-
5
-
-
0036650559
-
Solution for a fractional difusion-wave equation defined in a bounded domain
-
O.P. Agrawal Solution for a fractional difusion-wave equation defined in a bounded domain Nonlinear Dyn. 29 2002 145 155
-
(2002)
Nonlinear Dyn.
, vol.29
, pp. 145-155
-
-
Agrawal, O.P.1
-
8
-
-
0037254447
-
The space fractional telegraph equation and the related telegraph process
-
E. Orssingher, and X. Zhao The space fractional telegraph equation and the related telegraph process Chin. Ann. Math. 24B 2003 45 56
-
(2003)
Chin. Ann. Math.
, vol.24 B
, pp. 45-56
-
-
Orssingher, E.1
Zhao, X.2
-
9
-
-
0742323831
-
Time fractional telegraph equation and telegraph process with brownian time
-
E. Orssingher, and L. Beghin Time fractional telegraph equation and telegraph process with brownian time Prob. Theory Relat. Fields 128 2004 141 160
-
(2004)
Prob. Theory Relat. Fields
, vol.128
, pp. 141-160
-
-
Orssingher, E.1
Beghin, L.2
-
10
-
-
27144506208
-
Analytic and approximate solutions of the space and time fractional telegraph equations
-
S. Momani Analytic and approximate solutions of the space and time fractional telegraph equations Appl. Math. Comput. 170 2005 1126 1134
-
(2005)
Appl. Math. Comput.
, vol.170
, pp. 1126-1134
-
-
Momani, S.1
-
11
-
-
34848822538
-
Analytical solution for the time-fractional telegraph equation by the method of separating variables
-
J. Chen, F. Liu, and V. Anh Analytical solution for the time-fractional telegraph equation by the method of separating variables J. Math. Anal. Appl. 338 2008 1364 1377
-
(2008)
J. Math. Anal. Appl.
, vol.338
, pp. 1364-1377
-
-
Chen, J.1
Liu, F.2
Anh, V.3
-
12
-
-
79251549814
-
The use of He's variational iteration method for solving the telegraph and fractional telegraph equations
-
M. Dehghan, S.A. Yousefi, and A. Lotfi The use of He's variational iteration method for solving the telegraph and fractional telegraph equations Int. J. Numer. Meth. Bio. 27 2011 219 231
-
(2011)
Int. J. Numer. Meth. Bio.
, vol.27
, pp. 219-231
-
-
Dehghan, M.1
Yousefi, S.A.2
Lotfi, A.3
-
14
-
-
84977255207
-
Linear models of dissipation whose Q is almost frequency independent, Part II, Geophys
-
M. Caputo Linear models of dissipation whose Q is almost frequency independent, Part II, Geophys J. R. Astron. Soc. 13 1963 529 539
-
(1963)
J. R. Astron. Soc.
, vol.13
, pp. 529-539
-
-
Caputo, M.1
-
16
-
-
33745869026
-
Physical interpretation of initial conditons for frational differenial equations with Riemann-Liouville fractionsl derivatives
-
N. Heymans, and I. Podlubny Physical interpretation of initial conditons for frational differenial equations with Riemann-Liouville fractionsl derivatives Rheol. Acta. 45 2006 765 772
-
(2006)
Rheol. Acta.
, vol.45
, pp. 765-772
-
-
Heymans, N.1
Podlubny, I.2
-
17
-
-
33746208811
-
Approximations of fractional integrals and Caputo fractional derivatives
-
Z. Odibat Approximations of fractional integrals and Caputo fractional derivatives Appl. Math. Comput. 178 2 2006 527 533
-
(2006)
Appl. Math. Comput.
, vol.178
, Issue.2
, pp. 527-533
-
-
Odibat, Z.1
-
18
-
-
34247212711
-
Remarks on fractional derivatives
-
C.P. Li, and W.H. Deng Remarks on fractional derivatives Appl. Math. Comput. 187 2007 777 784
-
(2007)
Appl. Math. Comput.
, vol.187
, pp. 777-784
-
-
Li, C.P.1
Deng, W.H.2
-
19
-
-
67349121725
-
Fractional derivatives in complex plane
-
C.P. Li, X.H. Dao, and P. Guo Fractional derivatives in complex plane Nonlinear Anal. 71 2009 1857 1869
-
(2009)
Nonlinear Anal.
, vol.71
, pp. 1857-1869
-
-
Li, C.P.1
Dao, X.H.2
Guo, P.3
-
20
-
-
79953697124
-
Introduction to fractional integrability and differentiability
-
C.P. Li, and Z.G. Zhao Introduction to fractional integrability and differentiability Eur. Phys. J. Spec. Top. 193 2011 5 26
-
(2011)
Eur. Phys. J. Spec. Top.
, vol.193
, pp. 5-26
-
-
Li, C.P.1
Zhao, Z.G.2
-
21
-
-
84868191489
-
A numerical approach to the generalized nonlinear fractional Fokker-Planck equation
-
Z.G. Zhao, and C.P. Li A numerical approach to the generalized nonlinear fractional Fokker-Planck equation Comput. Math. Appl. 2012 http://dx.doi.org/10. 1016/j.camwa.2012.01.067
-
(2012)
Comput. Math. Appl.
-
-
Zhao, Z.G.1
Li, C.P.2
-
22
-
-
33646262074
-
Variational formulation for the stationary fractional advection dispersion equation
-
V.J. Ervin, and J.P. Roop Variational formulation for the stationary fractional advection dispersion equation Numer. Methods Partial Differ. Equat. 22 2006 558 576
-
(2006)
Numer. Methods Partial Differ. Equat.
, vol.22
, pp. 558-576
-
-
Ervin, V.J.1
Roop, J.P.2
-
23
-
-
76449122108
-
A note on the finite element method for the space-fractional advection diffusion equation
-
Y.Y. Zheng, C.P. Li, and Z.G. Zhao A note on the finite element method for the space-fractional advection diffusion equation Comput. Math. Appl. 59 2010 1718 1726
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1718-1726
-
-
Zheng, Y.Y.1
Li, C.P.2
Zhao, Z.G.3
-
24
-
-
84855247929
-
A fully discrete Galerkin method for a nonlinear space-fractional diffusion equation
-
Article ID: 171620
-
Y.Y. Zheng, and Z.G. Zhao A fully discrete Galerkin method for a nonlinear space-fractional diffusion equation Math. Prob. Eng. 2011 2011 Article ID: 171620
-
(2011)
Math. Prob. Eng.
, vol.2011
-
-
Zheng, Y.Y.1
Zhao, Z.G.2
-
25
-
-
79960990048
-
Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion
-
C.P. Li, Z.G. Zhao, and Y.Q. Chen Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion Comput. Math. Appl. 62 2011 855 875
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 855-875
-
-
Li, C.P.1
Zhao, Z.G.2
Chen, Y.Q.3
-
28
-
-
34547548712
-
Finite difference/spectral approximations for the time-fractional diffusion equation
-
Y. Lin, and C.J. Xu Finite difference/spectral approximations for the time-fractional diffusion equation J. Comput. Phys. 225 2007 1533 1552
-
(2007)
J. Comput. Phys.
, vol.225
, pp. 1533-1552
-
-
Lin, Y.1
Xu, C.J.2
|