-
1
-
-
0347133557
-
Anomalous diffusion is the rule in concentration-dependent diffusion processes
-
Küntz M., Lavallée P. Anomalous diffusion is the rule in concentration-dependent diffusion processes. Journal of Physics D: Applied Physics 2004, 37:L5.
-
(2004)
Journal of Physics D: Applied Physics
, vol.37
-
-
Küntz, M.1
Lavallée, P.2
-
2
-
-
23744452794
-
Anomalous diffusion spreads its wings
-
Klafter J., Sokolov I. Anomalous diffusion spreads its wings. Physics World 2005, 18:29-32.
-
(2005)
Physics World
, vol.18
, pp. 29-32
-
-
Klafter, J.1
Sokolov, I.2
-
3
-
-
77952550861
-
A hyperbolic theory for advection-diffusion problems: mathematical foundations and numerical modeling
-
Gomez H., Colominas I., Navarrina F., París J., Casteleiro M. A hyperbolic theory for advection-diffusion problems: mathematical foundations and numerical modeling. Archives of Computational Methods in Engineering 2010, 17:191-211. 10.1007/s11831-010-9042-5.
-
(2010)
Archives of Computational Methods in Engineering
, vol.17
, pp. 191-211
-
-
Gomez, H.1
Colominas, I.2
Navarrina, F.3
París, J.4
Casteleiro, M.5
-
5
-
-
78649451861
-
Solution of a Cattaneo-Maxwell diffusion model using a Spectral Element Least-Squares method
-
Carella A., Dorao C. Solution of a Cattaneo-Maxwell diffusion model using a Spectral Element Least-Squares method. Journal of Natural Gas Science and Engineering 2010, 2:253-258.
-
(2010)
Journal of Natural Gas Science and Engineering
, vol.2
, pp. 253-258
-
-
Carella, A.1
Dorao, C.2
-
6
-
-
0041107241
-
The generalized Cattaneo equation for the description of anomalous transport processes
-
Compte A., Metzler R. The generalized Cattaneo equation for the description of anomalous transport processes. Journal of Physics A 1997, 30:7277-7289.
-
(1997)
Journal of Physics A
, vol.30
, pp. 7277-7289
-
-
Compte, A.1
Metzler, R.2
-
7
-
-
76349090233
-
Application of fractional differential equations for modeling the anomalous diffusion of contaminant from fracture into porous rock matrix with bordering alteration zone
-
Fomin S., Chugunov V., Hashida T. Application of fractional differential equations for modeling the anomalous diffusion of contaminant from fracture into porous rock matrix with bordering alteration zone. Transport in Porous Media 2009, 81:187-205.
-
(2009)
Transport in Porous Media
, vol.81
, pp. 187-205
-
-
Fomin, S.1
Chugunov, V.2
Hashida, T.3
-
8
-
-
0036828743
-
CTRW pathways to the fractional diffusion equation
-
Barkai E. CTRW pathways to the fractional diffusion equation. Chemical Physics 2002, 284:13-27.
-
(2002)
Chemical Physics
, vol.284
, pp. 13-27
-
-
Barkai, E.1
-
9
-
-
0000437484
-
Fractional master equations and fractal time random walks
-
Hilfer R., Anton L. Fractional master equations and fractal time random walks. Physical Review E 1994, 51:R848-R851.
-
(1994)
Physical Review E
, vol.51
-
-
Hilfer, R.1
Anton, L.2
-
10
-
-
79952715325
-
Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations
-
Luchko Y., Punzi A. Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations. GEM - International Journal on Geomathematics 2011, 1-20. 10.1007/s13137-010-0012-8.
-
(2011)
GEM - International Journal on Geomathematics
, pp. 1-20
-
-
Luchko, Y.1
Punzi, A.2
-
11
-
-
62349097511
-
Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications
-
Zhang Y., Benson D.A., Reeves D.M. Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Advances in Water Resources 2009, 32:561-581.
-
(2009)
Advances in Water Resources
, vol.32
, pp. 561-581
-
-
Zhang, Y.1
Benson, D.A.2
Reeves, D.M.3
-
14
-
-
85189842428
-
An historical perspective on fractional calculus in linear viscoelasticity
-
in press
-
F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity, History and Overview, in press, http://arxiv.org/abs/1007.2959.
-
History and Overview
-
-
Mainardi, F.1
-
16
-
-
0002641421
-
The random walk's guide to anomalous diffusion: a fractional dynamics approach
-
Metzler R., Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 2000, 339:1-77.
-
(2000)
Physics Reports
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
17
-
-
0020765202
-
A theoretical basis for the application of fractional calculus to viscoelasticity
-
Bagley R.L., Torvik P.J. A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology 1983, 27:201-210.
