메뉴 건너뛰기




Volumn 50, Issue 3, 2012, Pages 1535-1555

Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation

Author keywords

Compact ADI scheme; Convergence; Discrete energy method; Fractional diffusion wave equation; Stability

Indexed keywords

ADI SCHEME; ALTERNATING DIRECTION IMPLICIT SCHEMES; ALTERNATING-DIRECTION IMPLICIT METHOD; CONVERGENCE; CONVERGENCE ORDER; CPU TIME; CRANK-NICOLSON; DIFFERENCE SCHEMES; DIFFUSION WAVE EQUATION; DISCRETE ENERGIES; ERROR ESTIMATES; FRACTIONAL DERIVATIVES; GRID SIZE; NUMERICAL RESULTS; SPATIAL DISCRETIZATIONS; SPATIAL GRIDS; STORAGE REQUIREMENTS; TIME-STEPPING; UNCONDITIONAL STABILITY;

EID: 84865575179     PISSN: 00361429     EISSN: None     Source Type: Journal    
DOI: 10.1137/110840959     Document Type: Article
Times cited : (173)

References (45)
  • 3
    • 0040307478 scopus 로고
    • Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications
    • J. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), pp. 127-293.
    • (1990) Phys. Rep. , vol.195 , pp. 127-293
    • Bouchaud, J.1    Georges, A.2
  • 4
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: A fractional dynamics approach
    • R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), pp. 1-77.
    • (2000) Phys. Rep. , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 5
    • 0001691616 scopus 로고
    • Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow
    • T. H. Solomon, E. R. Weeks, and H. L. Swinney, Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow, Phys. Rev. Lett., 71 (1993), pp. 3975-3979.
    • (1993) Phys. Rev. Lett. , vol.71 , pp. 3975-3979
    • Solomon, T.H.1    Weeks, E.R.2    Swinney, H.L.3
  • 6
    • 0009481303 scopus 로고
    • Fractional diffusion equation
    • W. Wyss, Fractional diffusion equation, J. Math. Phys., 27 (1986), pp. 2782-2785.
    • (1986) J. Math. Phys. , vol.27 , pp. 2782-2785
    • Wyss, W.1
  • 7
    • 0001553919 scopus 로고
    • Fractional diffusion and wave equations
    • W. R. Schneider and W. Wyss, Fractional diffusion and wave equations, J. Math. Phys., 30 (1989), pp. 134-144.
    • (1989) J. Math. Phys. , vol.30 , pp. 134-144
    • Schneider, W.R.1    Wyss, W.2
  • 8
    • 30244460855 scopus 로고    scopus 로고
    • The fundamental solutions for the fractional diffusion-wave equation
    • DOI 10.1016/0893-9659(96)00089-4, PII S0893965996000894
    • F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9 (1996), pp. 23-28. (Pubitemid 126365654)
    • (1996) Applied Mathematics Letters , vol.9 , Issue.6 , pp. 23-28
    • Mainardi, F.1
  • 9
    • 0036650850 scopus 로고    scopus 로고
    • Time fractional diffusion: A discrete random walk approach
    • DOI 10.1023/A:1016547232119, Fractional Order Calculus and Its Applications
    • R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, Time fractional diffusion: A discrete random walk approach, Nonlinear Dyn., 29 (2002), pp. 129-143. (Pubitemid 34945395)
    • (2002) Nonlinear Dynamics , vol.29 , Issue.1-4 , pp. 129-143
    • Gorenflo, R.1    Mainardi, F.2    Moretti, D.3    Paradisi, P.4
  • 10
    • 34047155650 scopus 로고    scopus 로고
    • Continuous-time random walk and parametric subordination in fractional diffusion
    • DOI 10.1016/j.chaos.2007.01.052, PII S0960077907000926
    • R. Gorenflo, F. Mainardi, and A. Vivoli, Continuous-time random walk and parametric subordination in fractional diffusion, Chaos Solitons Fractals, 34 (2007), pp. 87-103. (Pubitemid 46529249)
    • (2007) Chaos, Solitons and Fractals , vol.34 , Issue.1 , pp. 87-103
    • Gorenflo, R.1    Mainardi, F.2    Vivoli, A.3
  • 11
    • 0036650559 scopus 로고    scopus 로고
    • Solution for a fractional diffusion-wave equation defined in a bounded domain
    • DOI 10.1023/A:1016539022492, Fractional Order Calculus and Its Applications
    • O. P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynam., 29 (2002), pp. 145-155. (Pubitemid 34945396)
    • (2002) Nonlinear Dynamics , vol.29 , Issue.1-4 , pp. 145-155
    • Agrawal, O.P.1
  • 12
    • 25444472344 scopus 로고    scopus 로고
