메뉴 건너뛰기




Volumn 230, Issue 15, 2011, Pages 6061-6074

A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions

Author keywords

Box type scheme; Convergence; Energy method; Neumann boundary conditions; Stability; Sub diffusion equation

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; DIFFUSION; PARTIAL DIFFERENTIAL EQUATIONS;

EID: 79956124918     PISSN: 00219991     EISSN: 10902716     Source Type: Journal    
DOI: 10.1016/j.jcp.2011.04.013     Document Type: Article
Times cited : (103)

References (35)
  • 1
    • 0037490225 scopus 로고    scopus 로고
    • Multiscaling fractional advection-dispersion equations and their solutions
    • Schumer R., Benson D.A., Meerschaert M.M., Baeumer B. Multiscaling fractional advection-dispersion equations and their solutions. Water Resour. Res. 2003, 39:1022-1032.
    • (2003) Water Resour. Res. , vol.39 , pp. 1022-1032
    • Schumer, R.1    Benson, D.A.2    Meerschaert, M.M.3    Baeumer, B.4
  • 2
    • 85189837291 scopus 로고
    • Causality, No. 940426, University of Kalmar.
    • S. Westerlund, Causality, No. 940426, University of Kalmar, 1994.
    • (1994)
    • Westerlund, S.1
  • 3
    • 0000914304 scopus 로고
    • Transport aspects in anomalous diffusion: Lévy walks
    • Blumen A., Zumofen G., Klafter J. Transport aspects in anomalous diffusion: Lévy walks. Phys. Rev. A 1989, 40:3964-3973.
    • (1989) Phys. Rev. A , vol.40 , pp. 3964-3973
    • Blumen, A.1    Zumofen, G.2    Klafter, J.3
  • 4
    • 4243798524 scopus 로고    scopus 로고
    • Operator Lévy motion and multiscaling anomalous diffusion
    • Meerschaert M.M., Benson D., Baeumer B. Operator Lévy motion and multiscaling anomalous diffusion. Phys. Rev. E 2001, 63:1112-1117.
    • (2001) Phys. Rev. E , vol.63 , pp. 1112-1117
    • Meerschaert, M.M.1    Benson, D.2    Baeumer, B.3
  • 6
    • 85189842252 scopus 로고    scopus 로고
    • Fractional calculus and continuous-time finance. III. The diffusion limit, Mathematical Finance (Konstanz, 2000), Trends in Math., Birkhuser, Basel.
    • R. Gorenflo, F. Mainardi, E. Scalas, M. Raberto, Fractional calculus and continuous-time finance. III. The diffusion limit, Mathematical Finance (Konstanz, 2000), Trends in Math., Birkhuser, Basel, 2001, pp. 171-180.
    • (2001) , pp. 171-180
    • Gorenflo, R.1    Mainardi, F.2    Scalas, E.3    Raberto, M.4
  • 7
    • 0036949980 scopus 로고    scopus 로고
    • Waiting-times and returns in high-frequency financial data: an empirical study
    • Raberto M., Scalas E., Mainardi F. Waiting-times and returns in high-frequency financial data: an empirical study. Physica A 2002, 314:749-755.
    • (2002) Physica A , vol.314 , pp. 749-755
    • Raberto, M.1    Scalas, E.2    Mainardi, F.3
  • 8
    • 0002795136 scopus 로고    scopus 로고
    • On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity
    • Springer Verlag, Heidelberg, Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics
    • Diethelm K., Freed A.D. On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity. Reaction Engineering and Molecular Properties 1999, 217-224. Springer Verlag, Heidelberg.
    • (1999) Reaction Engineering and Molecular Properties , pp. 217-224
    • Diethelm, K.1    Freed, A.D.2
  • 9
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: a fractional dynamics approach
    • Metzler R., Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 2000, 339:1-77.
    • (2000) Phys. Rep. , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 11
    • 25444472344 scopus 로고    scopus 로고
    • An explicit finite difference method and a new Neumann-type stability analysis for fractional diffusion equations
    • Yuste S., Acedo L. An explicit finite difference method and a new Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 2005, 42(5):1862-1874.
    • (2005) SIAM J. Numer. Anal. , vol.42 , Issue.5 , pp. 1862-1874
    • Yuste, S.1    Acedo, L.2
  • 12
    • 33646128485 scopus 로고    scopus 로고
