(1996)
J Biol Chem
, vol.271
, pp. 19013-19016
-
-
Claessens, F.1
Alen, P.2
Devos, A.3
-
4
-
-
0031919917
-
Isolation and androgen regulation of the human homeobox cDNA, NKX3.1
-
Prescott JL, Blok L, Tindall DJ. Isolation and androgen regulation of the human homeobox cDNA, NKX3.1. Prostate 1998;35:71-80.
-
(1998)
Prostate
, vol.35
, pp. 71-80
-
-
Prescott, J.L.1
Blok, L.2
Tindall, D.J.3
-
5
-
-
0036178556
-
Digital expression profiles of the prostate androgen-response program
-
Clegg N, Eroglu B, Ferguson C, et al. Digital expression profiles of the prostate androgen-response program. J Steroid Biochem Mol Biol 2002;80:13-23.
-
(2002)
J Steroid Biochem Mol Biol
, vol.80
, pp. 13-23
-
-
Clegg, N.1
Eroglu, B.2
Ferguson, C.3
-
6
-
-
0035342537
-
Quantitative expression profile of androgen-regulated genes in prostate cancer cells and identification of prostate-specific genes
-
Xu LL, Su YP, Labiche R, et al. Quantitative expression profile of androgen-regulated genes in prostate cancer cells and identification of prostate-specific genes. Int J Cancer 2001;92:322-8.
-
(2001)
Int J Cancer
, vol.92
, pp. 322-328
-
-
Xu, L.L.1
Su, Y.P.2
Labiche, R.3
-
7
-
-
0035488295
-
Identification of androgen-regulated genes in the prostate cancer cell line LNCaP by serial analysis of gene expression and proteomic analysis
-
Waghray A, Feroze F, Schober MS, et al. Identification of androgen-regulated genes in the prostate cancer cell line LNCaP by serial analysis of gene expression and proteomic analysis. Proteomics 2001;1:1327-38.
-
(2001)
Proteomics
, vol.1
, pp. 1327-1338
-
-
Waghray, A.1
Feroze, F.2
Schober, M.S.3
-
8
-
-
70449711211
-
Identification of novel androgen-responsive genes by sequencing of LongSAGE libraries
-
Romanuik TL, Wang G, Holt RA, et al. Identification of novel androgen-responsive genes by sequencing of LongSAGE libraries. BMC Genomics 2009;10:476.
-
(2009)
BMC Genomics
, vol.10
, pp. 476
-
-
Romanuik, T.L.1
Wang, G.2
Holt, R.A.3
-
9
-
-
17144444034
-
Transcriptional programs activated by exposure of human prostate cancer cells to androgen
-
RESEARCH0032
-
DePrimo SE, Diehn M, Nelson JB, et al. Transcriptional programs activated by exposure of human prostate cancer cells to androgen. Genome Biol 2002;3:RESEARCH0032.
-
(2002)
Genome Biol
, vol.3
-
-
DePrimo, S.E.1
Diehn, M.2
Nelson, J.B.3
-
10
-
-
3843091606
-
Identification and validation of novel androgen-regulated genes in prostate cancer
-
Velasco AM, Gillis KA, Li Y, et al. Identification and validation of novel androgen-regulated genes in prostate cancer. Endocrinology 2004;145:3913-24.
-
(2004)
Endocrinology
, vol.145
, pp. 3913-3924
-
-
Velasco, A.M.1
Gillis, K.A.2
Li, Y.3
-
11
-
-
66149105948
-
Microarray coupled to quantitative RT-PCR analysis of androgen-regulated genes in human LNCaP prostate cancer cells
-
Ngan S, Stronach EA, Photiou A, et al. Microarray coupled to quantitative RT-PCR analysis of androgen-regulated genes in human LNCaP prostate cancer cells. Oncogene 2009;28:2051-63.
-
(2009)
Oncogene
, vol.28
, pp. 2051-2063
-
-
Ngan, S.1
Stronach, E.A.2
Photiou, A.3
-
12
-
-
79960071366
-
The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis
-
Massie CE, Lynch A, Ramos-Montoya A, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 2011;30:2719-33.
-
(2011)
EMBO J
, vol.30
, pp. 2719-2733
-
-
Massie, C.E.1
Lynch, A.2
Ramos-Montoya, A.3
-
13
-
-
33748787116
-
Ligand-independent androgen receptor activity is activation function-2-independent and resistant to antiandrogens in androgen refractory prostate cancer cells
-
Dehm SM, Tindall DJ. Ligand-independent androgen receptor activity is activation function-2-independent and resistant to antiandrogens in androgen refractory prostate cancer cells. J Biol Chem 2006;281:27882-93.
