-
1
-
-
0036722192
-
The Rayleigh-Stokes problem for heated second grade fluids
-
Fetecau C., and Conna F. The Rayleigh-Stokes problem for heated second grade fluids. Int. J. Nonlinear Mech. 37 (2002) 1011-1015
-
(2002)
Int. J. Nonlinear Mech.
, vol.37
, pp. 1011-1015
-
-
Fetecau, C.1
Conna, F.2
-
2
-
-
36149001420
-
Fourier method for the fractional diffusion equation describing sub-diffusion
-
Chen C.-M., Liu F., Turner I., and Anh V. Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. (2007) 886-897
-
(2007)
J. Comput. Phys.
, pp. 886-897
-
-
Chen, C.-M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
3
-
-
40849115179
-
Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation
-
Chen C.-M., Liu F., and Burrage K. Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput. 198 (2008) 754-769
-
(2008)
Appl. Math. Comput.
, vol.198
, pp. 754-769
-
-
Chen, C.-M.1
Liu, F.2
Burrage, K.3
-
4
-
-
84914701719
-
-
Chang-Ming Chen, F. Liu, I. Turner, V. Anh, A new Fourier analysis method for the Galilei invariant fractional advection diffusion equation, ANZIAM J. 48 (CTAC2006) C775-C789.
-
Chang-Ming Chen, F. Liu, I. Turner, V. Anh, A new Fourier analysis method for the Galilei invariant fractional advection diffusion equation, ANZIAM J. 48 (CTAC2006) C775-C789.
-
-
-
-
5
-
-
0034032484
-
Application of a fractional advection-dispersion equation
-
Benson D.A., Wheatcraft S.W., and Meerschaert M.M. Application of a fractional advection-dispersion equation. Water Resour. Res. 36 6 (2000) 1403-1412
-
(2000)
Water Resour. Res.
, vol.36
, Issue.6
, pp. 1403-1412
-
-
Benson, D.A.1
Wheatcraft, S.W.2
Meerschaert, M.M.3
-
7
-
-
33745132702
-
The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model
-
Shen F., Tan W., Zhao Y., and Masuoka T. The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal. 7 (2006) 1072-1080
-
(2006)
Nonlinear Anal.
, vol.7
, pp. 1072-1080
-
-
Shen, F.1
Tan, W.2
Zhao, Y.3
Masuoka, T.4
-
8
-
-
34547673244
-
Stability and convergence of difference methods for the space-time fractional advection-diffusion equation
-
Liu F., Zhuang P., Anh V., Turner I., and Burrage K. Stability and convergence of difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191 (2007) 12-20
-
(2007)
Appl. Math. Comput.
, vol.191
, pp. 12-20
-
-
Liu, F.1
Zhuang, P.2
Anh, V.3
Turner, I.4
Burrage, K.5
-
9
-
-
33751533397
-
Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation
-
Liu F., Shen S., Anh V., and Turner I. Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. ANZIAM J. 46 E (2005) 488-504
-
(2005)
ANZIAM J.
, vol.46
, Issue.E
, pp. 488-504
-
-
Liu, F.1
Shen, S.2
Anh, V.3
Turner, I.4
-
10
-
-
46049100549
-
A fractional-order implicit difference approximation for the space-time fractional diffusion equation
-
Liu F., Zhuang P., Turner I., and Anh V. A fractional-order implicit difference approximation for the space-time fractional diffusion equation. ANZIAM J. 47 E (2006) 48-68
-
(2006)
ANZIAM J.
, vol.47
, Issue.E
, pp. 48-68
-
-
Liu, F.1
Zhuang, P.2
Turner, I.3
Anh, V.4
-
11
-
-
0242607016
-
A study of the subdiffusive fractional Fokker-Plank equation of bistable systems
-
So F., and Liu K.L. A study of the subdiffusive fractional Fokker-Plank equation of bistable systems. Physica A 331 (2004) 378-390
-
(2004)
Physica A
, vol.331
, pp. 378-390
-
-
So, F.1
Liu, K.L.2
-
12
-
-
0001349637
-
On the decay of vortices in a second grade fluid
-
Rajagopal K.R. On the decay of vortices in a second grade fluid. Meccanica 9 (1980) 185-188
-
(1980)
Meccanica
, vol.9
, pp. 185-188
-
-
Rajagopal, K.R.1
-
13
-
-
0019701541
-
On a class of exact solution to the equations of motion of a second grade fluid
-
Rajagopal K.R., and Gupta A.S. On a class of exact solution to the equations of motion of a second grade fluid. Int. J. Eng. Sci. 19 (1981) 1009-1014
-
(1981)
Int. J. Eng. Sci.