    • Weighted average finite difference methods for fractional diffusion equations
    • Yuste S. Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 2006, 216:264-274.
    • (2006) J. Comput. Phys. , vol.216 , pp. 264-274
    • Yuste, S.1
  • 13
    • 36149001420 scopus 로고    scopus 로고
    • A Fourier method for the fractional diffusion equation describing sub-diffusion
    • Chen C., Liu F., Turner I., Anh V. A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 2007, 227:886-897.
    • (2007) J. Comput. Phys. , vol.227 , pp. 886-897
    • Chen, C.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 14
    • 46049119633 scopus 로고    scopus 로고
    • Implicit finite difference approximation for time fractional diffusion equations
    • Murio D. Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 2008, 56:1138-1145.
    • (2008) Comput. Math. Appl. , vol.56 , pp. 1138-1145
    • Murio, D.1
  • 15
    • 69049086472 scopus 로고    scopus 로고
    • Compact finite difference method for the fractional diffusion equation
    • Cui M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 2009, 228:7792-7804.
    • (2009) J. Comput. Phys. , vol.228 , pp. 7792-7804
    • Cui, M.1
  • 16
    • 77955704784 scopus 로고    scopus 로고
    • Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation
    • Chen C., Liu F., Anh V., Turner I. Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 2010, 32:1740-1760.
    • (2010) SIAM J. Sci. Comput. , vol.32 , pp. 1740-1760
    • Chen, C.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 17
    • 40849115179 scopus 로고    scopus 로고
    • Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation
    • Chen C., Liu F., Burrage K. Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput. 2008, 198:754-769.
    • (2008) Appl. Math. Comput. , vol.198 , pp. 754-769
    • Chen, C.1    Liu, F.2    Burrage, K.3
  • 18
    • 36149001762 scopus 로고    scopus 로고
    • Numerical algorithm for the time-fractional Fokker-Planck equation
    • Deng W. Numerical algorithm for the time-fractional Fokker-Planck equation. J. Comput. Phys. 2007, 227(2):1510-1522.
    • (2007) J. Comput. Phys. , vol.227 , Issue.2 , pp. 1510-1522
    • Deng, W.1
  • 19
    • 34548650141 scopus 로고    scopus 로고
    • Numerical solution of Fokker-Planck equation with space- and time-fractional derivatives
    • Odibat Z., Momani S. Numerical solution of Fokker-Planck equation with space- and time-fractional derivatives. Phys. Lett. A 2007, 369:349-358.
    • (2007) Phys. Lett. A , vol.369 , pp. 349-358
    • Odibat, Z.1    Momani, S.2
  • 20
    • 51749116733 scopus 로고    scopus 로고
    • Finite difference approximations for the fractional Fokker-Planck equation
    • Chen S., Liu F., Zhuang P., Anh V. Finite difference approximations for the fractional Fokker-Planck equation. Appl. Math. Model. 2009, 33:256-273.
    • (2009) Appl. Math. Model. , vol.33 , pp. 256-273
    • Chen, S.1    Liu, F.2    Zhuang, P.3    Anh, V.4
  • 21
    • 33646398146 scopus 로고    scopus 로고
    • Convolution quadrature time discretization of fractional diffusion-wave equations
    • Cuesta E., Lubich C., Palencia C. Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 2006, 75(254):673-696.
    • (2006) Math. Comput. , vol.75 , Issue.254 , pp. 673-696
    • Cuesta, E.1    Lubich, C.2    Palencia, C.3
  • 22
    • 34548553258 scopus 로고    scopus 로고
    • Implicit difference approximation for the two-dimensional space-time fractional diffusion equation
    • Zhuang P., Liu F. Implicit difference approximation for the two-dimensional space-time fractional diffusion equation. J. Appl. Math. Comput. 2007, 25(1-2):269-282.
    • (2007) J. Appl. Math. Comput. , vol.25 , Issue.1-2 , pp. 269-282
    • Zhuang, P.1    Liu, F.2
  • 23
    • 77954142858 scopus 로고    scopus 로고
    • Numerical simulations of 2D fractional subdiffusion problems
    • Brunner H., Ling L., Yamamoto M. Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 2010, 229:6613-6622.