-
(2006)
J Biol Chem
, vol.281
, pp. 27882-27893
-
-
Dehm, S.M.1
Tindall, D.J.2
-
14
-
-
70350445957
-
Androgen-responsive gene database: integrated knowledge on androgen-responsive genes
-
Jiang M, Ma Y, Chen C, et al. Androgen-responsive gene database: integrated knowledge on androgen-responsive genes. Mol Endocrinol 2009;23:1927-33.
-
(2009)
Mol Endocrinol
, vol.23
, pp. 1927-1933
-
-
Jiang, M.1
Ma, Y.2
Chen, C.3
-
16
-
-
0037387184
-
Identification of androgen-responsive genes in the rat ventral prostate by complementary deoxyribonucleic acid subtraction and microarray
-
Jiang F, Wang Z. Identification of androgen-responsive genes in the rat ventral prostate by complementary deoxyribonucleic acid subtraction and microarray. Endocrinology 2003;144:1257-65.
-
(2003)
Endocrinology
, vol.144
, pp. 1257-1265
-
-
Jiang, F.1
Wang, Z.2
-
17
-
-
19444362976
-
Identification of androgen-responsive genes that are alternatively regulated in androgen-dependent and androgen-independent rat prostate tumors
-
Pfundt R, Smit F, Jansen C, et al. Identification of androgen-responsive genes that are alternatively regulated in androgen-dependent and androgen-independent rat prostate tumors. Genes Chromosomes Cancer 2005;43:273-83.
-
(2005)
Genes Chromosomes Cancer
, vol.43
, pp. 273-283
-
-
Pfundt, R.1
Smit, F.2
Jansen, C.3
-
18
-
-
33947233837
-
Expression profiling of the mouse prostate after castration and hormone replacement: implication of H-cadherin in prostate tumorigenesis
-
Wang XD, Wang BE, Soriano R, et al. Expression profiling of the mouse prostate after castration and hormone replacement: implication of H-cadherin in prostate tumorigenesis. Differentiation 2007;75:219-34.
-
(2007)
Differentiation
, vol.75
, pp. 219-234
-
-
Wang, X.D.1
Wang, B.E.2
Soriano, R.3
-
19
-
-
0037015040
-
The program of androgen-responsive genes in neoplastic prostate epithelium
-
Nelson PS, Clegg N, Arnold H, et al. The program of androgen-responsive genes in neoplastic prostate epithelium. Proc Natl Acad Sci U S A 2002;99:11890-5.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 11890-11895
-
-
Nelson, P.S.1
Clegg, N.2
Arnold, H.3
-
20
-
-
78751475852
-
CaM kinase kinase beta-mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells
-
Frigo DE, Howe MK, Wittmann BM, et al. CaM kinase kinase beta-mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells. Cancer Res 2011;71:528-37.
-
(2011)
Cancer Res
, vol.71
, pp. 528-537
-
-
Frigo, D.E.1
Howe, M.K.2
Wittmann, B.M.3
-
21
-
-
67650758019
-
Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer
-
Wang Q, Li W, Zhang Y, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 2009;138:245-56.
-
(2009)
Cell
, vol.138
, pp. 245-256
-
-
Wang, Q.1
Li, W.2
Zhang, Y.3
-
22
-
-
1542574202
-
Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance
-
Holzbeierlein J, Lal P, LaTulippe E, et al. Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol 2004;164:217-27.
-
(2004)
Am J Pathol
, vol.164
, pp. 217-227
-
-
Holzbeierlein, J.1
Lal, P.2
LaTulippe, E.3
-
23
-
-
34250331066
-
Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer
-
Mostaghel EA, Page ST, Lin DW, et al. Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res 2007;67:5033-41.
-
(2007)
Cancer Res
, vol.67
, pp. 5033-5041
-
-
Mostaghel, E.A.1
Page, S.T.2
Lin, D.W.3
-
24
-
-
84863979005
-
Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer
-
Hu R, Lu C, Mostaghel EA, et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 2012;72:3457-62.
-
(2012)
Cancer Res
, vol.72
, pp. 3457-3462
-
-
Hu, R.1
Lu, C.2
Mostaghel, E.A.3
-
25
-
-
27344451557
-
Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer
-
Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005;310:644-8.
-
(2005)
Science
, vol.310
, pp. 644-648
-
-
Tomlins, S.A.1
Rhodes, D.R.2
Perner, S.3
-
26
-
-
67649425225
-
ETS gene fusions in prostate cancer: from discovery to daily clinical practice
-
Tomlins SA, Bjartell A, Chinnaiyan AM, et al. ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol 2009;56:275-86.
-
(2009)
Eur Urol
, vol.56
, pp. 275-286
-
-
Tomlins, S.A.1
Bjartell, A.2
Chinnaiyan, A.M.3
-
27
-
-
34547642493
-
Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer
-
Tomlins SA, Laxman B, Dhanasekaran SM, et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 2007;448:595-9.
