-
1
-
-
0037490225
-
Multiscaling fractional advection-dispersion equations and their solutions
-
Schumer R., Benson D.A., Meerschaert M.M., Baeumer B. Multiscaling fractional advection-dispersion equations and their solutions. Water Resour. Res. 2003, 39:1022-1032.
-
(2003)
Water Resour. Res.
, vol.39
, pp. 1022-1032
-
-
Schumer, R.1
Benson, D.A.2
Meerschaert, M.M.3
Baeumer, B.4
-
2
-
-
85189837291
-
-
Causality, No. 940426, University of Kalmar.
-
S. Westerlund, Causality, No. 940426, University of Kalmar, 1994.
-
(1994)
-
-
Westerlund, S.1
-
3
-
-
0000914304
-
Transport aspects in anomalous diffusion: Lévy walks
-
Blumen A., Zumofen G., Klafter J. Transport aspects in anomalous diffusion: Lévy walks. Phys. Rev. A 1989, 40:3964-3973.
-
(1989)
Phys. Rev. A
, vol.40
, pp. 3964-3973
-
-
Blumen, A.1
Zumofen, G.2
Klafter, J.3
-
4
-
-
4243798524
-
Operator Lévy motion and multiscaling anomalous diffusion
-
Meerschaert M.M., Benson D., Baeumer B. Operator Lévy motion and multiscaling anomalous diffusion. Phys. Rev. E 2001, 63:1112-1117.
-
(2001)
Phys. Rev. E
, vol.63
, pp. 1112-1117
-
-
Meerschaert, M.M.1
Benson, D.2
Baeumer, B.3
-
6
-
-
85189842252
-
-
Fractional calculus and continuous-time finance. III. The diffusion limit, Mathematical Finance (Konstanz, 2000), Trends in Math., Birkhuser, Basel.
-
R. Gorenflo, F. Mainardi, E. Scalas, M. Raberto, Fractional calculus and continuous-time finance. III. The diffusion limit, Mathematical Finance (Konstanz, 2000), Trends in Math., Birkhuser, Basel, 2001, pp. 171-180.
-
(2001)
, pp. 171-180
-
-
Gorenflo, R.1
Mainardi, F.2
Scalas, E.3
Raberto, M.4
-
7
-
-
0036949980
-
Waiting-times and returns in high-frequency financial data: an empirical study
-
Raberto M., Scalas E., Mainardi F. Waiting-times and returns in high-frequency financial data: an empirical study. Physica A 2002, 314:749-755.
-
(2002)
Physica A
, vol.314
, pp. 749-755
-
-
Raberto, M.1
Scalas, E.2
Mainardi, F.3
-
8
-
-
0002795136
-
On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity
-
Springer Verlag, Heidelberg, Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics
-
Diethelm K., Freed A.D. On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity. Reaction Engineering and Molecular Properties 1999, 217-224. Springer Verlag, Heidelberg.
-
(1999)
Reaction Engineering and Molecular Properties
, pp. 217-224
-
-
Diethelm, K.1
Freed, A.D.2
-
9
-
-
0002641421
-
The random walk's guide to anomalous diffusion: a fractional dynamics approach
-
Metzler R., Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 2000, 339:1-77.
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
11
-
-
25444472344
-
An explicit finite difference method and a new Neumann-type stability analysis for fractional diffusion equations
-
Yuste S., Acedo L. An explicit finite difference method and a new Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 2005, 42(5):1862-1874.
-
(2005)
SIAM J. Numer. Anal.
, vol.42
, Issue.5
, pp. 1862-1874
-
-
Yuste, S.1
Acedo, L.2
-
12
-
-
33646128485
-
Weighted average finite difference methods for fractional diffusion equations
-
Yuste S. Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 2006, 216:264-274.
-
(2006)
J. Comput. Phys.
, vol.216
, pp. 264-274
-
-
Yuste, S.1
-
13
-
-
36149001420
-
A Fourier method for the fractional diffusion equation describing sub-diffusion
-
Chen C., Liu F., Turner I., Anh V. A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 2007, 227:886-897.
-
(2007)
J. Comput. Phys.
, vol.227
, pp. 886-897
-
-
Chen, C.1
Liu, F.2
Turner, I.3
Anh, V.4
-
14
-
-
46049119633
-
Implicit finite difference approximation for time fractional diffusion equations
-
Murio D. Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 2008, 56:1138-1145.
-
(2008)
Comput. Math. Appl.
, vol.56
, pp. 1138-1145
-
-
Murio, D.1
-
15
-
-
69049086472
-
Compact finite difference method for the fractional diffusion equation
-
Cui M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 2009, 228:7792-7804.
-
(2009)
J. Comput. Phys.
, vol.228
, pp. 7792-7804
-
-
Cui, M.1
-
16
-
-
77955704784
-
Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation
-
Chen C., Liu F., Anh V., Turner I. Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 2010, 32:1740-1760.
-
(2010)
SIAM J. Sci. Comput.
, vol.32
, pp. 1740-1760
-
-
Chen, C.1
Liu, F.2
Anh, V.3
Turner, I.4
-
17
-
-
40849115179
-
Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation
-
Chen C., Liu F., Burrage K. Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput. 2008, 198:754-769.
-
(2008)
Appl. Math. Comput.
, vol.198
, pp. 754-769
-
-
Chen, C.1
Liu, F.2
Burrage, K.3
-
18
-
-
36149001762
-
Numerical algorithm for the time-fractional Fokker-Planck equation
-
Deng W. Numerical algorithm for the time-fractional Fokker-Planck equation. J. Comput. Phys. 2007, 227(2):1510-1522.
