-
1
-
-
84885821361
-
Comparison of five numerical schemes for fractional differential equations
-
Agrawal, O P & Kumar, P. [2007] "Comparison of five numerical schemes for fractional differential equations," Adv. Fract. Cal. 47, 43-60
-
(2007)
Adv. Fract. Cal.
, vol.47
, pp. 43-60
-
-
Agrawal, O.P.1
Kumar, P.2
-
2
-
-
0034517076
-
A perspective on the numerical treatment of Volterra equations
-
Baker, C T. H. [2000] "A perspective on the numerical treatment of Volterra equations," J. Comput. Appl. Math. 125, 217-249
-
(2000)
J. Comput. Appl. Math.
, vol.125
, pp. 217-249
-
-
Baker, C.T.H.1
-
3
-
-
62849085116
-
A central difference numerical scheme for fractional optimal control problems
-
Baleanu, D., Defterli, O & Agrawal, O. P. [2009] "A central difference numerical scheme for fractional optimal control problems," J. Vib. Contr. 15, 583-597
-
(2009)
J. Vib. Contr.
, vol.15
, pp. 583-597
-
-
Baleanu, D.1
Defterli, O.2
Agrawal, O.P.3
-
4
-
-
0000078998
-
From continuous time random walks to the fractional Fokker-Planck equation
-
Barkai, E., Metzler, R & Klafter, J. [2000] "From continuous time random walks to the fractional Fokker-Planck equation," Phys Rev. E 61, 132-138
-
(2000)
Phys Rev. e
, vol.61
, pp. 132-138
-
-
Barkai, E.1
Metzler, R.2
Klafter, J.3
-
5
-
-
79951723258
-
Fractional Bloch equation with delay
-
Bhalekar, S., Daftardar-Gejji, V., Baleanu, D & Magin, R. [2011] "Fractional Bloch equation with delay," Comput. Math. Appl. 61, 1355-1365
-
(2011)
Comput. Math. Appl.
, vol.61
, pp. 1355-1365
-
-
Bhalekar, S.1
Daftardar-Gejji, V.2
Baleanu, D.3
Magin, R.4
-
7
-
-
77954142858
-
Numerical simulations of 2D fractional subdiffusion problems
-
Brunner, H., Ling, L & Yamamoto, M. [2010] "Numerical simulations of 2D fractional subdiffusion problems," J. Comput. Phys. 229, 6613-6622
-
(2010)
J. Comput. Phys.
, vol.229
, pp. 6613-6622
-
-
Brunner, H.1
Ling, L.2
Yamamoto, M.3
-
8
-
-
36149001420
-
A Fourier method for the fractional diffusionequation describing sub-diffusion
-
Chen, C. M., Liu, F., Turner, I & Anh, V. [2007] "A Fourier method for the fractional diffusionequation describing sub-diffusion," J. Comput. Phys. 227, 886-897
-
(2007)
J. Comput. Phys.
, vol.227
, pp. 886-897
-
-
Chen, C.M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
9
-
-
49249094092
-
ADI-Euler and extrapolation methods for the two-dimensional fractional advectiondispersion equation
-
Chen, S & Liu, F. [2008] "ADI-Euler and extrapolation methods for the two-dimensional fractional advectiondispersion equation," J Appl. Math. Comput. 26, 295-311
-
(2008)
J Appl. Math. Comput.
, vol.26
, pp. 295-311
-
-
Chen, S.1
Liu, F.2
-
10
-
-
84880222933
-
Numerical analysis of the Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives
-
Chen, C. M., Liu, F & Anh, V. [2008a] "Numerical analysis of the Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives," ANZIAM J. 47, C168-C184
-
(2008)
ANZIAM J.
, vol.47
-
-
Chen, C.M.1
Liu, F.2
Anh, V.3
-
11
-
-
40849115179
-
Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation
-
Chen, C. M., Liu, F & Burrage, K. [2008b] "Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation," Appl. Math. Comput. 198, 754-769
-
(2008)
Appl. Math. Comput.
, vol.198
, pp. 754-769
-
-
Chen, C.M.1
Liu, F.2
Burrage, K.3
-
12
-
-
63949084174
-
A numerical approximation method for solving a three-dimensional space Galilei invariant fractional advection-diffusion equation
-
Chen, C. M & Liu, F. [2009] "A numerical approximation method for solving a three-dimensional space Galilei invariant fractional advection-diffusion equation," J. Appl. Math. Comput. 30, 219-236
-
(2009)
J. Appl. Math. Comput.
, vol.30
, pp. 219-236
-
-
Chen, C.M.1
Liu, F.2
-
13
-
-
56949093590
-
A Fourier method and an extrapolation technique for Stokes' first problem for a heated generalized second grade fluid with fractional derivative
-
Chen, C. M., Liu, F & Anh, V. [2009a] "A Fourier method and an extrapolation technique for Stokes' first problem for a heated generalized second grade fluid with fractional derivative," J. Comput. Appl. Math. 223, 777-789
-
(2009)
J. Comput. Appl. Math.
, vol.223
, pp. 777-789
-
-
Chen, C.M.1
Liu, F.2
Anh, V.3
-
14
-
-
51749116733
-
Finite difference approximations for the fractional Fokker-Planck equation
-
Chen, S., Liu, F., Zhuang, P & Anh, V. [2009b] "Finite difference approximations for the fractional Fokker-Planck equation," Appl Math. Model. 33, 256-273
-
(2009)
Appl Math. Model.
, vol.33
, pp. 256-273
-
-
Chen, S.1
Liu, F.2
Zhuang, P.3
Anh, V.4
-
15
-
-
77955704784
-
Numerical schemes with high spatial accuracy for a variable-order anomalous sub-diffusion equation
-
Chen, C. M., Liu, F., Anh, V & Turner, I. [2010a] "Numerical schemes with high spatial accuracy for a variable-order anomalous sub-diffusion equation," SIAM J. Sci. Comput. 32, 1740-1760
-
(2010)
SIAM J. Sci. Comput.
