메뉴 건너뛰기




Volumn 219, Issue 6, 2012, Pages 2975-2988

Fractional difference/finite element approximations for the time-space fractional telegraph equation

Author keywords

Caputo derivative; Fractional difference method; Fractional finite element method; Riemann Liouville derivative; Time space fractional telegraph equation

Indexed keywords

CAPUTO DERIVATIVES; DIFFERENCE METHOD; ELECTRICAL SIGNAL; ERROR ESTIMATES; EXISTENCE AND UNIQUENESS; FINITE DIFFERENCE SCHEME; FRACTIONAL ORDER; FRACTIONAL TELEGRAPH EQUATIONS; FULLY DISCRETE; GALERKIN FINITE ELEMENT METHODS; NUMERICAL APPROXIMATIONS; NUMERICAL EXAMPLE; NUMERICAL SOLUTION; RANDOM WALK; REACTION DIFFUSION; RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES; SUSPENSION FLOWS; TELEGRAPH EQUATION; TIME-SPACE;

EID: 84868451071     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2012.09.022     Document Type: Article
Times cited : (135)

References (29)
  • 5
    • 0036650559 scopus 로고    scopus 로고
    • Solution for a fractional difusion-wave equation defined in a bounded domain
    • O.P. Agrawal Solution for a fractional difusion-wave equation defined in a bounded domain Nonlinear Dyn. 29 2002 145 155
    • (2002) Nonlinear Dyn. , vol.29 , pp. 145-155
    • Agrawal, O.P.1
  • 8
    • 0037254447 scopus 로고    scopus 로고
    • The space fractional telegraph equation and the related telegraph process
    • E. Orssingher, and X. Zhao The space fractional telegraph equation and the related telegraph process Chin. Ann. Math. 24B 2003 45 56
    • (2003) Chin. Ann. Math. , vol.24 B , pp. 45-56
    • Orssingher, E.1    Zhao, X.2
  • 9
    • 0742323831 scopus 로고    scopus 로고
    • Time fractional telegraph equation and telegraph process with brownian time
    • E. Orssingher, and L. Beghin Time fractional telegraph equation and telegraph process with brownian time Prob. Theory Relat. Fields 128 2004 141 160
    • (2004) Prob. Theory Relat. Fields , vol.128 , pp. 141-160
    • Orssingher, E.1    Beghin, L.2
  • 10
    • 27144506208 scopus 로고    scopus 로고
    • Analytic and approximate solutions of the space and time fractional telegraph equations
    • S. Momani Analytic and approximate solutions of the space and time fractional telegraph equations Appl. Math. Comput. 170 2005 1126 1134
    • (2005) Appl. Math. Comput. , vol.170 , pp. 1126-1134
    • Momani, S.1
  • 11
    • 34848822538 scopus 로고    scopus 로고
    • Analytical solution for the time-fractional telegraph equation by the method of separating variables
    • J. Chen, F. Liu, and V. Anh Analytical solution for the time-fractional telegraph equation by the method of separating variables J. Math. Anal. Appl. 338 2008 1364 1377
    • (2008) J. Math. Anal. Appl. , vol.338 , pp. 1364-1377
    • Chen, J.1    Liu, F.2    Anh, V.3
  • 12
    • 79251549814 scopus 로고    scopus 로고
    • The use of He's variational iteration method for solving the telegraph and fractional telegraph equations
    • M. Dehghan, S.A. Yousefi, and A. Lotfi The use of He's variational iteration method for solving the telegraph and fractional telegraph equations Int. J. Numer. Meth. Bio. 27 2011 219 231
    • (2011) Int. J. Numer. Meth. Bio. , vol.27 , pp. 219-231
    • Dehghan, M.1    Yousefi, S.A.2    Lotfi, A.3
  • 14
    • 84977255207 scopus 로고
    • Linear models of dissipation whose Q is almost frequency independent, Part II, Geophys
    • M. Caputo Linear models of dissipation whose Q is almost frequency independent, Part II, Geophys J. R. Astron. Soc. 13 1963 529 539
    • (1963) J. R. Astron. Soc. , vol.13 , pp. 529-539
    • Caputo, M.1
  • 16
    • 33745869026 scopus 로고    scopus 로고
    • Physical interpretation of initial conditons for frational differenial equations with Riemann-Liouville fractionsl derivatives