-
(2007)
J. Comput. Phys.
, vol.227
, Issue.2
, pp. 1510-1522
-
-
Deng, W.1
-
19
-
-
34548650141
-
Numerical solution of Fokker-Planck equation with space- and time-fractional derivatives
-
Odibat Z., Momani S. Numerical solution of Fokker-Planck equation with space- and time-fractional derivatives. Phys. Lett. A 2007, 369:349-358.
-
(2007)
Phys. Lett. A
, vol.369
, pp. 349-358
-
-
Odibat, Z.1
Momani, S.2
-
20
-
-
51749116733
-
Finite difference approximations for the fractional Fokker-Planck equation
-
Chen S., Liu F., Zhuang P., Anh V. Finite difference approximations for the fractional Fokker-Planck equation. Appl. Math. Model. 2009, 33:256-273.
-
(2009)
Appl. Math. Model.
, vol.33
, pp. 256-273
-
-
Chen, S.1
Liu, F.2
Zhuang, P.3
Anh, V.4
-
21
-
-
33646398146
-
Convolution quadrature time discretization of fractional diffusion-wave equations
-
Cuesta E., Lubich C., Palencia C. Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 2006, 75(254):673-696.
-
(2006)
Math. Comput.
, vol.75
, Issue.254
, pp. 673-696
-
-
Cuesta, E.1
Lubich, C.2
Palencia, C.3
-
22
-
-
34548553258
-
Implicit difference approximation for the two-dimensional space-time fractional diffusion equation
-
Zhuang P., Liu F. Implicit difference approximation for the two-dimensional space-time fractional diffusion equation. J. Appl. Math. Comput. 2007, 25(1-2):269-282.
-
(2007)
J. Appl. Math. Comput.
, vol.25
, Issue.1-2
, pp. 269-282
-
-
Zhuang, P.1
Liu, F.2
-
23
-
-
77954142858
-
Numerical simulations of 2D fractional subdiffusion problems
-
Brunner H., Ling L., Yamamoto M. Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 2010, 229:6613-6622.
-
(2010)
J. Comput. Phys.
, vol.229
, pp. 6613-6622
-
-
Brunner, H.1
Ling, L.2
Yamamoto, M.3
-
24
-
-
55549107511
-
New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
-
Zhuang P., Liu F., Anh V., Turner I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 2008, 46(2):1079-1095.
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, Issue.2
, pp. 1079-1095
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
25
-
-
70350134071
-
Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process
-
Zhuang P., Liu F., Anh V., Turner I. Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process. IMA J. Appl. Math. 2009, 74:6445-6467.
-
(2009)
IMA J. Appl. Math.
, vol.74
, pp. 6445-6467
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
26
-
-
67349231192
-
Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
-
Liu F., Yang C., Burrage K. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 2009, 231:160-176.
-
(2009)
J. Comput. Appl. Math.
, vol.231
, pp. 160-176
-
-
Liu, F.1
Yang, C.2
Burrage, K.3
-
27
-
-
0004182814
-
The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order
-
Academic Press, New York and London
-
Oldham K., Spanier J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Mathematics in Science and Engineering 1974, vol. III. Academic Press, New York and London.
-
(1974)
Mathematics in Science and Engineering
, vol.3
-
-
Oldham, K.1
Spanier, J.2
-
28
-
-
30744474991
-
A fully discrete difference scheme for a diffusion-wave system
-
Sun Z.Z., Wu X.N. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56:193-209.
-
(2006)
Appl. Numer. Math.
, vol.56
, pp. 193-209
-
-
Sun, Z.Z.1
Wu, X.N.2
-
29
-
-
77952888765
-
A compact difference scheme for the fractional diffusion-wave equation
-
Du R., Cao W., Sun Z.Z. A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 2010, 34:2998-3007.
-
(2010)
Appl. Math. Model.
, vol.34
, pp. 2998-3007
-
-
Du, R.1
Cao, W.2
Sun, Z.Z.3
-
30
-
-
78649334165
-
A compact finite difference scheme for the fractional sub-diffusion equations
-
Gao G.H., Sun Z.Z. A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 2011, 230:586-595.
-
(2011)
J. Comput. Phys.
, vol.230
, pp. 586-595
-
-
Gao, G.H.1
Sun, Z.Z.2
-
31
-
-
17144427014
-
The accuracy and stability of an implicit solution method for the fractional diffusion equation
-
Langlands T.A.M., Henry B.I. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205:719-736.
-
(2005)
J. Comput. Phys.
, vol.205
, pp. 719-736
-
-
Langlands, T.A.M.1
Henry, B.I.2
-
32
-
-
0000958123
-
A new difference scheme for parabolic problems
-
Academic Press, New York, B. Hubbard (Ed.)
-
Keller H.B. A new difference scheme for parabolic problems. Numerical Solution of Partial Differential Equation II 1971, Academic Press, New York. B. Hubbard (Ed.).
-
(1971)
Numerical Solution of Partial Differential Equation II
-
-
Keller, H.B.1
-
33
-
-
21844485652
-
A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation
-
Sun Z.Z. A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation. Math. Comput. 1995, 64:1463-1471.
-
(1995)
Math. Comput.
, vol.64
, pp. 1463-1471
-
-
Sun, Z.Z.1
-
34
-
-
2442616068
-
A second-order accurate difference scheme for the heat equation with concentrated capacity
-
Sun Z.Z., Zhu Y.L. A second-order accurate difference scheme for the heat equation with concentrated capacity. Numer. Math. 2004, 97:379-395.
-
(2004)
Numer. Math.
, vol.97
, pp. 379-395
-
-
Sun, Z.Z.1
Zhu, Y.L.2
|