-
1
-
-
33746577251
-
-
Princeton: Princeton University Press
-
Bernstein, D. S. (2005). Matrix mathematics. Princeton: Princeton University Press.
-
(2005)
Matrix Mathematics
-
-
Bernstein, D.S.1
-
2
-
-
3042597440
-
Learning multi-label scene classification
-
DOI 10.1016/j.patcog.2004.03.009, PII S0031320304001074
-
Boutell, M., Luo, J., Shen, X., & Brown, C. (2004). Learning multi-label scene classification. Pattern Recognition, 37(9), 1757-1771. (Pubitemid 38804465)
-
(2004)
Pattern Recognition
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.R.1
Luo, J.2
Shen, X.3
Brown, C.M.4
-
4
-
-
29644434908
-
Incremental algorithms for hierarchical classification
-
Cesa-Bianchi, N., Gentile, C., & Zaniboni, L. (2006). Incremental algorithms for hierarchical classification. Journal of Machine Learning Research, 7, 31-54. (Pubitemid 43022941)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 31-54
-
-
Cesa-Bianchi, N.1
Gentile, C.2
Zaniboni, L.3
-
5
-
-
10044235999
-
LIBSVM: A library for support vector machines
-
available at
-
Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: A library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
-
(2001)
Software
-
-
Chang, C.-C.1
Lin, C.-J.2
-
7
-
-
0142228873
-
A family of additive online algorithms for category ranking
-
Crammer, K., & Singer, Y. (2003). A family of additive online algorithms for category ranking. Journal of Machine Learning Research, 3, 1025-1058.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1025-1058
-
-
Crammer, K.1
Singer, Y.2
-
11
-
-
29144499905
-
Working set selection using second order information for training SVM
-
Fan, R. E., Chen, P. H., & Lin, C. J. (2005).Working set selection using second order information for training SVM. Journal of Machine Learning Research, 6, 1889-1918.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1889-1918
-
-
Fan, R.E.1
Chen, P.H.2
Lin, C.J.3
-
12
-
-
50949133669
-
Liblinear: A library for large linear classification
-
Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). Liblinear: A library for large linear classification. Journal of Machine Learning Research, 9, 1871-1874.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
13
-
-
70450207704
-
Describing objects by their attributes
-
Farhadi, A., Endres, I., Hoeim, D., & Forsyth, D. A. (2009). Describing objects by their attributes. In Proceedings of the IEEE conference on computer vision and pattern recognition.
-
(2009)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
-
-
Farhadi, A.1
Endres, I.2
Hoeim, D.3
Forsyth, D.A.4
-
16
-
-
77956531458
-
Large scale max-margin multi-label classification with priors
-
Hariharan, B., Zelnik-Manor, L., Vishwanathan, S. V. N., & Varma, M. (2010b). Large scale max-margin multi-label classification with priors. In Proceedings of the international conference on machine learning.
-
(2010)
Proceedings of the International Conference on Machine Learning
-
-
Hariharan, B.1
Zelnik-Manor, L.2
Vishwanathan, S.V.N.3
Varma, M.4
-
17
-
-
56449086680
-
A dual coordinate descent method for large-scale linear SVM
-
Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S. S., & Sundarajan, S. (2008). A dual coordinate descent method for large-scale linear SVM. In Proceedings of the international conference on machine learning.
-
(2008)
Proceedings of the International Conference on Machine Learning
-
-
Hsieh, C.-J.1
Chang, K.-W.2
Lin, C.-J.3
Keerthi, S.S.4
Sundarajan, S.5
-
18
-
-
77956528679
-
Multi-label prediction via compressed sensing
-
Hsu, D., Kakade, S., Langford, J., & Zhang, T. (2009). Multi-label prediction via compressed sensing. In Advances in neural information processing systems.
-
(2009)
Advances in Neural Information Processing Systems
-
-
Hsu, D.1
Kakade, S.2
Langford, J.3
Zhang, T.4
-
19
-
-
70350627315
-
Multi-label multiple kernel learning
-
Ji, S., Sun, L., Jin, R., & Ye, J. (2008).Multi-label multiple kernel learning. In Advances in neural information processing systems (pp. 777-784).
-
(2008)
Advances in neural information processing systems
, pp. 777-784
-
-
Ji, S.1
Sun, L.2
Jin, R.3
Ye, J.4
-
20
-
-
0036163654
-
Convergence of a generalized SMO algorithm for SVM classifier design
-
DOI 10.1023/A:1012431217818
-
Keerthi, S. S., & Gilbert, E. G. (2002). Convergence of a generalized SMO algorithm for SVM classifier design. Machine Learning, 46(1-3), 351-360. (Pubitemid 34129975)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 351-360
-
-
Keerthi, S.S.1
Gilbert, E.G.2
-
22
-
-
84876811202
-
RCV1: A new benchmark collection for text categorization research
-
Lewis, D., Yang, Y., Rose, T., & Li, F. (2004). RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research, 5, 361-397.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 361-397
-
-
Lewis, D.1
Yang, Y.2
Rose, T.3
Li, F.4
-
23
-
-
20444497715
-
Multi-label SVM active learning for image classification
-
2004 International Conference on Image Processing, ICIP 2004
-
Li, X.,Wang, L., & Sung, E. (2004).Multi-label SVM active learning for image classification. In Proceedings of the IEEE international conference on image processing (pp. 2207-2210). (Pubitemid 40820329)
-
(2004)
Proceedings - International Conference on Image Processing, ICIP
, vol.4
, pp. 2207-2210
-
-
Li, X.1
Wang, L.2
Sung, E.3
-
24
-
-
62949178474
-
Decomposition algorithm model for singly linearly-constrained problems subject to lower and upper bounds
-
Lin, C. J., Lucidi, S., Palagi, L., Risi, A., & Sciandrone,M. (2009). Decomposition algorithm model for singly linearly-constrained problems subject to lower and upper bounds. Journal of Optimization Theory and Applications, 141(1), 107-126.