-
(2007)
Nature
, vol.448
, pp. 595-599
-
-
Tomlins, S.A.1
Laxman, B.2
Dhanasekaran, S.M.3
-
29
-
-
84860842223
-
ETS rearrangements in prostate cancer
-
Rubin MA. ETS rearrangements in prostate cancer. Asian J Androl 2012;14:393-9.
-
(2012)
Asian J Androl
, vol.14
, pp. 393-399
-
-
Rubin, M.A.1
-
31
-
-
36049049840
-
TMPRSS2-ETS fusion prostate cancer: biological and clinical implications
-
Demichelis F, Rubin MA. TMPRSS2-ETS fusion prostate cancer: biological and clinical implications. J Clin Pathol 2007;60:1185-6.
-
(2007)
J Clin Pathol
, vol.60
, pp. 1185-1186
-
-
Demichelis, F.1
Rubin, M.A.2
-
33
-
-
71249101060
-
Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer
-
Lin C, Yang L, Tanasa B, et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 2009;139:1069-83.
-
(2009)
Cell
, vol.139
, pp. 1069-1083
-
-
Lin, C.1
Yang, L.2
Tanasa, B.3
-
34
-
-
70849135782
-
Induced chromosomal proximity and gene fusions in prostate cancer
-
Mani RS, Tomlins SA, Callahan K, et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science 2009;326:1230.
-
(2009)
Science
, vol.326
, pp. 1230
-
-
Mani, R.S.1
Tomlins, S.A.2
Callahan, K.3
-
35
-
-
77955069195
-
Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements
-
Haffner MC, Aryee MJ, Toubaji A, et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet 2010;42:668-75.
-
(2010)
Nat Genet
, vol.42
, pp. 668-675
-
-
Haffner, M.C.1
Aryee, M.J.2
Toubaji, A.3
-
36
-
-
83355176377
-
Identification of novel androgen-regulated pathways and mRNA isoforms through genome-wide exon-specific profiling of the LNCaP transcriptome
-
Rajan P, Dalgliesh C, Carling PJ, et al. Identification of novel androgen-regulated pathways and mRNA isoforms through genome-wide exon-specific profiling of the LNCaP transcriptome. PLoS One 2011;6:e29088.
-
(2011)
PLoS One
, vol.6
-
-
Rajan, P.1
Dalgliesh, C.2
Carling, P.J.3
-
37
-
-
48549089747
-
Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance
-
Dehm SM, Schmidt LJ, Heemers HV, et al. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 2008;68:5469-77.
-
(2008)
Cancer Res
, vol.68
, pp. 5469-5477
-
-
Dehm, S.M.1
Schmidt, L.J.2
Heemers, H.V.3
-
38
-
-
58249110391
-
Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer
-
Hu R, Dunn TA, Wei S, et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 2009;69:16-22.
-
(2009)
Cancer Res
, vol.69
, pp. 16-22
-
-
Hu, R.1
Dunn, T.A.2
Wei, S.3
-
39
-
-
77955296562
-
Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant
-
Sun S, Sprenger CC, Vessella RL, et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 2010;120:2715-30.
-
(2010)
J Clin Invest
, vol.120
, pp. 2715-2730
-
-
Sun, S.1
Sprenger, C.C.2
Vessella, R.L.3
-
40
-
-
65549168746
-
A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth
-
Guo Z, Yang X, Sun F, et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 2009;69:2305-13.
-
(2009)
Cancer Res
, vol.69
, pp. 2305-2313
-
-
Guo, Z.1
Yang, X.2
Sun, F.3
-
41
-
-
58149490714
-
Determination of tag density required for digital transcriptome analysis: application to an androgen-sensitive prostate cancer model
-
Li H, Lovci MT, Kwon YS, et al. Determination of tag density required for digital transcriptome analysis: application to an androgen-sensitive prostate cancer model. Proc Natl Acad Sci U S A 2008;105:20179-84.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 20179-20184
-
-
Li, H.1
Lovci, M.T.2
Kwon, Y.S.3
-
42
-
-
70349320158
-
Causes and consequences of microRNA dysregulation in cancer
-
Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009;10:704-14.
-
(2009)
Nat Rev Genet
, vol.10
, pp. 704-714
-
-
Croce, C.M.1
-
43
-
-
81355142141
-
Non-coding RNAs in human disease
-
Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011;12:861-74.
-
(2011)
Nat Rev Genet
, vol.12
, pp. 861-874
-
-
Esteller, M.1
-
44
-
-
0035656688
-
Non-coding RNA genes and the modern RNA world
-
Eddy SR. Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2001;2:919-29.