    • An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations
    • DOI 10.1137/030602666
    • S. B. Yuste and L. Acedo, An explicit finite difference method and a new von Neumanntype stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42 (2005), pp. 1862-1874. (Pubitemid 41634613)
    • (2005) SIAM Journal on Numerical Analysis , vol.42 , Issue.5 , pp. 1862-1874
    • Yuste, S.B.1    Acedo, L.2
  • 13
    • 33646128485 scopus 로고    scopus 로고
    • Weighted average finite difference methods for fractional diffusion equations
    • DOI 10.1016/j.jcp.2005.12.006, PII S0021999105005516
    • S. B. Yuste, Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys., 216 (2006), pp. 264-274. (Pubitemid 43632555)
    • (2006) Journal of Computational Physics , vol.216 , Issue.1 , pp. 264-274
    • Yuste, S.B.1
  • 14
    • 36149001420 scopus 로고    scopus 로고
    • A Fourier method for the fractional diffusion equation describing sub-diffusion
    • C. M. Chen, F. Liu, I. Turner, and V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys., 227 (2007), pp. 886-897.
    • (2007) J. Comput. Phys. , vol.227 , pp. 886-897
    • Chen, C.M.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 15
    • 17144427014 scopus 로고    scopus 로고
    • The accuracy and stability of an implicit solution method for the fractional diffusion equation
    • DOI 10.1016/j.jcp.2004.11.025, PII S0021999104004887
    • T. A. M. Langlands and B. I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205 (2005), pp. 719-736. (Pubitemid 40518394)
    • (2005) Journal of Computational Physics , vol.205 , Issue.2 , pp. 719-736
    • Langlands, T.A.M.1    Henry, B.I.2
  • 16
    • 55549107511 scopus 로고    scopus 로고
    • New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
    • P. Zhuang, F. Liu, V. Anh, and I. Turner, New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 46 (2008), pp. 1079-1095.
    • (2008) SIAM J. Numer. Anal. , vol.46 , pp. 1079-1095
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 17
    • 30744474991 scopus 로고    scopus 로고
    • A fully discrete difference scheme for a diffusion-wave system
    • Z. Z. Sun and X. N. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), pp. 193-209.
    • (2006) Appl. Numer. Math. , vol.56 , pp. 193-209
    • Sun, Z.Z.1    Wu, X.N.2
  • 18
    • 33646398146 scopus 로고    scopus 로고
    • Convolution quadrature time discretization of fractional diffusion-wave equations
    • DOI 10.1090/S0025-5718-06-01788-1, PII S0025571806017881
    • E. Cuesta, C. Lubich, and C. Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations, Math. Comp., 75 (2006), pp. 673-696. (Pubitemid 43681466)
    • (2006) Mathematics of Computation , vol.75 , Issue.254 , pp. 673-696
    • Cuesta, E.1    Lubich, C.2    Palencia, C.3
  • 19
    • 69049086472 scopus 로고    scopus 로고
    • Compact finite difference method for the fractional diffusion equation
    • M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 228 (2009), pp. 7792-7804.
    • (2009) J. Comput. Phys. , vol.228 , pp. 7792-7804
    • Cui, M.1
  • 20
    • 77952888765 scopus 로고    scopus 로고
    • A compact difference scheme for the fractional diffusionwave equation
    • R. Du, W. R. Cao, and Z. Z. Sun, A compact difference scheme for the fractional diffusionwave equation, Appl. Math. Model., 34 (2010), pp. 2998-3007.
    • (2010) Appl. Math. Model. , vol.34 , pp. 2998-3007
    • Du, R.1    Cao, W.R.2    Sun, Z.Z.3
  • 21
    • 77955704784 scopus 로고    scopus 로고
    • Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation
    • C. M. Chen, F. Liu, V. Anh, and I. Turner, Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J. Sci. Comput., 32 (2010), pp. 1740-1760.
    • (2010) SIAM J. Sci. Comput. , vol.32 , pp. 1740-1760
    • Chen, C.M.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 22
    • 78649334165 scopus 로고    scopus 로고
    • A compact difference scheme for the fractional sub-diffusion equations
    • G. H. Gao and Z. Z. Sun, A compact difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 230 (2011), pp. 586-595.