, vol.32
, pp. 1740-1760
-
-
Chen, C.M.1
Liu, F.2
Anh, V.3
Turner, I.4
-
16
-
-
79551635060
-
Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term
-
Chen, C. M., Liu, F., Anh, V & Turner, I. [2010b] "Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term," Appl. Math. Comput. 217, 5729-5742
-
(2010)
Appl. Math. Comput.
, vol.217
, pp. 5729-5742
-
-
Chen, C.M.1
Liu, F.2
Anh, V.3
Turner, I.4
-
17
-
-
84880201867
-
Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation
-
Chen, C. M., Liu, F., Anh, V & Turner, I. [2010c] "Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation," Numer. Algor. 56, 383-403
-
(2010)
Numer. Algor.
, vol.56
, pp. 383-403
-
-
Chen, C.M.1
Liu, F.2
Anh, V.3
Turner, I.4
-
18
-
-
77950690888
-
Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation
-
Chen, C. M., Liu, F., Turner, I & Anh, V. [2010d] "Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation," Numer. Algor. 54, 1-21
-
(2010)
Numer. Algor.
, vol.54
, pp. 1-21
-
-
Chen, C.M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
19
-
-
69049086472
-
Compact finite difference method for the fractional diffusion equation
-
Cui, M. R. [2009] "Compact finite difference method for the fractional diffusion equation," J. Comput. Phys. 228, 7792-7804
-
(2009)
J. Comput. Phys.
, vol.228
, pp. 7792-7804
-
-
Cui, M.R.1
-
20
-
-
36149001762
-
Numerical algorithm for the time fractional Fokker-Planck equation
-
Deng, W. H. [2007a] "Numerical algorithm for the time fractional Fokker-Planck equation," J Comput. Phys. 227, 1510-1522
-
(2007)
J Comput. Phys.
, vol.227
, pp. 1510-1522
-
-
Deng, W.H.1
-
21
-
-
34249335010
-
Short memory principle and a predictor-corrector approach for fractional differential equations
-
Deng, W. H. [2007b] "Short memory principle and a predictor-corrector approach for fractional differential equations," J. Comput. Appl. Math. 206, 174-188
-
(2007)
J. Comput. Appl. Math.
, vol.206
, pp. 174-188
-
-
Deng, W.H.1
-
22
-
-
2142755490
-
Numerical solution of fractional advection-dispersion equation
-
Deng, Z. Q., Singh, V. P & Bengtsson, L. [2004] "Numerical solution of fractional advection-dispersion equation," J. Hydraul. Eng. 130, 422-431
-
(2004)
J. Hydraul. Eng.
, vol.130
, pp. 422-431
-
-
Deng, Z.Q.1
Singh, V.P.2
Bengtsson, L.3
-
23
-
-
0043044718
-
Numerical solution of fractional order differential equations by extrapolation
-
Diethelm, K & Walz, G. [1997] "Numerical solution of fractional order differential equations by extrapolation," Numer. Algor. 16, 231-253
-
(1997)
Numer. Algor.
, vol.16
, pp. 231-253
-
-
Diethelm, K.1
Walz, G.2
-
24
-
-
0001618393
-
An algorithm for the numerical solution of differential equations of fractional order
-
Diethelm, K. [1997] "An algorithm for the numerical solution of differential equations of fractional order," Electron. Trans. Numer. Anal. 5, 1-6
-
(1997)
Electron. Trans. Numer. Anal.
, vol.5
, pp. 1-6
-
-
Diethelm, K.1
-
25
-
-
0010186169
-
The FracPECE subroutine for the numerical solution of differential equations of fractional order
-
(Gesellschaft für wissenschaftliche Datenverarbeitung, Göttingen)
-
Diethelm, K & Freed, A. D. [1999a] "The FracPECE subroutine for the numerical solution of differential equations of fractional order," Forschung und Wissenschaftliches Rechnen: Beiträge zum Heinz-Billing-Preis (Gesellschaft für wissenschaftliche Datenverarbeitung, Göttingen), pp. 57-71
-
(1999)
Forschung und Wissenschaftliches Rechnen: Beiträge Zum Heinz-Billing-Preis
, pp. 57-71
-
-
Diethelm, K.1
Freed, A.D.2
-
26
-
-
0002795136
-
On the solution of nonlinear fractional differential equations used in the modeling of viscoplasticity
-
Springer, Heidelberg
-
Diethelm, K & Freed, A. D. [1999b] "On the solution of nonlinear fractional differential equations used in the modeling of viscoplasticity, " Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties (Springer, Heidelberg), pp. 217-224
-
(1999)
Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties
, pp. 217-224
-
-
Diethelm, K.1
Freed, A.D.2
-
27
-
-
0036650479
-
A predictor-corrector approach for the numerical solution of fractional differential equations
-
Diethelm, K., Ford, N. J., & Freed, A. D. [2002] "A predictor-corrector approach for the numerical solution of fractional differential equations," Nonlin. Dyn. 29, 3-22
-
(2002)
Nonlin. Dyn.
, vol.29
, pp. 3-22
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
28
-
-
4043121080
-
Detailed error analysis for a fractional Adams method
-
Diethelm, K., Ford, N. J., & Freed, A. D. [2004] "Detailed error analysis for a fractional Adams method," Numer. Algor. 36, 31-52
-
(2004)
Numer. Algor.
, vol.36
, pp. 31-52
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
29
-
-
10644238068
-
Algorithms for the fractional calculus: A selection of numerical methods
-
Diethelm, K., Ford, N. J., Freed, A. D & Luchko, Y. [2005] "Algorithms for the fractional calculus: A selection of numerical methods," Comput. Meth. Appl. Mech. Eng. 194, 43-773
-
(2005)
Comput. Meth. Appl. Mech. Eng.