-
(2001)
Nat Rev Genet
, vol.2
, pp. 919-929
-
-
Eddy, S.R.1
-
45
-
-
51049123624
-
Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer
-
Ambs S, Prueitt RL, Yi M, et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 2008;68:6162-70.
-
(2008)
Cancer Res
, vol.68
, pp. 6162-6170
-
-
Ambs, S.1
Prueitt, R.L.2
Yi, M.3
-
46
-
-
84857372726
-
Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer
-
Martens-Uzunova ES, Jalava SE, Dits NF, et al. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene 2012;31:978-91.
-
(2012)
Oncogene
, vol.31
, pp. 978-991
-
-
Martens-Uzunova, E.S.1
Jalava, S.E.2
Dits, N.F.3
-
47
-
-
84880154515
-
Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer
-
Du Z, Fei T, Verhaak RG, et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol 2013;20:908-13.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 908-913
-
-
Du, Z.1
Fei, T.2
Verhaak, R.G.3
-
48
-
-
70349750196
-
miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth
-
Ribas J, Ni X, Haffner M, et al. miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 2009;69:7165-9.
-
(2009)
Cancer Res
, vol.69
, pp. 7165-7169
-
-
Ribas, J.1
Ni, X.2
Haffner, M.3
-
49
-
-
84874309132
-
Identification of novel AR-targeted microRNAs mediating androgen signalling through critical pathways to regulate cell viability in prostate cancer
-
Mo W, Zhang J, Li X, et al. Identification of novel AR-targeted microRNAs mediating androgen signalling through critical pathways to regulate cell viability in prostate cancer. PLoS One 2013;8:e56592.
-
(2013)
PLoS One
, vol.8
-
-
Mo, W.1
Zhang, J.2
Li, X.3
-
50
-
-
33847193479
-
Androgen responsive intronic non-coding RNAs
-
Louro R, Nakaya HI, Amaral PP, et al. Androgen responsive intronic non-coding RNAs. BMC Biol 2007;5:4.
-
(2007)
BMC Biol
, vol.5
, pp. 4
-
-
Louro, R.1
Nakaya, H.I.2
Amaral, P.P.3
-
51
-
-
0033429470
-
DD3: a new prostate-specific gene, highly overexpressed in prostate cancer
-
Bussemakers MJ, van Bokhoven A, Verhaegh GW, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 1999;59:5975-9.
-
(1999)
Cancer Res
, vol.59
, pp. 5975-5979
-
-
Bussemakers, M.J.1
van Bokhoven, A.2
Verhaegh, G.W.3
-
52
-
-
12944252955
-
PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer
-
Srikantan V, Zou Z, Petrovics G, et al. PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc Natl Acad Sci U S A 2000;97:12216-21.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 12216-12221
-
-
Srikantan, V.1
Zou, Z.2
Petrovics, G.3
-
53
-
-
77953096072
-
Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a
-
Yap KL, Li S, Muñoz-Cabello AM, et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 2010;38:662-74.
-
(2010)
Mol Cell
, vol.38
, pp. 662-674
-
-
Yap, K.L.1
Li, S.2
Muñoz-Cabello, A.M.3
-
54
-
-
79961202865
-
Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression
-
Prensner JR, Iyer MK, Balbin OA, et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 2011;29:742-9.
-
(2011)
Nat Biotechnol
, vol.29
, pp. 742-749
-
-
Prensner, J.R.1
Iyer, M.K.2
Balbin, O.A.3
-
55
-
-
84879462680
-
Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer
-
Takayama K, Horie-Inoue K, Katayama S, et al. Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. EMBO J 2013;32:1665-80.
-
(2013)
EMBO J
, vol.32
, pp. 1665-1680
-
-
Takayama, K.1
Horie-Inoue, K.2
Katayama, S.3
-
56
-
-
24044540381
-
Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking
-
Wang Q, Carroll JS, Brown M. Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 2005;19:631-42.
-
(2005)
Mol Cell
, vol.19
, pp. 631-642
-
-
Wang, Q.1
Carroll, J.S.2
Brown, M.3
-
57
-
-
84879116722
-
CCN3/NOV gene expression in human prostate cancer is directly suppressed by the androgen receptor
-
[Epub ahead of print].
-
Wu L, Runkle C, Jin HJ, et al. CCN3/NOV gene expression in human prostate cancer is directly suppressed by the androgen receptor. Oncogene 2013. [Epub ahead of print].
-
(2013)
Oncogene
-
-
Wu, L.1
Runkle, C.2
Jin, H.J.3
-
58
-
-
34347324035
-
Identification of novel androgen response genes in prostate cancer cells by coupling chromatin immunoprecipitation and genomic microarray analysis
-
Takayama K, Kaneshiro K, Tsutsumi S, et al. Identification of novel androgen response genes in prostate cancer cells by coupling chromatin immunoprecipitation and genomic microarray analysis. Oncogene 2007;26:4453-63.