    • N. Heymans, and I. Podlubny Physical interpretation of initial conditons for frational differenial equations with Riemann-Liouville fractionsl derivatives Rheol. Acta. 45 2006 765 772
    • (2006) Rheol. Acta. , vol.45 , pp. 765-772
    • Heymans, N.1    Podlubny, I.2
  • 17
    • 33746208811 scopus 로고    scopus 로고
    • Approximations of fractional integrals and Caputo fractional derivatives
    • Z. Odibat Approximations of fractional integrals and Caputo fractional derivatives Appl. Math. Comput. 178 2 2006 527 533
    • (2006) Appl. Math. Comput. , vol.178 , Issue.2 , pp. 527-533
    • Odibat, Z.1
  • 18
    • 34247212711 scopus 로고    scopus 로고
    • Remarks on fractional derivatives
    • C.P. Li, and W.H. Deng Remarks on fractional derivatives Appl. Math. Comput. 187 2007 777 784
    • (2007) Appl. Math. Comput. , vol.187 , pp. 777-784
    • Li, C.P.1    Deng, W.H.2
  • 19
    • 67349121725 scopus 로고    scopus 로고
    • Fractional derivatives in complex plane
    • C.P. Li, X.H. Dao, and P. Guo Fractional derivatives in complex plane Nonlinear Anal. 71 2009 1857 1869
    • (2009) Nonlinear Anal. , vol.71 , pp. 1857-1869
    • Li, C.P.1    Dao, X.H.2    Guo, P.3
  • 20
    • 79953697124 scopus 로고    scopus 로고
    • Introduction to fractional integrability and differentiability
    • C.P. Li, and Z.G. Zhao Introduction to fractional integrability and differentiability Eur. Phys. J. Spec. Top. 193 2011 5 26
    • (2011) Eur. Phys. J. Spec. Top. , vol.193 , pp. 5-26
    • Li, C.P.1    Zhao, Z.G.2
  • 21
    • 84868191489 scopus 로고    scopus 로고
    • A numerical approach to the generalized nonlinear fractional Fokker-Planck equation
    • Z.G. Zhao, and C.P. Li A numerical approach to the generalized nonlinear fractional Fokker-Planck equation Comput. Math. Appl. 2012 http://dx.doi.org/10. 1016/j.camwa.2012.01.067
    • (2012) Comput. Math. Appl.
    • Zhao, Z.G.1    Li, C.P.2
  • 22
    • 33646262074 scopus 로고    scopus 로고
    • Variational formulation for the stationary fractional advection dispersion equation
    • V.J. Ervin, and J.P. Roop Variational formulation for the stationary fractional advection dispersion equation Numer. Methods Partial Differ. Equat. 22 2006 558 576
    • (2006) Numer. Methods Partial Differ. Equat. , vol.22 , pp. 558-576
    • Ervin, V.J.1    Roop, J.P.2
  • 23
    • 76449122108 scopus 로고    scopus 로고
    • A note on the finite element method for the space-fractional advection diffusion equation
    • Y.Y. Zheng, C.P. Li, and Z.G. Zhao A note on the finite element method for the space-fractional advection diffusion equation Comput. Math. Appl. 59 2010 1718 1726
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1718-1726
    • Zheng, Y.Y.1    Li, C.P.2    Zhao, Z.G.3
  • 24
    • 84855247929 scopus 로고    scopus 로고
    • A fully discrete Galerkin method for a nonlinear space-fractional diffusion equation
    • Article ID: 171620
    • Y.Y. Zheng, and Z.G. Zhao A fully discrete Galerkin method for a nonlinear space-fractional diffusion equation Math. Prob. Eng. 2011 2011 Article ID: 171620
    • (2011) Math. Prob. Eng. , vol.2011
    • Zheng, Y.Y.1    Zhao, Z.G.2
  • 25
    • 79960990048 scopus 로고    scopus 로고
    • Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion
    • C.P. Li, Z.G. Zhao, and Y.Q. Chen Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion Comput. Math. Appl. 62 2011 855 875
    • (2011) Comput. Math. Appl. , vol.62 , pp. 855-875
    • Li, C.P.1    Zhao, Z.G.2    Chen, Y.Q.3
  • 28
    • 34547548712 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the time-fractional diffusion equation
    • Y. Lin, and C.J. Xu Finite difference/spectral approximations for the time-fractional diffusion equation J. Comput. Phys. 225 2007 1533 1552
    • (2007) J. Comput. Phys. , vol.225 , pp. 1533-1552
    • Lin, Y.1    Xu, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.