, vol.194
, pp. 43-773
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
Luchko, Y.4
-
30
-
-
26444438049
-
Pitfalls in fast numerical solvers for fractional differential equations
-
Diethelm, K., Ford, N. J., Freed, A. D & Weilbeer, M. [2006] "Pitfalls in fast numerical solvers for fractional differential equations," J. Comput. Appl. Math. 186, 482-503
-
(2006)
J. Comput. Appl. Math.
, vol.186
, pp. 482-503
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
Weilbeer, M.4
-
31
-
-
70549084939
-
Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients
-
Ding, Z. Q., Xiao, A. G & Li, M. [2010] "Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients," J. Comput. Appl. Math. 233, 1905-1914
-
(2010)
J. Comput. Appl. Math.
, vol.233
, pp. 1905-1914
-
-
Ding, Z.Q.1
Xiao, A.G.2
Li, M.3
-
32
-
-
77952888765
-
A compact difference scheme for the fractional diffusion-wave equation
-
Du, R., Cao, W. R & Sun, Z. Z. [2010] "A compact difference scheme for the fractional diffusion-wave equation," J. Comput. Appl. Math. 34, 2998-3007
-
(2010)
J. Comput. Appl. Math.
, vol.34
, pp. 2998-3007
-
-
Du, R.1
Cao, W.R.2
Sun, Z.Z.3
-
33
-
-
0035625795
-
The numerical solution of fractional differential equations: Speed versus accuracy
-
Ford, N. J & Simpson, A. C. [2001] "The numerical solution of fractional differential equations: Speed versus accuracy," Numer. Algor. 26, 333-346
-
(2001)
Numer. Algor.
, vol.26
, pp. 333-346
-
-
Ford, N.J.1
Simpson, A.C.2
-
34
-
-
78649334165
-
A compact finite difference scheme for the fractional sub-diffusion equations
-
Gao, G. H & Sun, Z. Z. [2011] "A compact finite difference scheme for the fractional sub-diffusion equations," J. Comput. Phys. 230, 586-595
-
(2011)
J. Comput. Phys.
, vol.230
, pp. 586-595
-
-
Gao, G.H.1
Sun, Z.Z.2
-
35
-
-
33751534763
-
On multistep methods for differential equations of fractional order
-
Galeone, L & Garrappa, R. [2006] "On multistep methods for differential equations of fractional order," Mediterr. J. Math. 3, 565-580
-
(2006)
Mediterr. J. Math.
, vol.3
, pp. 565-580
-
-
Galeone, L.1
Garrappa, R.2
-
36
-
-
64549112216
-
Explicit methods for fractional differential equations and their stability properties
-
Galeone, L & Garrappa, R. [2009] "Explicit methods for fractional differential equations and their stability properties," J. Comput. Appl. Math. 228, 548-560
-
(2009)
J. Comput. Appl. Math.
, vol.228
, pp. 548-560
-
-
Galeone, L.1
Garrappa, R.2
-
37
-
-
67349208958
-
On some explicit Adams multistep methods for fractional differential equations
-
Garrappa, R. [2009] "On some explicit Adams multistep methods for fractional differential equations," J. Comput. Appl. Math. 229, 392-399
-
(2009)
J. Comput. Appl. Math.
, vol.229
, pp. 392-399
-
-
Garrappa, R.1
-
38
-
-
77955273871
-
Explicit and implicit finite difference schemes for fractional Cattaneo equation
-
Ghazizadeh, H. R., Maerefat, M & Azimi, A. [2010] "Explicit and implicit finite difference schemes for fractional Cattaneo equation," J. Comput. Phys. 229, 7042-7057
-
(2010)
J. Comput. Phys.
, vol.229
, pp. 7042-7057
-
-
Ghazizadeh, H.R.1
Maerefat, M.2
Azimi, A.3
-
41
-
-
17144427014
-
The accuracy and stability of an implicit solution method for the fractional diffusion equation
-
Langlands, T. A. M & Henry, B. I. [2005] "The accuracy and stability of an implicit solution method for the fractional diffusion equation," J. Comput. Phys. 205, 719-736
-
(2005)
J. Comput. Phys.
, vol.205
, pp. 719-736
-
-
Langlands, T.A.M.1
Henry, B.I.2
-
42
-
-
1842832060
-
Chaos in Chen's system with a fractional order
-
Li, C. P & Peng, G. J. [2004] "Chaos in Chen's system with a fractional order," Chaos Solit. Fract. 22, 443-450
-
(2004)
Chaos Solit. Fract.
, vol.22
, pp. 443-450
-
-
Li, C.P.1
Peng, G.J.2
-
43
-
-
33645166246
-
Chaos synchronization of fractional-order differential system
-
Li, C. P & Deng, W. H. [2006] "Chaos synchronization of fractional-order differential system," Int. J. Mod. Phys. B 20, 791-803
-
(2006)
Int. J. Mod. Phys. B
, vol.20
, pp. 791-803
-
-
Li, C.P.1
Deng, W.H.2
-
44
-
-
27744554781
-
Chaos synchronization of the Chua system with a fractional order
-
Li, C. P., Deng, W. H & Xu, D. [2006] "Chaos synchronization of the Chua system with a fractional order," Physica A 360, 171-185
-
(2006)
Physica A
, vol.360
, pp. 171-185
-
-
Li, C.P.1
Deng, W.H.2
Xu, D.3
-
45
-
-
34247212711
-
Remarks on fractional derivatives
-
Li, C. P & Deng, W. H. [2007] "Remarks on fractional derivatives," Appl. Math. Comput. 187, 777-784
-
(2007)
Appl. Math. Comput.
, vol.187
, pp. 777-784
-
-
Li, C.P.1
Deng, W.H.2
-
46
-
-
69749102394
-
On the fractional Adams method
-
Li, C. P & Tao, C. X. [2009] "On the fractional Adams method," Comput. Math. Appl. 58, 1573-1588
-
(2009)
Comput. Math. Appl.