    • (2011) J. Comput. Phys. , vol.230 , pp. 586-595
    • Gao, G.H.1    Sun, Z.Z.2
  • 23
    • 84907893973 scopus 로고    scopus 로고
    • Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term
    • P. Zhuang, F. Liu, V. Anh, and I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47 (2009), pp. 1760-1781.
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 1760-1781
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 24
    • 79956124918 scopus 로고    scopus 로고
    • A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions
    • X. Zhao and Z. Z. Sun, A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys., 230 (2011), pp. 6061-6074.
    • (2011) J. Comput. Phys. , vol.230 , pp. 6061-6074
    • Zhao, X.1    Sun, Z.Z.2
  • 25
    • 84862921732 scopus 로고    scopus 로고
    • Error estimates of crank-nicolson-type difference schemes for the subdiffusion equation
    • Y. N. Zhang, Z. Z. Sun, and H. W. Wu, Error estimates of Crank-Nicolson-type difference schemes for the subdiffusion equation, SIAM J. Numer. Anal., 49 (2011), pp. 2302-2322.
    • (2011) SIAM J. Numer. Anal. , vol.49 , pp. 2302-2322
    • Zhang, Y.N.1    Sun, Z.Z.2    Wu, H.W.3
  • 26
    • 77951184169 scopus 로고    scopus 로고
    • An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation
    • Y. Gu, P. Zhuang, and F. Liu, An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation, CMES Comput. Model. Eng. Sci., 56 (2010), pp. 303-333.
    • (2010) CMES Comput. Model. Eng. Sci. , vol.56 , pp. 303-333
    • Gu, Y.1    Zhuang, P.2    Liu, F.3
  • 27
    • 34547548712 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the time-fractional diffusion equation
    • Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), pp. 1533-1552.
    • (2007) J. Comput. Phys. , vol.225 , pp. 1533-1552
    • Lin, Y.1    Xu, C.2
  • 28
    • 77958536189 scopus 로고    scopus 로고
    • A space-time spectral method for the time fractional diffusion equation
    • X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), pp. 2108-2131.
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 2108-2131
    • Li, X.1    Xu, C.2
  • 29
    • 79955669422 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the fractional cable equation
    • Y. Lin, X. Li, and C. Xu, Finite difference/spectral approximations for the fractional cable equation, Math. Comp., 80 (2011), pp. 1369-1396.
    • (2011) Math. Comp. , vol.80 , pp. 1369-1396
    • Lin, Y.1    Li, X.2    Xu, C.3
  • 30
    • 59349113701 scopus 로고    scopus 로고
    • Finite element method for the the space and time fractional Fokker-Planck equation
    • W. Deng, Finite element method for the the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47 (2008), pp. 204-226.
    • (2008) SIAM J. Numer. Anal. , vol.47 , pp. 204-226
    • Deng, W.1
  • 31
    • 77950690888 scopus 로고    scopus 로고
    • Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation
    • C. M. Chen, F. Liu, I. Turner, and V. Anh, Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation, Numer. Algorithms, 54 (2010), pp. 1-21.
    • (2010) Numer. Algorithms , vol.54 , pp. 1-21
    • Chen, C.M.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 32
    • 80053633596 scopus 로고    scopus 로고
    • Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation
    • Y. N. Zhang and Z. Z. Sun, Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation, J. Comput. Phys., 230 (2011), pp. 8713-8728.
    • (2011) J. Comput. Phys. , vol.230 , pp. 8713-8728
    • Zhang, Y.N.1    Sun, Z.Z.2
  • 33
    • 77954142858 scopus 로고    scopus 로고
    • Numerical simulations of 2D fractional subdiffusion problems
    • H. Brunner, L. Ling, and M. Yamamoto, Numerical simulations of 2D fractional subdiffusion problems, J. Comput. Phys., 229 (2010), pp. 6613-6622.
    • (2010) J. Comput. Phys. , vol.229 , pp. 6613-6622
    • Brunner, H.1    Ling, L.2    Yamamoto, M.3
  • 34
    • 80053638646 scopus 로고    scopus 로고
    • Finite difference approximation for two-dimensional time fractional diffusion equation