-
(2007)
Oncogene
, vol.26
, pp. 4453-4463
-
-
Takayama, K.1
Kaneshiro, K.2
Tsutsumi, S.3
-
59
-
-
35548958147
-
New androgen receptor genomic targets show an interaction with the ETS1 transcription factor
-
Massie CE, Adryan B, Barbosa-Morais NL, et al. New androgen receptor genomic targets show an interaction with the ETS1 transcription factor. EMBO Rep 2007;8:871-8.
-
(2007)
EMBO Rep
, vol.8
, pp. 871-878
-
-
Massie, C.E.1
Adryan, B.2
Barbosa-Morais, N.L.3
-
60
-
-
34547931715
-
Cell-and gene-specific regulation of primary target genes by the androgen receptor
-
Bolton EC, So AY, Chaivorapol C, et al. Cell-and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev 2007;21:2005-17.
-
(2007)
Genes Dev
, vol.21
, pp. 2005-2017
-
-
Bolton, E.C.1
So, A.Y.2
Chaivorapol, C.3
-
61
-
-
34547214787
-
A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth
-
Wang Q, Li W, Liu XS, et al. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 2007;27:380-92.
-
(2007)
Mol Cell
, vol.27
, pp. 380-392
-
-
Wang, Q.1
Li, W.2
Liu, X.S.3
-
62
-
-
58149234445
-
Genomic androgen receptor-occupied regions with different functions, defined by histone acetylation, coregulators and transcriptional capacity
-
Jia L, Berman BP, Jariwala U, et al. Genomic androgen receptor-occupied regions with different functions, defined by histone acetylation, coregulators and transcriptional capacity. PLoS One 2008;3:e3645.
-
(2008)
PLoS One
, vol.3
-
-
Jia, L.1
Berman, B.P.2
Jariwala, U.3
-
63
-
-
78649820197
-
Genome-wide analysis of androgen receptor binding and gene regulation in two CWR22-derived prostate cancer cell lines
-
Chen H, Libertini SJ, George M, et al. Genome-wide analysis of androgen receptor binding and gene regulation in two CWR22-derived prostate cancer cell lines. Endocr Relat Cancer 2010;17:857-73.
-
(2010)
Endocr Relat Cancer
, vol.17
, pp. 857-873
-
-
Chen, H.1
Libertini, S.J.2
George, M.3
-
64
-
-
34249026300
-
High-resolution profiling of histone methylations in the human genome
-
Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome. Cell 2007;129:823-37.
-
(2007)
Cell
, vol.129
, pp. 823-837
-
-
Barski, A.1
Cuddapah, S.2
Cui, K.3
-
65
-
-
34547633677
-
Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing
-
Robertson G, Hirst M, Bainbridge M, et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 2007;4:651-7.
-
(2007)
Nat Methods
, vol.4
, pp. 651-657
-
-
Robertson, G.1
Hirst, M.2
Bainbridge, M.3
-
66
-
-
68749084845
-
Integrated expression profiling and ChIP-seq analyses of the growth inhibition response program of the androgen receptor
-
Lin B, Wang J, Hong X, et al. Integrated expression profiling and ChIP-seq analyses of the growth inhibition response program of the androgen receptor. PLoS One 2009;4:e6589.
-
(2009)
PLoS One
, vol.4
-
-
Lin, B.1
Wang, J.2
Hong, X.3
-
67
-
-
77952103123
-
An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression
-
Yu J, Yu J, Mani RS, et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 2010;17:443-54.
-
(2010)
Cancer Cell
, vol.17
, pp. 443-454
-
-
Yu, J.1
Yu, J.2
Mani, R.S.3
-
68
-
-
79961029891
-
Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1
-
Robinson JL, Macarthur S, Ross-Innes CS, et al. Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. EMBO J 2011;30:3019-27.
-
(2011)
EMBO J
, vol.30
, pp. 3019-3027
-
-
Robinson, J.L.1
Macarthur, S.2
Ross-Innes, C.S.3
-
69
-
-
83255192190
-
Dynamic nucleosome-depleted regions at androgen receptor enhancers in the absence of ligand in prostate cancer cells
-
Andreu-Vieyra C, Lai J, Berman BP, et al. Dynamic nucleosome-depleted regions at androgen receptor enhancers in the absence of ligand in prostate cancer cells. Mol Cell Biol 2011;31:4648-62.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 4648-4662
-
-
Andreu-Vieyra, C.1
Lai, J.2
Berman, B.P.3
-
70
-
-
80053610846
-
Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer
-
Sahu B, Laakso M, Ovaska K, et al. Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J 2011;30:3962-76.