, vol.58
, pp. 1573-1588
-
-
Li, C.P.1
Tao, C.X.2
-
47
-
-
67349121725
-
Fractional derivatives in complex planes
-
Li, C. P., Dao, X. H & Guo, P. [2009] "Fractional derivatives in complex planes," Nonlin. Anal.: TMA 71, 1857-1869
-
(2009)
Nonlin. Anal.: TMA
, vol.71
, pp. 1857-1869
-
-
Li, C.P.1
Dao, X.H.2
Guo, P.3
-
48
-
-
77958536189
-
A space-time spectral method for the time fractional diffusion equation
-
Li, X. J Xu, C. J. [2009] "A space-time spectral method for the time fractional diffusion equation," SIAM J. Numer. Anal. 47, 2108-2131
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 2108-2131
-
-
Li, X.J.1
Xu, C.J.2
-
49
-
-
79960990048
-
Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion
-
doi:10.1016/j.camwa.2011.02.045
-
Li, C. P & Zhao, Z. G. [2011a] "Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion," Comput. Math. Appl., doi:10.1016/j.camwa.2011.02.045
-
(2011)
Comput. Math. Appl
-
-
Li, C.P.1
Zhao, Z.G.2
-
50
-
-
79953697124
-
Introduction to fractional integrability and differentiability
-
Li, C. P & Zhao, Z. G. [2011b] " Introduction to fractional integrability and differentiability," Eur. Phys. J. -Special Topics 193, 5-26
-
(2011)
Eur. Phys. J. -Special Topics
, vol.193
, pp. 5-26
-
-
Li, C.P.1
Zhao, Z.G.2
-
51
-
-
79959248552
-
On Riemann-Liouville and Caputo derivatives
-
Article ID 562494
-
Li, C. P., Qian, D. L & Chen, Y. Q. [2011a] "On Riemann-Liouville and Caputo derivatives," Discr Dyn. Nat. Soc. 2011, Article ID 562494
-
(2011)
Discr Dyn. Nat. Soc.
, vol.2011
-
-
Li, C.P.1
Qian, D.L.2
Chen, Y.Q.3
-
52
-
-
79952454978
-
Numerical approach to fractional calculus and fractional ordinary differential equations
-
Li, C. P., Chen, A & Ye, J. J. [2011b] "Numerical approach to fractional calculus and fractional ordinary differential equations," J. Comput. Phys. 230, 3352-3368
-
(2011)
J. Comput. Phys.
, vol.230
, pp. 3352-3368
-
-
Li, C.P.1
Chen, A.2
Ye, J.J.3
-
53
-
-
33751545053
-
Fractional high order methods for the nonlinear fractional ordinary differential equation
-
Lin, R & Liu, F. [2007] "Fractional high order methods for the nonlinear fractional ordinary differential equation," Nonlin. Anal. 66, 856-869
-
(2007)
Nonlin. Anal.
, vol.66
, pp. 856-869
-
-
Lin, R.1
Liu, F.2
-
54
-
-
34547548712
-
Finite difference/spectral approximations for the time-fractional diffusion equation
-
Lin, Y. M & Xu, C. J. [2007] "Finite difference/spectral approximations for the time-fractional diffusion equation," J. Comput. Phys. 225, 1533-1552
-
(2007)
J. Comput. Phys.
, vol.225
, pp. 1533-1552
-
-
Lin, Y.M.1
Xu, C.J.2
-
55
-
-
67349098149
-
Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation
-
Lin, R., Liu, F., Anh, V & Turner, I. [2009] "Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation," Appl. Math. Comput. 212, 435-445
-
(2009)
Appl. Math. Comput.
, vol.212
, pp. 435-445
-
-
Lin, R.1
Liu, F.2
Anh, V.3
Turner, I.4
-
56
-
-
1542425102
-
Numerical solution of the space fractional Fokker-Planck Equation
-
Liu, F., Anh, V & Turner, I. [2004] "Numerical solution of the space fractional Fokker-Planck Equation," J Comput. Appl. Math. 166, 209-219
-
(2004)
J Comput. Appl. Math.
, vol.166
, pp. 209-219
-
-
Liu, F.1
Anh, V.2
Turner, I.3
-
57
-
-
46049100549
-
A fractional-order implicit difference approximation for the space-time fractional diffusion equation
-
Liu, F., Zhuang, P., Anh, V & Turner, I. [2006] "A fractional-order implicit difference approximation for the space-time fractional diffusion equation," ANZIAM J. 47, C48-C68
-
(2006)
ANZIAM J.
, vol.47
-
-
Liu, F.1
Zhuang, P.2
Anh, V.3
Turner, I.4
-
58
-
-
33846798041
-
Approximation of the Lévy-Feller advection-dispersion process by
-
random walk and finite difference method
-
Liu, Q., Liu, F., Turner, I & Anh, V. [2007a] "Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method," J Comput. Phys. 222, 57-70
-
(2007)
J Comput. Phys.
, vol.222
, pp. 57-70
-
-
Liu, Q.1
Liu, F.2
Turner, I.3
Anh, V.4
-
59
-
-
34547673244
-
Stability and convergence of the difference methods for the space-time fractional advectiondiffusion equation
-
Liu, F., Zhuang, P., Anh, V., Turner, I & Burrage, K. [2007b] "Stability and convergence of the difference methods for the space-time fractional advectiondiffusion equation," Appl. Math. Comput. 191, 12-20
-
(2007)
Appl. Math. Comput.
, vol.191
, pp. 12-20
-
-
Liu, F.1
Zhuang, P.2
Anh, V.3
Turner, I.4
Burrage, K.5
-
60
-
-
63649135242
-
Numerical simulation for the 3D seepage flow with fractional derivatives in porous media
-
Liu, Q., Liu, F., Turner, I & Anh, V. [2008] "Numerical simulation for the 3D seepage flow with fractional derivatives in porous media," IMA J. Appl. Math. 74, 201-229
-
(2008)
IMA J. Appl. Math.