-
(2009)
Journal of Optimization Theory and Applications
, vol.141
, Issue.1
, pp. 107-126
-
-
Lin, C.J.1
Lucidi, S.2
Palagi, L.3
Risi, A.4
Sciandrone, M.5
-
25
-
-
0003223784
-
Multi-label text classification with a mixture model trained by EM
-
McCallum, A. (1999). Multi-label text classification with a mixture model trained by EM. In AAAI 99 workshop on text learning.
-
(1999)
AAAI 99 Workshop on text learning
-
-
McCallum, A.1
-
26
-
-
45749091592
-
Predicting human brain activity associated with the meanings of nouns
-
DOI 10.1126/science.1152876
-
Mitchell, T., Shinkareva, S., Carlson, A., Chang, K.-M., Malave, V., Mason, R., & Just, A. (2008). Predicting human brain activity associated with the meanings of nouns. Science, 320, 1191-1195. (Pubitemid 351929502)
-
(2008)
Science
, vol.320
, Issue.5880
, pp. 1191-1195
-
-
Mitchell, T.M.1
Shinkareva, S.V.2
Carlson, A.3
Chang, K.-M.4
Malave, V.L.5
Mason, R.A.6
Just, M.A.7
-
28
-
-
80053456996
-
Zero-shot learning with semantic output codes
-
Palatucci, M., Pomerleau, D., Hinton, G., & Mitchell, T. (2009). Zero-shot learning with semantic output codes. In Advances in neural information processing systems.
-
(2009)
Advances in Neural Information Processing Systems
-
-
Palatucci, M.1
Pomerleau, D.2
Hinton, G.3
Mitchell, T.4
-
29
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
Platt, J. (1999). Fast training of support vector machines using sequential minimal optimization. In Advances in kernel methods -support vector learning (pp. 185-208).
-
(1999)
Advances in Kernel Methods-support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
31
-
-
33745768424
-
Kernel-based learning of hierarchical multilabel classification models
-
Rousu, J., Saunders, C., Szedmak, S., & Shawe-Taylor, J. (2006). Kernel-based learning of hierarchical multilabel classification models. Journal of Machine Learning Research, 7, 1601-1626. (Pubitemid 44024589)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1601-1626
-
-
Rousu, J.1
Saunders, C.2
Szedmak, S.3
Shawe-Taylor, J.4
-
32
-
-
0033905095
-
BoosTexter: A boosting-based system for text categorization
-
Schapire, R. E., & Singer, Y. (2000). Boostexter: A boosting-based system for text categorization. Machine Learning, 39(2/3), 135-168. (Pubitemid 30594821)
-
(2000)
Machine Learning
, vol.39
, Issue.2
, pp. 135-168
-
-
Schapire, R.E.1
Singer, Y.2
-
33
-
-
34547172608
-
The challenge problem for automated detection of 101 semantic concepts in multimedia
-
DOI 10.1145/1180639.1180727, Proceedings of the 14th Annual ACM International Conference on Multimedia, MM 2006
-
Snoek, C., Worring, M., van Gemert, J., Geusebroek, J.-M., & Smeulders, A. (2006). The challenge problem for automated detection of 101 semantic concepts in multimedia. In Proceedings of ACM multimedia (pp. 421-430). (Pubitemid 47113558)
-
(2006)
Proceedings of the 14th Annual ACM International Conference on Multimedia, MM 2006
, pp. 421-430
-
-
Snoek, C.G.M.1
Worring, M.2
Van Gemert, J.C.3
Geusebroek, J.-M.4
Smeulders, A.W.M.5
-
35
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. (2005). Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research, 6, 1453-1484.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
36
-
-
34748873053
-
Multi-label classification: An overview
-
Tsoumakas, G., & Katakis, I. (2007). Multi-label classification: An overview. International Journal of Data Warehousing and Mining, 3(3), 1-13.
-
(2007)
International Journal of Data Warehousing and Mining
, vol.3
, Issue.3
, pp. 1-13
-
-
Tsoumakas, G.1
Katakis, I.2
-
38
-
-
85162016686
-
Multiple kernel learning and the SMO algorithm
-
Vishwanathan, S. V. N., Sun, Z., Ampornpunt, N., & Varma, M. (2010). Multiple kernel learning and the SMO algorithm. In Advances in neural information processing systems 23.
-
(2010)
Advances in Neural Information Processing Systems
, vol.23
-
-
Vishwanathan, S.V.N.1
Sun, Z.2
Ampornpunt, N.3
Varma, M.4
-
40
-
-
69249202332
-
Mimlrbf: Rbf neural networks for multi-instance multi-label learning
-
Zhang, M.-L., & Wang, Z.-J. (2009a). Mimlrbf: Rbf neural networks for multi-instance multi-label learning. Neural Computing, 72(16-18), 3951-3956.
-
(2009)
Neural Computing
, vol.72
, Issue.16-18
, pp. 3951-3956
-
-
Zhang, M.-L.1
Wang, Z.-J.2
-
41
-
-
67650995440
-
Feature selection for multi-label naive Bayes classification
-
Zhang, M.-L. Wang, Z.-J. (2009b). Feature selection for multi-label naive Bayes classification. Information Sciences, 179(19), 3218-3229.
-
(2009)
Information Sciences
, vol.179
, Issue.19
, pp. 3218-3229
-
-
Zhang, M.-L.1
Wang, Z.-J.2
|