-
(2011)
EMBO J
, vol.30
, pp. 3962-3976
-
-
Sahu, B.1
Laakso, M.2
Ovaska, K.3
-
71
-
-
79959198166
-
Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA
-
Wang D, Garcia-Bassets I, Benner C, et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 2011;474:390-4.
-
(2011)
Nature
, vol.474
, pp. 390-394
-
-
Wang, D.1
Garcia-Bassets, I.2
Benner, C.3
-
72
-
-
79960050587
-
Targeting androgen receptor in estrogen receptor-negative breast cancer
-
Ni M, Chen Y, Lim E, et al. Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell 2011;20:119-31.
-
(2011)
Cancer Cell
, vol.20
, pp. 119-131
-
-
Ni, M.1
Chen, Y.2
Lim, E.3
-
73
-
-
83255164884
-
Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution
-
Rhee HS, Pugh BF. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 2011;147:1408-19.
-
(2011)
Cell
, vol.147
, pp. 1408-1419
-
-
Rhee, H.S.1
Pugh, B.F.2
-
74
-
-
84858165145
-
Genome-wide structure and organization of eukaryotic pre-initiation complexes
-
Rhee HS, Pugh BF. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 2012;483:295-301.
-
(2012)
Nature
, vol.483
, pp. 295-301
-
-
Rhee, H.S.1
Pugh, B.F.2
-
75
-
-
84862778059
-
Spatial organization of the mouse genome and its role in recurrent chromosomal translocations
-
Zhang Y, McCord RP, Ho YJ, et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 2012;148:908-21.
-
(2012)
Cell
, vol.148
, pp. 908-921
-
-
Zhang, Y.1
McCord, R.P.2
Ho, Y.J.3
-
76
-
-
84862908850
-
Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation
-
Li G, Ruan X, Auerbach RK, et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 2012;148:84-98.
-
(2012)
Cell
, vol.148
, pp. 84-98
-
-
Li, G.1
Ruan, X.2
Auerbach, R.K.3
-
77
-
-
84879264708
-
ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
-
Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013;31:397-405.
-
(2013)
Trends Biotechnol
, vol.31
, pp. 397-405
-
-
Gaj, T.1
Gersbach, C.A.2
Barbas III, C.F.3
-
78
-
-
84868342049
-
In vivo genome editing using a high-efficiency TALEN system
-
Bedell VM, Wang Y, Campbell JM, et al. In vivo genome editing using a high-efficiency TALEN system. Nature 2012;491:114-8.
-
(2012)
Nature
, vol.491
, pp. 114-118
-
-
Bedell, V.M.1
Wang, Y.2
Campbell, J.M.3
-
79
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339:819-23.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
-
80
-
-
0042266417
-
The role of hepatocyte nuclear factor-3 alpha (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genes
-
Gao N, Zhang J, Rao MA, et al. The role of hepatocyte nuclear factor-3 alpha (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genes. Mol Endocrinol 2003;17:1484-507.
-
(2003)
Mol Endocrinol
, vol.17
, pp. 1484-1507
-
-
Gao, N.1
Zhang, J.2
Rao, M.A.3
-
81
-
-
0036184236
-
Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4
-
Cirillo LA, Lin FR, Cuesta I, et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell 2002;9:279-89.
-
(2002)
Mol Cell
, vol.9
, pp. 279-289
-
-
Cirillo, L.A.1
Lin, F.R.2
Cuesta, I.3
-
82
-
-
13844310310
-
Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer
-
Wang Y, Klijn JG, Zhang Y, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005;365:671-9.
-
(2005)
Lancet
, vol.365
, pp. 671-679
-
-
Wang, Y.1
Klijn, J.G.2
Zhang, Y.3
-
83
-
-
40849085514
-
FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription
-
Lupien M, Eeckhoute J, Meyer CA, et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 2008;132:958-70.
-
(2008)
Cell
, vol.132
, pp. 958-970
-
-
Lupien, M.1
Eeckhoute, J.2
Meyer, C.A.3
-
84
-
-
61849119137
-
Cell-type selective chromatin remodeling defines the active subset of FOXA1-bound enhancers
-
Eeckhoute J, Lupien M, Meyer CA, et al. Cell-type selective chromatin remodeling defines the active subset of FOXA1-bound enhancers. Genome Res 2009;19:372-80.
-
(2009)
Genome Res
, vol.19
, pp. 372-380
-
-
Eeckhoute, J.1
Lupien, M.2
Meyer, C.A.3
-
85
-
-
0029865240
-
Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter
-
Cleutjens KB, van Eekelen CC, van der Korput HA, et al. Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter. J Biol Chem 1996;271:6379-88.