    • (2010) J. Comput. Phys. , vol.229 , pp. 6613-6622
    • Brunner, H.1    Ling, L.2    Yamamoto, M.3
  • 24
    • 55549107511 scopus 로고    scopus 로고
    • New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
    • Zhuang P., Liu F., Anh V., Turner I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 2008, 46(2):1079-1095.
    • (2008) SIAM J. Numer. Anal. , vol.46 , Issue.2 , pp. 1079-1095
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 25
    • 70350134071 scopus 로고    scopus 로고
    • Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process
    • Zhuang P., Liu F., Anh V., Turner I. Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process. IMA J. Appl. Math. 2009, 74:6445-6467.
    • (2009) IMA J. Appl. Math. , vol.74 , pp. 6445-6467
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 26
    • 67349231192 scopus 로고    scopus 로고
    • Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
    • Liu F., Yang C., Burrage K. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 2009, 231:160-176.
    • (2009) J. Comput. Appl. Math. , vol.231 , pp. 160-176
    • Liu, F.1    Yang, C.2    Burrage, K.3
  • 27
    • 0004182814 scopus 로고
    • The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order
    • Academic Press, New York and London
    • Oldham K., Spanier J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Mathematics in Science and Engineering 1974, vol. III. Academic Press, New York and London.
    • (1974) Mathematics in Science and Engineering , vol.3
    • Oldham, K.1    Spanier, J.2
  • 28
    • 30744474991 scopus 로고    scopus 로고
    • A fully discrete difference scheme for a diffusion-wave system
    • Sun Z.Z., Wu X.N. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56:193-209.
    • (2006) Appl. Numer. Math. , vol.56 , pp. 193-209
    • Sun, Z.Z.1    Wu, X.N.2
  • 29
    • 77952888765 scopus 로고    scopus 로고
    • A compact difference scheme for the fractional diffusion-wave equation
    • Du R., Cao W., Sun Z.Z. A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 2010, 34:2998-3007.
    • (2010) Appl. Math. Model. , vol.34 , pp. 2998-3007
    • Du, R.1    Cao, W.2    Sun, Z.Z.3
  • 30
    • 78649334165 scopus 로고    scopus 로고
    • A compact finite difference scheme for the fractional sub-diffusion equations
    • Gao G.H., Sun Z.Z. A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 2011, 230:586-595.
    • (2011) J. Comput. Phys. , vol.230 , pp. 586-595
    • Gao, G.H.1    Sun, Z.Z.2
  • 31
    • 17144427014 scopus 로고    scopus 로고
    • The accuracy and stability of an implicit solution method for the fractional diffusion equation
    • Langlands T.A.M., Henry B.I. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205:719-736.
    • (2005) J. Comput. Phys. , vol.205 , pp. 719-736
    • Langlands, T.A.M.1    Henry, B.I.2
  • 32
    • 0000958123 scopus 로고
    • A new difference scheme for parabolic problems
    • Academic Press, New York, B. Hubbard (Ed.)
    • Keller H.B. A new difference scheme for parabolic problems. Numerical Solution of Partial Differential Equation II 1971, Academic Press, New York. B. Hubbard (Ed.).
    • (1971) Numerical Solution of Partial Differential Equation II
    • Keller, H.B.1
  • 33
    • 21844485652 scopus 로고
    • A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation
    • Sun Z.Z. A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation. Math. Comput. 1995, 64:1463-1471.
    • (1995) Math. Comput. , vol.64 , pp. 1463-1471
    • Sun, Z.Z.1
  • 34
    • 2442616068 scopus 로고    scopus 로고
    • A second-order accurate difference scheme for the heat equation with concentrated capacity
    • Sun Z.Z., Zhu Y.L. A second-order accurate difference scheme for the heat equation with concentrated capacity. Numer. Math. 2004, 97:379-395.
    • (2004) Numer. Math. , vol.97 , pp. 379-395
    • Sun, Z.Z.1    Zhu, Y.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.