메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1055-1060

One-class matrix completion with low-density factorizations

Author keywords

Collaborative filtering; Implicit feedback; Matrix completion; NMF

Indexed keywords

BINARY MATRIX; COLLABORATIVE FILTERING; CUSTOMERBASE; DENSITY SEPARATION; HISTORICAL RECORDS; IMPLICIT FEEDBACK; LARGE CUSTOMER; MATRIX; MATRIX COMPLETION; MISSING DATA; NEGATIVE EXAMPLES; NMF; NONNEGATIVE MATRIX FACTORIZATION; OPTIMIZATION VARIABLES; SEMI-SUPERVISED LEARNING;

EID: 79951748586     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2010.164     Document Type: Conference Paper
Times cited : (85)

References (21)
  • 1
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • R. B. Yehuda Koren and C. Volinsky, "Matrix factorization techniques for recommender systems," in IEEE Computer, vol. 42 (8), pp. 30-37.
    • IEEE Computer , vol.42 , Issue.8 , pp. 30-37
    • Yehuda Koren, R.B.1    Volinsky, C.2
  • 3
    • 33750373672 scopus 로고    scopus 로고
    • Large scale semi-supervised linear svms
    • V. Sindhwani and S. Keerthi, "Large scale semi-supervised linear svms," in SIGIR, 2006.
    • (2006) SIGIR
    • Sindhwani, V.1    Keerthi, S.2
  • 4
    • 84976668719 scopus 로고
    • Using collaborative filtering to weave an information tapestry
    • D. Goldberg, D. Nichols, B. Oki, and D. Terry, "Using collaborative filtering to weave an information tapestry," in Comm. ACM, 35, 1992.
    • (1992) Comm. ACM , vol.35
    • Goldberg, D.1    Nichols, D.2    Oki, B.3    Terry, D.4
  • 5
    • 33749567580 scopus 로고    scopus 로고
    • Empirical analysis of predictive algorithms for collaborative filtering
    • J. S. Breese, D. Heckerman, and C. Kadie, "Empirical analysis of predictive algorithms for collaborative filtering," in UAI, 1998.
    • (1998) UAI
    • Breese, J.S.1    Heckerman, D.2    Kadie, C.3
  • 7
    • 31844451557 scopus 로고    scopus 로고
    • Fast maximum margin matrix factorization for collaborative prediction
    • J. Rennie and N. Srebro, "Fast maximum margin matrix factorization for collaborative prediction." in ICML, 2005.
    • (2005) ICML
    • Rennie, J.1    Srebro, N.2
  • 8
    • 1942516801 scopus 로고    scopus 로고
    • Weighted low-rank approximations
    • N. Srebro and T. Jaakkola, "Weighted low-rank approximations," in ICML, 2003.
    • (2003) ICML
    • Srebro, N.1    Jaakkola, T.2
  • 9
    • 33749244569 scopus 로고    scopus 로고
    • Content-boosted collaborative filtering for improved recommendations
    • P. Melville, R. Mooney, and R. Nagarajan, "Content-boosted collaborative filtering for improved recommendations," in AAAI, 2002.
    • AAAI, 2002
    • Melville, P.1    Mooney, R.2    Nagarajan, R.3
  • 10
    • 64149107285 scopus 로고    scopus 로고
    • A new approach to collaborative filtering: Operator estimation with spectral regularization
    • T. E. J.-P. V. J. Abernethy, F. Bach, "A new approach to collaborative filtering: Operator estimation with spectral regularization," in JMLR, vol. 10, 2009, pp. 803-826.
    • (2009) JMLR , vol.10 , pp. 803-826
    • Abernethy, T.E.J.-P.V.J.1    Bach, F.2
  • 11
    • 79951741754 scopus 로고    scopus 로고
    • Who rated what: A combination of svd, correlation and frequent sequence mining
    • T. K.-I. N. A. S. Miklo Kurucz, Andras A. Benczur and B. Torma., "Who rated what: a combination of svd, correlation and frequent sequence mining." in KDD, 2007.
    • (2007) KDD
    • Miklo Kurucz, T.K.-I.N.A.S.1    Benczur, A.A.2    Torma, B.3
  • 13
    • 70350623327 scopus 로고    scopus 로고
    • Mind the gaps: Weighting the unknown in large-scale one-class collaborative filtering
    • R. Pan and M. Scholz, "Mind the gaps: Weighting the unknown in large-scale one-class collaborative filtering." in KDD, 2009.
    • (2009) KDD
    • Pan, R.1    Scholz, M.2
  • 14
    • 67049164166 scopus 로고    scopus 로고
    • Collaborative filtering for implicit feedback datasets
    • Y. Hu, Y. Koren, and C. Volinsky, "Collaborative filtering for implicit feedback datasets," in ICDM, 2008.
    • (2008) ICDM
    • Hu, Y.1    Koren, Y.2    Volinsky, C.3
  • 15
    • 77951528523 scopus 로고    scopus 로고
    • The power of convex relaxation: Near optimal matrix completion
    • E. Candes and T. Tao, "The power of convex relaxation: Near optimal matrix completion," IEEE Transactions on Information Theory, vol. 56 (5), pp. 2053-2080, 2009.
    • (2009) IEEE Transactions on Information Theory , vol.56 , Issue.5 , pp. 2053-2080
    • Candes, E.1    Tao, T.2
  • 17
    • 77956944781 scopus 로고    scopus 로고
    • Spectral regularization algorithms for learning large incomplete matrices
    • Aug
    • R. Mazumder, T. Hastie, and R. Tibshirani, "Spectral regularization algorithms for learning large incomplete matrices," Journal of Machine Learning Research (JMLR), vol. 11(Aug), pp. 2287-2322, 2010.
    • (2010) Journal of Machine Learning Research (JMLR) , vol.11 , pp. 2287-2322
    • Mazumder, R.1    Hastie, T.2    Tibshirani, R.3
  • 18
    • 41549144249 scopus 로고    scopus 로고
    • Optimization techniques for semi-supervised support vector machines
    • O. Chapelle, V. Sindhwani, and S. Keerthi, "Optimization techniques for semi-supervised support vector machines," JMLR, vol. 9, pp. 203-233, 2006.
    • (2006) JMLR , vol.9 , pp. 203-233
    • Chapelle, O.1    Sindhwani, V.2    Keerthi, S.3
  • 19
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. Lee and H. Seung, "Learning the parts of objects by non-negative matrix factorization," in Nature, 1999.
    • (1999) Nature
    • Lee, D.1    Seung, H.2
  • 21
    • 75249088154 scopus 로고    scopus 로고
    • A survey of accuracy evaluation metrics of recommendation tasks
    • A. Gunawardana and G. Shani, "A survey of accuracy evaluation metrics of recommendation tasks," in Journal of Machine Learning Research, vol. 10, 2009, pp. 2935-2962.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2935-2962
    • Gunawardana, A.1    Shani, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.