    • P. Zhuang and F. Liu, Finite difference approximation for two-dimensional time fractional diffusion equation, J. Algorithm Computat. Tech., 1 (2007), pp. 1-15.
    • (2007) J. Algorithm Computat. Tech. , vol.1 , pp. 1-15
    • Zhuang, P.1    Liu, F.2
  • 35
    • 84858987832 scopus 로고    scopus 로고
    • Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation
    • C. Chen, F. Liu, V. Anh, and I. Turner, Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation, Math. Comp., 81 (2011), pp. 345-366.
    • (2011) Math. Comp. , vol.81 , pp. 345-366
    • Chen, C.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 36
    • 63949084174 scopus 로고    scopus 로고
    • A numerical approximation method for solving a three-dimensional space Galilei invariant fractional advection-diffusion equation
    • C. Chen and F. Liu, A numerical approximation method for solving a three-dimensional space Galilei invariant fractional advection-diffusion equation, J. Appl. Math. Comput., 30 (2009), pp. 219-236.
    • (2009) J. Appl. Math. Comput. , vol.30 , pp. 219-236
    • Chen, C.1    Liu, F.2
  • 37
    • 84865609778 scopus 로고    scopus 로고
    • Novel numerical methods for time-space fractional reaction diffusion equations in two dimensions
    • Q. Yang, T. Moroney, K. Burrage, I. Turner, and F. Liu, Novel numerical methods for time-space fractional reaction diffusion equations in two dimensions, ANZIAM J. Electron. Suppl., 52 (2010), pp. C395-C409.
    • (2010) ANZIAM J. Electron. Suppl. , vol.52
    • Yang, Q.1    Moroney, T.2    Burrage, K.3    Turner, I.4    Liu, F.5
  • 38
    • 79960431454 scopus 로고    scopus 로고
    • Novel numerical methods for solving the timespace fractional diffusion equation in two dimensions
    • Q. Yang, I. Turner, F. Liu, and M. Ilić, Novel numerical methods for solving the timespace fractional diffusion equation in two dimensions, SIAM J. Sci. Comput., 33 (2011), pp. 1159-1180.
    • (2011) SIAM J. Sci. Comput. , vol.33 , pp. 1159-1180
    • Yang, Q.1    Turner, I.2    Liu, F.3    Ilić, M.4
  • 39
    • 84856227286 scopus 로고    scopus 로고
    • Modified alternating direction methods for solving a two-dimensional noncontinuous seepage flow with fractional derivatives in uniform media
    • Q. Liu and F. Liu, Modified alternating direction methods for solving a two-dimensional noncontinuous seepage flow with fractional derivatives in uniform media, Math. Numer. Sin., 31 (2009), pp. 179-194.
    • (2009) Math. Numer. Sin. , vol.31 , pp. 179-194
    • Liu, Q.1    Liu, F.2
  • 40
    • 63649135242 scopus 로고    scopus 로고
    • Numerical simulation for the three-dimensional seepage flow with fractional derivatives in porous media
    • Q. Liu, F. Liu, I. Turner, and V. Anh, Numerical simulation for the three-dimensional seepage flow with fractional derivatives in porous media, IMA J. Appl. Math., 74 (2009), pp. 201-229.
    • (2009) IMA J. Appl. Math. , vol.74 , pp. 201-229
    • Liu, Q.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 41
    • 49249094092 scopus 로고    scopus 로고
    • ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation
    • S. Chen and F. Liu, ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation, J. Appl. Math. Comput., 26 (2008), pp. 295-311.
    • (2008) J. Appl. Math. Comput. , vol.26 , pp. 295-311
    • Chen, S.1    Liu, F.2
  • 42
    • 0025383598 scopus 로고
    • Difference scheme for a nonlinear partial integrodifferential equation
    • J. C. López-Marcos, A difference scheme for a nonlinear partial integrodifferential equation, SIAM J. Numer. Anal., 27 (1990), pp. 20-31. (Pubitemid 20669394)
    • (1990) SIAM Journal on Numerical Analysis , vol.27 , Issue.1 , pp. 20-31
    • Lopez-Marcos, J.C.1
  • 43
    • 0012661804 scopus 로고
    • A finite difference scheme for partial integro-differential equations with a weakly singular kernel
    • T. Tang, A finite difference scheme for partial integro-differential equations with a weakly singular kernel, Appl. Numer. Math., 11 (1993), pp. 309-319.
    • (1993) Appl. Numer. Math. , vol.11 , pp. 309-319
    • Tang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.