, vol.19
, pp. 1009-1014
-
-
Rajagopal, K.R.1
Gupta, A.S.2
-
14
-
-
0036722192
-
The Rayleigh-Stokes problem for heated second grade fluids
-
Fetecau C., and Conna F. The Rayleigh-Stokes problem for heated second grade fluids. Int. J. Nonlinear Mech. 37 (2002) 1011-1015
-
(2002)
Int. J. Nonlinear Mech.
, vol.37
, pp. 1011-1015
-
-
Fetecau, C.1
Conna, F.2
-
15
-
-
84867978055
-
Implicit difference approximation for the time fractional diffusion equation
-
Zhang P., and liu F. Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22 3 (2006) 87-99
-
(2006)
J. Appl. Math. Comput.
, vol.22
, Issue.3
, pp. 87-99
-
-
Zhang, P.1
liu, F.2
-
16
-
-
33846798041
-
Approximation of Levy-Feller advection-dispersion process by random walk and finite difference method
-
Liu Q., Liu F., Turner I., and Anh V. Approximation of Levy-Feller advection-dispersion process by random walk and finite difference method. J. Phys. Comput., J. Comput. Phys. 222 (2007) 57-70
-
(2007)
J. Phys. Comput., J. Comput. Phys.
, vol.222
, pp. 57-70
-
-
Liu, Q.1
Liu, F.2
Turner, I.3
Anh, V.4
-
17
-
-
0002641421
-
The random walk's guide to anomalous diffusion: a fractional dynamics approach
-
Metzler R., and Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000) 1-77
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
18
-
-
25444472344
-
An explicit finite difference method and a new Von Neumman-type stability analysis for fractional diffusion equations
-
Yuste S.B., and Acedo L. An explicit finite difference method and a new Von Neumman-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42 5 (2005) 1862-1874
-
(2005)
SIAM J. Numer. Anal.
, vol.42
, Issue.5
, pp. 1862-1874
-
-
Yuste, S.B.1
Acedo, L.2
-
19
-
-
70549107817
-
Error analysis of an explicit finite difference approximation for the space fractional diffusion
-
Shen S., and Liu F. Error analysis of an explicit finite difference approximation for the space fractional diffusion. ANZIAM J. 46 E (2005) 871-887
-
(2005)
ANZIAM J.
, vol.46
, Issue.E
, pp. 871-887
-
-
Shen, S.1
Liu, F.2
-
20
-
-
17144427014
-
The accuracy and stability of an implicit solution method for the fractional diffusion equation
-
Langlands T.A.M., and Henry B.I. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205 (2005) 719-736
-
(2005)
J. Comput. Phys.
, vol.205
, pp. 719-736
-
-
Langlands, T.A.M.1
Henry, B.I.2
-
21
-
-
0037030796
-
The impulsive motion of flat plate in a general second grade fluid
-
Tan W.C., and Xu M.Y. The impulsive motion of flat plate in a general second grade fluid. Mech. Res. Commun. 29 (2002) 3-9
-
(2002)
Mech. Res. Commun.
, vol.29
, pp. 3-9
-
-
Tan, W.C.1
Xu, M.Y.2
-
22
-
-
0036703760
-
Plate surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model
-
Tan W.C., and Xu M.Y. Plate surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model. Acta Mech. Sin. 18 (2002) 342-349
-
(2002)
Acta Mech. Sin.
, vol.18
, pp. 342-349
-
-
Tan, W.C.1
Xu, M.Y.2
-
23
-
-
0037410852
-
A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates
-
Tan W.C., Pan W.X., and Xu M.Y. A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates. Int. J. Nonlinear 38 (2003) 645-650
-
(2003)
Int. J. Nonlinear
, vol.38
, pp. 645-650
-
-
Tan, W.C.1
Pan, W.X.2
Xu, M.Y.3
-
24
-
-
11144231363
-
Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates
-
Tan W.C., and Xu M.Y. Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates. Acta Mech. Sin. (2004) 471-476
-
(2004)
Acta Mech. Sin.
, pp. 471-476
-
-
Tan, W.C.1
Xu, M.Y.2
-
25
-
-
9544246749
-
Stokes' first problem for a second grade fluid in a porous half-space with heated boundary
-
Tan W.C., and Masuoka T. Stokes' first problem for a second grade fluid in a porous half-space with heated boundary. Int. J. Nonlinear Mech. 40 (2005) 515-522
-
(2005)
Int. J. Nonlinear Mech.
, vol.40
, pp. 515-522
-
-
Tan, W.C.1
Masuoka, T.2
-
26
-
-
35648947830
-
Subdiffusion model for calcium spark in cardiac myocytes
-
Tan W., Fu C., Fu C., Xie W., and Cheng H. Subdiffusion model for calcium spark in cardiac myocytes. Appl. Phys. Lett. 91 (2007) 183901
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 183901
-
-
Tan, W.1
Fu, C.2
Fu, C.3
Xie, W.4
Cheng, H.5
|