, vol.74
, pp. 201-229
-
-
Liu, Q.1
Liu, F.2
Turner, I.3
Anh, V.4
-
61
-
-
67349231192
-
Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
-
Liu, F., Yang, C & Burrage, K. [2009] "Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term," J. Comput. Appl. Math. 231, 160-176
-
(2009)
J. Comput. Appl. Math.
, vol.231
, pp. 160-176
-
-
Liu, F.1
Yang, C.2
Burrage, K.3
-
62
-
-
78649919287
-
Two new implicit numerical methods for the fractional cable equation
-
Liu, F., Yang, Q. Q & Turner, I. [2011] "Two new implicit numerical methods for the fractional cable equation," J. Comput. Nonlin. Dyn. 6, 1-7
-
(2011)
J. Comput. Nonlin. Dyn.
, vol.6
, pp. 1-7
-
-
Liu, F.1
Yang, Q.Q.2
Turner, I.3
-
63
-
-
0036650957
-
Variable-order and distributed order fractional operators
-
Lorenzo, C. F & Hartley, T. T. [2002] "Variable-order and distributed order fractional operators," Nonlin. Dyn. 29, 57-98
-
(2002)
Nonlin. Dyn.
, vol.29
, pp. 57-98
-
-
Lorenzo, C.F.1
Hartley, T.T.2
-
64
-
-
0000717432
-
Discretized fractional calculus
-
Lubich, C. [1986] "Discretized fractional calculus," SIAM J. Math. Anal. 17, 704-719
-
(1986)
SIAM J. Math. Anal.
, vol.17
, pp. 704-719
-
-
Lubich, C.1
-
65
-
-
0345448323
-
Numerical methods for the solution of partial differential equations of fractional order
-
Lynch, V. E., Carreras, B. A., del-Castillo-Negrete, D., Ferreira-Mejias, K M & Hicks, H. R. [2003] "Numerical methods for the solution of partial differential equations of fractional order," J. Comput. Phys. 192, 406-42
-
(2003)
J. Comput. Phys.
, vol.192
, pp. 406-442
-
-
Lynch, V.E.1
Carreras, B.A.2
Del-Castillo-Negrete, D.3
Ferreira-Mejias, K.M.4
Hicks, H.R.5
-
67
-
-
38349041965
-
Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation
-
Magin, R. L., Abdullah, O., Baleanu, D & Zhou, X. J. [2008] "Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation," J Magn. Reson. 190, 255-270
-
(2008)
J Magn. Reson.
, vol.190
, pp. 255-270
-
-
Magin, R.L.1
Abdullah, O.2
Baleanu, D.3
Zhou, X.J.4
-
68
-
-
4444368867
-
Finite difference approximations for fractional advectiondispersion
-
Meerschaert, M. M & Tadjeran, C. [2004] "Finite difference approximations for fractional advectiondispersion," J. Comput. Appl. Math. 172, 65-77
-
(2004)
J. Comput. Appl. Math.
, vol.172
, pp. 65-77
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
69
-
-
25444463578
-
Finite difference methods for two-dimensional fractional dispersion equation
-
Meerschaert,M. M., Scheffer, H. P & Tadjeran, C. [2006] "Finite difference methods for two-dimensional fractional dispersion equation," J. Comput. Phys. 211, 249-261
-
(2006)
J. Comput. Phys.
, vol.211
, pp. 249-261
-
-
Meerschaert, M.M.1
Scheffer, H.P.2
Tadjeran, C.3
-
70
-
-
28044468843
-
Finite difference approximations for two-sided space-fractional partial differential equations
-
Meerschaert, M. M & Tadjeran, C. [2006] "Finite difference approximations for two-sided space-fractional partial differential equations," Appl. Math. Model. 56, 80-90
-
(2006)
Appl. Math. Model.
, vol.56
, pp. 80-90
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
71
-
-
0002641421
-
The random walk's guide to anomalous diffusion: A fractional dynamics approach
-
Metzler, R & Klafter, J. [2000] "The random walk's guide to anomalous diffusion: A fractional dynamics approach," Phys. Rep. 339, 1-77
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
72
-
-
4043151477
-
The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
-
Metzler, R & Klafter, J. [2004] "The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics," J. Phys. A: Math. Gen. 37, R161-R208
-
(2004)
J. Phys. A: Math. Gen.
, vol.37
-
-
Metzler, R.1
Klafter, J.2
-
73
-
-
33745699810
-
On the stable numerical evaluation of Caputo fractional derivatives
-
Murio, D. A. [2006] "On the stable numerical evaluation of Caputo fractional derivatives," Comput. Math. Appl. 51, 1539-1550
-
(2006)
Comput. Math. Appl.
, vol.51
, pp. 1539-1550
-
-
Murio, D.A.1
-
74
-
-
46049119633
-
Implicit finite difference approximation for time fractional diffusion equatuions
-
Murio, D. A. [2008] "Implicit finite difference approximation for time fractional diffusion equatuions," Comput. Math. Appl. 56, 1138-1145
-
(2008)
Comput. Math. Appl.
, vol.56
, pp. 1138-1145
-
-
Murio, D.A.1
-
75
-
-
33746208811
-
Approximations of fractional integrals and Caputo fractional derivatives
-
Odibat, Z. M. [2006] "Approximations of fractional integrals and Caputo fractional derivatives," Appl. Math. Comput. 178, 527-533
-
(2006)
Appl. Math. Comput.
, vol.178
, pp. 527-533
-
-
Odibat, Z.M.1
-
76
-
-
61449085393
-
Computational algorithms for computing the fractional derivatives of functions
-
Odibat, Z. M. [2009] "Computational algorithms for computing the fractional derivatives of functions," Math. Comput. Simul. 79, 2013-2020
-
(2009)
Math. Comput. Simul.
, vol.79
, pp. 2013-2020
-
-
Odibat, Z.M.1
-
77
-
-
34548384362
-
Numerical methods for nonlinear patial equations of fractional order
-
Odibat, Z & Momani, S. [2008a] "Numerical methods for nonlinear patial equations of fractional order," Appl. Math. Model. 32, 28-39
-
(2008)
Appl. Math. Model.