-
(1996)
J Biol Chem
, vol.271
, pp. 6379-6388
-
-
Cleutjens, K.B.1
van Eekelen, C.C.2
van der Korput, H.A.3
-
86
-
-
0036208492
-
Formation of the androgen receptor transcription complex
-
Shang Y, Myers M, Brown M. Formation of the androgen receptor transcription complex. Mol Cell 2002;9:601-10.
-
(2002)
Mol Cell
, vol.9
, pp. 601-610
-
-
Shang, Y.1
Myers, M.2
Brown, M.3
-
87
-
-
8344272750
-
Coregulator recruitment and histone modifications in transcriptional regulation by the androgen receptor
-
Kang Z, Jänne OA, Palvimo JJ. Coregulator recruitment and histone modifications in transcriptional regulation by the androgen receptor. Mol Endocrinol 2004;18:2633-48.
-
(2004)
Mol Endocrinol
, vol.18
, pp. 2633-2648
-
-
Kang, Z.1
Jänne, O.A.2
Palvimo, J.J.3
-
88
-
-
0032511224
-
Perturbation of nucleosome structure by the erythroid transcription factor GATA-1
-
Boyes J, Omichinski J, Clark D, et al. Perturbation of nucleosome structure by the erythroid transcription factor GATA-1. J Mol Biol 1998;279:529-44.
-
(1998)
J Mol Biol
, vol.279
, pp. 529-544
-
-
Boyes, J.1
Omichinski, J.2
Clark, D.3
-
89
-
-
0343714601
-
A role for GATA transcription factors in the androgen regulation of the prostate-specific antigen gene enhancer
-
Perez-Stable CM, Pozas A, Roos BA. A role for GATA transcription factors in the androgen regulation of the prostate-specific antigen gene enhancer. Mol Cell Endocrinol 2000;167:43-53.
-
(2000)
Mol Cell Endocrinol
, vol.167
, pp. 43-53
-
-
Perez-Stable, C.M.1
Pozas, A.2
Roos, B.A.3
-
90
-
-
33847068858
-
Posterior Hox gene expression and differential androgen regulation in the developing and adult rat prostate lobes
-
Huang L, Pu Y, Hepps D, et al. Posterior Hox gene expression and differential androgen regulation in the developing and adult rat prostate lobes. Endocrinology 2007;148:1235-45.
-
(2007)
Endocrinology
, vol.148
, pp. 1235-1245
-
-
Huang, L.1
Pu, Y.2
Hepps, D.3
-
91
-
-
70449123571
-
The homeodomain protein HOXB13 regulates the cellular response to androgens
-
Norris JD, Chang CY, Wittmann BM, et al. The homeodomain protein HOXB13 regulates the cellular response to androgens. Mol Cell 2009;36:405-16.
-
(2009)
Mol Cell
, vol.36
, pp. 405-416
-
-
Norris, J.D.1
Chang, C.Y.2
Wittmann, B.M.3
-
92
-
-
37349118115
-
Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex
-
Heemers HV, Tindall DJ. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 2007;28:778-808.
-
(2007)
Endocr Rev
, vol.28
, pp. 778-808
-
-
Heemers, H.V.1
Tindall, D.J.2
-
93
-
-
0033957171
-
PDEF, a novel prostate epithelium-specific ets transcription factor, interacts with the androgen receptor and activates prostate-specific antigen gene expression
-
Oettgen P, Finger E, Sun Z, et al. PDEF, a novel prostate epithelium-specific ets transcription factor, interacts with the androgen receptor and activates prostate-specific antigen gene expression. J Biol Chem 2000;275:1216-25.
-
(2000)
J Biol Chem
, vol.275
, pp. 1216-1225
-
-
Oettgen, P.1
Finger, E.2
Sun, Z.3
-
94
-
-
84863072810
-
Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival
-
Tan PY, Chang CW, Chng KR, et al. Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival. Mol Cell Biol 2012;32:399-414.
-
(2012)
Mol Cell Biol
, vol.32
, pp. 399-414
-
-
Tan, P.Y.1
Chang, C.W.2
Chng, K.R.3
-
95
-
-
77956285565
-
ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer
-
Kunderfranco P, Mello-Grand M, Cangemi R, et al. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer. PLoS One 2010;5:e10547.
-
(2010)
PLoS One
, vol.5
-
-
Kunderfranco, P.1
Mello-Grand, M.2
Cangemi, R.3
-
96
-
-
84862161257
-
A transcriptional repressor co-regulatory network governing androgen response in prostate cancers
-
Chng KR, Chang CW, Tan SK, et al. A transcriptional repressor co-regulatory network governing androgen response in prostate cancers. EMBO J 2012;31:2810-23.