, vol.32
, pp. 28-39
-
-
Odibat, Z.1
Momani, S.2
-
78
-
-
74149085984
-
An algorithm for the numerical solution of differential equations of fractional order
-
Odibat, Z & Momani, S. [2008b] "An algorithm for the numerical solution of differential equations of fractional order," JAMI 26, 15-27
-
(2008)
JAMI
, vol.26
, pp. 15-27
-
-
Odibat, Z.1
Momani, S.2
-
81
-
-
33744801528
-
Matrix approach to discrete fractional calculus
-
Podlubny, I. [2000] "Matrix approach to discrete fractional calculus," Fract. Cal. Appl. Anal. 4, 359-386
-
(2000)
Fract. Cal. Appl. Anal.
, vol.4
, pp. 359-386
-
-
Podlubny, I.1
-
82
-
-
61349186917
-
Matrix approach to discrete fractional calculus II: Partial fractional differential equations
-
Podlubny, I., Chechkin, A., Skovranek, T., Chen, Y. Q & Blas M. Vinagre Jara [2009] "Matrix approach to discrete fractional calculus II: Partial fractional differential equations," J. Comput. Phys. 228, 3137-3153
-
(2009)
J. Comput. Phys.
, vol.228
, pp. 3137-3153
-
-
Podlubny, I.1
Chechkin, A.2
Skovranek, T.3
Chen, Y.Q.4
Jara Vinagre, B.M.5
-
83
-
-
0036949980
-
Waitingtimes and returns in high-frequency financial data: An empirical study
-
Raberto, M., Scalas, E & Mainardi, F. [2002] "Waitingtimes and returns in high-frequency financial data: An empirical study," Physica A 314, 749-755
-
(2002)
Physica A
, vol.314
, pp. 749-755
-
-
Raberto, M.1
Scalas, E.2
Mainardi, F.3
-
84
-
-
78650109836
-
Computational methods for delay parabolic and time-fractional partial differential equations
-
Rihan, F. A. [2009] "Computational methods for delay parabolic and time-fractional partial differential equations," Numer. Meth. Part. D. E. 26, 1556-1571
-
(2009)
Numer. Meth. Part. D. E.
, vol.26
, pp. 1556-1571
-
-
Rihan, F.A.1
-
85
-
-
33646191893
-
Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2
-
Roop, J. P. [2006] "Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2," J. Comput. Appl. Math. 193, 243-268
-
(2006)
J. Comput. Appl. Math.
, vol.193
, pp. 243-268
-
-
Roop, J.P.1
-
86
-
-
48049106196
-
Numerical approximation of a one-dimensional space fractional advection-dispersion equation with boundary layer
-
Roop, J. P. [2008] "Numerical approximation of a one-dimensional space fractional advection-dispersion equation with boundary layer," Comput. Math. Appl. 56, 1808-1819
-
(2008)
Comput. Math. Appl.
, vol.56
, pp. 1808-1819
-
-
Roop, J.P.1
-
87
-
-
0003598080
-
-
Gordon & Breach Science Publishers in Switzerland, Philadelphia, Pa., USA
-
Samko, S. G., Kilbas, A. A & Marichev, O. I. [1993] Fractional Integrals and Derivatives: Theory and Applications (Gordon & Breach Science Publishers in Switzerland, Philadelphia, Pa., USA)
-
(1993)
Fractional Integrals and Derivatives: Theory and Applications
-
-
Samko, S.G.1
Kilbas, A.A.2
Marichev, O.I.3
-
88
-
-
44149091687
-
Numerical treatment of fractional heat equations
-
Scherer, R., Kalla, S. L., Boyadjiev, L & Al-Saqabi, B. [2008] "Numerical treatment of fractional heat equations," Appl Numer. Math. 58, 1212-1223
-
(2008)
Appl Numer. Math.
, vol.58
, pp. 1212-1223
-
-
Scherer, R.1
Kalla, S.L.2
Boyadjiev, L.3
Al-Saqabi, B.4
-
89
-
-
33745712084
-
On the numerical evaluation of fractional derivatives in multi-degree-offreedom systems
-
Schmidt, A & Gaul, L. [2006] "On the numerical evaluation of fractional derivatives in multi-degree-offreedom systems," Sign. Process. 86, 2592-2601
-
(2006)
Sign. Process.
, vol.86
, pp. 2592-2601
-
-
Schmidt, A.1
Gaul, L.2
-
90
-
-
70549107817
-
Error analysis of explicit finite difference approximation for the space fractional diffusion equation with insulated ends
-
Shen, S & Liu, F. [2005] "Error analysis of explicit finite difference approximation for the space fractional diffusion equation with insulated ends," ANZIAM J. 46, C871-C887
-
(2005)
ANZIAM J.
, vol.46
-
-
Shen, S.1
Liu, F.2
-
91
-
-
84867934896
-
Detailed analysis of a conservative difference approximation for the time fractional diffusion equation
-
Shen, S., Liu, F., Anh, V & Turner, I. [2006] "Detailed analysis of a conservative difference approximation for the time fractional diffusion equation," J. Appl. Math. Comput. 3, 1-19
-
(2006)
J. Appl. Math. Comput.
, vol.3
, pp. 1-19
-
-
Shen, S.1
Liu, F.2
Anh, V.3
Turner, I.4
-
92
-
-
48749097743
-
Fundamental solution and discrete random walk model for a time-space fractional diffusion equation of distributed order
-
Shen, S., Liu, F & Anh, V. [2008a] "Fundamental solution and discrete random walk model for a time-space fractional diffusion equation of distributed order," J. Appl. Math. Comput. 28, 147-164
-
(2008)
J. Appl. Math. Comput.
, vol.28
, pp. 147-164
-
-
Shen, S.1
Liu, F.2
Anh, V.3
-
93
-
-
57649137996
-
The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation
-
Shen, S., Liu, F., Anh, V & Turner, I. [2008b] "The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation," IMA J. Appl. Math. 73, 850-872
-
(2008)
IMA J. Appl. Math.
, vol.73
, pp. 850-872
-
-
Shen, S.1
Liu, F.2
Anh, V.3
Turner, I.4
-
94
-
-
79951851714
-
Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation
-
Shen, S., Liu, F & Anh, V. [2011] "Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation," Numer Algor. 56, 383-403
-
(2011)
Numer Algor.