-
(2012)
EMBO J
, vol.31
, pp. 2810-2823
-
-
Chng, K.R.1
Chang, C.W.2
Tan, S.K.3
-
97
-
-
80054761058
-
Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1
-
Cai C, He HH, Chen S, et al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell 2011;20:457-71.
-
(2011)
Cancer Cell
, vol.20
, pp. 457-471
-
-
Cai, C.1
He, H.H.2
Chen, S.3
-
98
-
-
33847057016
-
The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression
-
Verras M, Lee J, Xue H, et al. The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression. Cancer Res 2007;67:967-75.
-
(2007)
Cancer Res
, vol.67
, pp. 967-975
-
-
Verras, M.1
Lee, J.2
Xue, H.3
-
99
-
-
84872241633
-
Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer
-
Kregel S, Kiriluk KJ, Rosen AM, et al. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer. PLoS One 2013;8:e53701.
-
(2013)
PLoS One
, vol.8
-
-
Kregel, S.1
Kiriluk, K.J.2
Rosen, A.M.3
-
100
-
-
34447288490
-
Androgen-regulated genes differentially modulated by the androgen receptor coactivator L-dopa decarboxylase in human prostate cancer cells
-
Margiotti K, Wafa LA, Cheng H, et al. Androgen-regulated genes differentially modulated by the androgen receptor coactivator L-dopa decarboxylase in human prostate cancer cells. Mol Cancer 2007;6:38.
-
(2007)
Mol Cancer
, vol.6
, pp. 38
-
-
Margiotti, K.1
Wafa, L.A.2
Cheng, H.3
-
101
-
-
84863041971
-
Cooperation between Polycomb and androgen receptor during oncogenic transformation
-
Zhao JC, Yu J, Runkle C, et al. Cooperation between Polycomb and androgen receptor during oncogenic transformation. Genome Res 2012;22:322-31.
-
(2012)
Genome Res
, vol.22
, pp. 322-331
-
-
Zhao, J.C.1
Yu, J.2
Runkle, C.3
-
102
-
-
84870591476
-
Persistent androgen receptor-mediated transcription in castration-resistant prostate cancer under androgen-deprived conditions
-
Decker KF, Zheng D, He Y, et al. Persistent androgen receptor-mediated transcription in castration-resistant prostate cancer under androgen-deprived conditions. Nucleic Acids Res 2012;40:10765-79.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 10765-10779
-
-
Decker, K.F.1
Zheng, D.2
He, Y.3
-
103
-
-
84863723010
-
The mutational landscape of lethal castration-resistant prostate cancer
-
Grasso CS, Wu YM, Robinson DR, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012;487:239-43.
-
(2012)
Nature
, vol.487
, pp. 239-243
-
-
Grasso, C.S.1
Wu, Y.M.2
Robinson, D.R.3
-
104
-
-
84861581164
-
Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer
-
Barbieri CE, Baca SC, Lawrence MS, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 2012;44:685-9.
-
(2012)
Nat Genet
, vol.44
, pp. 685-689
-
-
Barbieri, C.E.1
Baca, S.C.2
Lawrence, M.S.3
-
105
-
-
84879085247
-
Androgen receptor-independent function of FoxA1 in prostate cancer metastasis
-
Jin HJ, Zhao JC, Ogden I, et al. Androgen receptor-independent function of FoxA1 in prostate cancer metastasis. Cancer Res 2013;73:3725-36.
-
(2013)
Cancer Res
, vol.73
, pp. 3725-3736
-
-
Jin, H.J.1
Zhao, J.C.2
Ogden, I.3
-
106
-
-
84872391385
-
The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man
-
Sharma NL, Massie CE, Ramos-Montoya A, et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell 2013;23:35-47.
-
(2013)
Cancer Cell
, vol.23
, pp. 35-47
-
-
Sharma, N.L.1
Massie, C.E.2
Ramos-Montoya, A.3
-
107
-
-
0035328474
-
Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer
-
Linja MJ, Savinainen KJ, Saramäki OR, et al. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 2001;61:3550-5.
-
(2001)
Cancer Res
, vol.61
, pp. 3550-3555
-
-
Linja, M.J.1
Savinainen, K.J.2
Saramäki, O.R.3
-
108
-
-
84871052080
-
EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent
-
Xu K, Wu ZJ, Groner AC, et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 2012;338:1465-9.
-
(2012)
Science
, vol.338
, pp. 1465-1469
-
-
Xu, K.1
Wu, Z.J.2
Groner, A.C.3
-
109
-
-
18644382388
-
The polycomb group protein EZH2 is involved in progression of prostate cancer
-
Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002;419:624-9.
-
(2002)
Nature
, vol.419
, pp. 624-629
-
-
Varambally, S.1
Dhanasekaran, S.M.2
Zhou, M.3
|