, vol.56
, pp. 383-403
-
-
Shen, S.1
Liu, F.2
Anh, V.3
-
95
-
-
64049113904
-
Finite difference approximations for a fractional advection diffusion problem
-
Sousa, E. [2009] "Finite difference approximations for a fractional advection diffusion problem," J. Comput. Phys. 228, 4038-4054
-
(2009)
J. Comput. Phys.
, vol.228
, pp. 4038-4054
-
-
Sousa, E.1
-
97
-
-
74249113616
-
-
Su, L. J., Wang, W. Q & Yang, Z. X. [2009] "Finite difference approximations for the fractional advectiondiffusion equation," Phys. Lett. A 373, 4405-4408
-
(2009)
Finite Difference Approximations for the Fractional Advectiondiffusion Equation,"Phys. Lett. A
, vol.373
, pp. 4405-4408
-
-
Su, L.J.1
Wang, W.Q.2
Yang, Z.X.3
-
98
-
-
78649918171
-
Finite difference methods for fractional dispersion equations
-
Su, L. J., Wang, W. Q & Xu, Q. Y. [2010] "Finite difference methods for fractional dispersion equations," Appl. Math. Comput. 216, 3329-3334
-
(2010)
Appl. Math. Comput.
, vol.216
, pp. 3329-3334
-
-
Su, L.J.1
Wang, W.Q.2
Xu, Q.Y.3
-
99
-
-
30744474991
-
A fully discrete difference scheme for a diffusion-wave system
-
Sun, Z. Z & Wu, X. N. [2006] "A fully discrete difference scheme for a diffusion-wave system," Appl. Numer. Math. 56, 193-209
-
(2006)
Appl. Numer. Math.
, vol.56
, pp. 193-209
-
-
Sun, Z.Z.1
Wu, X.N.2
-
100
-
-
77951208473
-
Fractional differential models for anomalous diffusion
-
Sun, H. G., Chen, W., Li, C. P & Chen, Y. Q. [2010] "Fractional differential models for anomalous diffusion," Physica A 389, 2719-2724
-
(2010)
Physica A
, vol.389
, pp. 2719-2724
-
-
Sun, H.G.1
Chen, W.2
Li, C.P.3
Chen, Y.Q.4
-
101
-
-
31744438550
-
A second-order accurate numerical approximation for the fractional diffusion equation
-
Tadjeran, C., Meerschaert, M. M & Scheffer, H. P. [2006] "A second-order accurate numerical approximation for the fractional diffusion equation," J. Comput. Phys. 213, 205-213
-
(2006)
J. Comput. Phys.
, vol.213
, pp. 205-213
-
-
Tadjeran, C.1
Meerschaert, M.M.2
Scheffer, H.P.3
-
102
-
-
33845628108
-
A secondorder accurate numerical method for the twodimensional fractional diffusion equation
-
Tadjeran, C & Meerschaert, M. M. [2007] "A secondorder accurate numerical method for the twodimensional fractional diffusion equation," J. Comput. Phys. 220, 813-823
-
(2007)
J. Comput. Phys.
, vol.220
, pp. 813-823
-
-
Tadjeran, C.1
Meerschaert, M.M.2
-
103
-
-
78049352592
-
Variable-order fractional derivatives and their numerical approximations
-
Valério, S & Costa, J. [2011] "Variable-order fractional derivatives and their numerical approximations," Sign. Process. 91, 470-483
-
(2011)
Sign. Process.
, vol.91
, pp. 470-483
-
-
Valério, S.1
Costa, J.2
-
104
-
-
77955927812
-
A direct O(N log2 N) finite difference method for fractional diffusion equations
-
Wang, H., Wang, K. X & Sircar, T. [2010] "A direct O(N log2 N) finite difference method for fractional diffusion equations," J. Comput. Phys. 229, 8095-8104
-
(2010)
J. Comput. Phys.
, vol.229
, pp. 8095-8104
-
-
Wang, H.1
Wang, K.X.2
Sircar, T.3
-
105
-
-
67649826890
-
Numerical solution for Stokes' first problem for a heated generalized second grade fluid with fractional derivative
-
Wu, C. H. [2009] "Numerical solution for Stokes' first problem for a heated generalized second grade fluid with fractional derivative," Appl. Numer. Math. 59, 2571-2583
-
(2009)
Appl. Numer. Math.
, vol.59
, pp. 2571-2583
-
-
Wu, C.H.1
-
106
-
-
77953130014
-
Implicit numerical approximation scheme for the fractional Fokker-Planck equation
-
Wu, C. H & Lu, L. Z. [2010] "Implicit numerical approximation scheme for the fractional Fokker-Planck equation," Appl Math. Comput. 216, 1945-1955
-
(2010)
Appl Math. Comput.
, vol.216
, pp. 1945-1955
-
-
Wu, C.H.1
Lu, L.Z.2
-
107
-
-
62249116725
-
A computationally effective predictor-corrector method for simulating fractional order dynamical control system
-
Yang, C & Liu, F. [2006] "A computationally effective predictor-corrector method for simulating fractional order dynamical control system," ANZIAM J. 47, C168-C184
-
(2006)
ANZIAM J.
, vol.47
-
-
Yang, C.1
Liu, F.2
-
108
-
-
77952812057
-
Computationally efficient numerical methods for time-and space-fractional Fokker-Planck equations
-
Yang, Q. Q., Liu, F & Turner, I. [2009a] "Computationally efficient numerical methods for time-and space-fractional Fokker-Planck equations," Phys Scr. 2009, 014026.
-
(2009)
Phys Scr.
, vol.2009
, pp. 014026
-
-
Yang, Q.Q.1
Liu, F.2
Turner, I.3
-
109
-
-
84896693098
-
Analytical and numerical solutions for the time and space-symmetric fractional diffusion equation
-
Yang, Q. Q., Turner, I & Liu, F. [2009b] "Analytical and numerical solutions for the time and space-symmetric fractional diffusion equation," ANZIAM J. 50, C800-C814
-
(2009)
ANZIAM J.
, vol.50
-
-
Yang, Q.Q.1
Turner, I.2
Liu, F.3
-
110
-
-
84870870930
-
Stability and convergence of an effective numerical method for the time-space fractional Fokker-Planck equation with a nonlinear source term
-
Article ID 464321
-
Yang, Q. Q., Liu, F & Turner, I. [2010a] "Stability and convergence of an effective numerical method for the time-space fractional Fokker-Planck equation with a nonlinear source term," Int J. Diff. Eqs. 2010, Article ID 464321, 22 pages
-
(2010)
Int J. Diff. Eqs.
, vol.2010
, pp. 22
-
-
Yang, Q.Q.1
Liu, F.2
Turner, I.3
-
111
-
-
69249214155
-
Numerical methods for fractional partial differential equations with Riesz space fractional derivatives
-
Yang, Q. Q., Liu, F & Turner, I. [2010b] "Numerical methods for fractional partial differential equations with Riesz space fractional derivatives," Appl. Math. Model. 34, 200-218
-
(2010)
Appl. Math. Model.
, vol.34
, pp. 200-218
-
-
Yang, Q.Q.1
Liu, F.2
Turner, I.3
-
112
-
-
84872296377
-
Numerical simulation of the nonlinear fractional dynamical systems with fractional damping for the extensible and inextensible pendulum
-
Yin, C., Liu, F & Anh, V. [2007] "Numerical simulation of the nonlinear fractional dynamical systems with fractional damping for the extensible and inextensible pendulum," J. Algor. Comput. Tech. 1, 427-447
-
(2007)
J. Algor. Comput. Tech.
, vol.1
, pp. 427-447
-
-
Yin, C.1
Liu, F.2
Anh, V.3
-
113
-
-
25444472344
-
An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations
-
Yuste, S. B & Acedo, L. [2005] "An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations," SIAM J. Numer. Anal. 42, 1862-1874
-
(2005)
SIAM J. Numer. Anal.
, vol.42
, pp. 1862-1874
-
-
Yuste, S.B.1
Acedo, L.2
-
114
-
-
33646128485
-
Weighted average finite difference methods for fractional diffusion equations
-
Yuste, S. B. [2006] "Weighted average finite difference methods for fractional diffusion equations," J. Comput. Phys. 216, 264-274
-
(2006)
J. Comput. Phys.
, vol.216
, pp. 264-274
-
-
Yuste, S.B.1
-
115
-
-
0036887936
-
Chaos, fractional kinetics, and anomalous transport
-
Zaslavsky, G. M. [2002] "Chaos, fractional kinetics, and anomalous transport," Phys. Rep. 371, 461-580
-
(2002)
Phys. Rep.
, vol.371
, pp. 461-580
-
-
Zaslavsky, G.M.1
-
116
-
-
68949098580
-
A finite difference method for fractional partial differential equation
-
Zhang, Y. [2009] "A finite difference method for fractional partial differential equation," Appl. Math. Comput. 215, 524-529
-
(2009)
Appl. Math. Comput.
, vol.215
, pp. 524-529
-
-
Zhang, Y.1
-
117
-
-
76449122108
-
A note on the finite element method for the space-fractional advection diffusion equation
-
Zheng, Y. Y., Li, C. P & Zhao, Z. G. [2010a] "A note on the finite element method for the space-fractional advection diffusion equation," Comput. Math. Appl. 59, 1718-1726
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1718-1726
-
-
Zheng, Y.Y.1
Li, C.P.2
Zhao, Z.G.3
-
118
-
-
79251585926
-
A fully discrete DG method for nonlinear fractional Fokker-Planck equation
-
Article ID 279038
-
Zheng, Y. Y., Li, C. P & Zhao, Z. G. [2010b] "A fully discrete DG method for nonlinear fractional Fokker-Planck equation," Math Probl. Eng. 2010, Article ID 279038, 26 pages
-
(2010)
Math Probl. Eng.
, vol.2010
, pp. 26
-
-
Zheng, Y.Y.1
Li, C.P.2
Zhao, Z.G.3
-
119
-
-
27744462122
-
Synchronization in fractional-order differential systems
-
Zhou, T. S & Li, C. P. [2005] "Synchronization in fractional-order differential systems," Physica D 212, 111-125
-
(2005)
Physica D
, vol.212
, pp. 111-125
-
-
Zhou, T.S.1
Li, C.P.2
-
120
-
-
84867978055
-
Implicit difference approximation for the time fractional diffusion equation
-
Zhuang, P & Liu, F. [2006] "Implicit difference approximation for the time fractional diffusion equation," J. Appl. Math. Comput. 33, 87-99
-
(2006)
J. Appl. Math. Comput.
, vol.33
, pp. 87-99
-
-
Zhuang, P.1
Liu, F.2
-
121
-
-
34548553258
-
Implicit difference approximation for the two-dimensional space-time fractional diffusion equation
-
Zhuang, P & Liu, F. [2007a] "Implicit difference approximation for the two-dimensional space-time fractional diffusion equation," J. Appl. Math. Comput. 25, 269-282
-
(2007)
J. Appl. Math. Comput.
, vol.25
, pp. 269-282
-
-
Zhuang, P.1
Liu, F.2
-
122
-
-
80053638646
-
Finite difference approximation for two-dimensional time fractional diffusion equation
-
Zhuang, P & Liu, F. [2007b] "Finite difference approximation for two-dimensional time fractional diffusion equation," J. Algor. Comput. Tech. 1, 1-15
-
(2007)
J. Algor. Comput. Tech.
, vol.1
, pp. 1-15
-
-
Zhuang, P.1
Liu, F.2
-
123
-
-
55549107511
-
New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
-
Zhuang, P., Liu, F., Anh, V & Turner, I. [2008] "New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation," SIAM J. Numer. Anal. 46, 1079-1095
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, pp. 1079-1095
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
124
-
-
84907893973
-
Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term
-
Zhuang, P., Liu, F., Anh, V & Turner, I. [2009] "Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term," SIAM J. Numer. Anal. 47, 1760-1781.
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 1760-1781
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
|