-
(1983)
Journal of Rheology
, vol.27
, pp. 201-210
-
-
Bagley, R.L.1
Torvik, P.J.2
-
18
-
-
0036650850
-
Time fractional diffusion: a discrete random walk approach
-
Gorenflo R., Mainardi F., Moretti D., Paradisi P. Time fractional diffusion: a discrete random walk approach. Nonlinear Dynamics 2002, 29:129-143. 10.1023/A:101654723211.
-
(2002)
Nonlinear Dynamics
, vol.29
, pp. 129-143
-
-
Gorenflo, R.1
Mainardi, F.2
Moretti, D.3
Paradisi, P.4
-
19
-
-
70350567183
-
Fractional differential equations in electrochemistry
-
(Civil-Comp Special Issue)
-
Oldham K.B. Fractional differential equations in electrochemistry. Advances in Engineering Software 2010, 41:9-12. (Civil-Comp Special Issue).
-
(2010)
Advances in Engineering Software
, vol.41
, pp. 9-12
-
-
Oldham, K.B.1
-
21
-
-
41349088572
-
Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations
-
Chechkin A., Gorenflo R., Sokolov I. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Physical Review E 2002, 66:046129.
-
(2002)
Physical Review E
, vol.66
, pp. 046129
-
-
Chechkin, A.1
Gorenflo, R.2
Sokolov, I.3
-
22
-
-
85189840958
-
Fractional model for solute spreading in randomly heterogeneous porous media
-
in: XXI International Congress of Theoretical and Applied Mechanics, August 15-21, Warsaw, Poland
-
K. Logvinova, M.-C. Néel, Fractional model for solute spreading in randomly heterogeneous porous media, in: XXI International Congress of Theoretical and Applied Mechanics, August 15-21, Warsaw, Poland, 2004, p. 2p.
-
(2004)
, pp. 2
-
-
Logvinova, K.1
Néel, M.-C.2
-
23
-
-
61349186917
-
Matrix approach to discrete fractional calculus II: partial fractional differential equations
-
Podlubny I., Chechkin A., Skovranek T., Chen Y., Jara B.M.V. Matrix approach to discrete fractional calculus II: partial fractional differential equations. Journal of Computational Physics 2009, 228:3137-3153.
-
(2009)
Journal of Computational Physics
, vol.228
, pp. 3137-3153
-
-
Podlubny, I.1
Chechkin, A.2
Skovranek, T.3
Chen, Y.4
Jara, B.M.V.5
-
24
-
-
76449122108
-
A note on the finite element method for the space-fractional advection diffusion equation
-
(Fractional Differentiation and Its Applications)
-
Zheng Y., Li C., Zhao Z. A note on the finite element method for the space-fractional advection diffusion equation. Computers & Mathematics with Applications 2010, 59:1718-1726. (Fractional Differentiation and Its Applications).
-
(2010)
Computers & Mathematics with Applications
, vol.59
, pp. 1718-1726
-
-
Zheng, Y.1
Li, C.2
Zhao, Z.3
-
26
-
-
55649099424
-
A finite element solution for the fractional advection-dispersion equation
-
Huang Q., Huang G., Zhan H. A finite element solution for the fractional advection-dispersion equation. Advances in Water Resources 2008, 31:1578-1589.
-
(2008)
Advances in Water Resources
, vol.31
, pp. 1578-1589
-
-
Huang, Q.1
Huang, G.2
Zhan, H.3
-
27
-
-
0035928627
-
Experimental evidence and theoretical analysis of anomalous diffusion during water infiltration in porous building materials
-
Küntz M., Lavallée P. Experimental evidence and theoretical analysis of anomalous diffusion during water infiltration in porous building materials. Journal of Physics D 2001, 34:2547-2554.
-
(2001)
Journal of Physics D
, vol.34
, pp. 2547-2554
-
-
Küntz, M.1
Lavallée, P.2
-
28
-
-
0000930143
-
A new dissipation model based on memory mechanism
-
Caputo M., Mainardi F. A new dissipation model based on memory mechanism. Pure and Applied Geophysics 1971, 91:134-147. 10.1007/BF00879562.
-
(1971)
Pure and Applied Geophysics
, vol.91
, pp. 134-147
-
-
Caputo, M.1
Mainardi, F.2
-
29
-
-
79951578729
-
The analysis of the impact response of a thin plate via fractional derivative standard linear solid model
-
Rossikhin Y.A., Shitikova M.V. The analysis of the impact response of a thin plate via fractional derivative standard linear solid model. Journal of Sound and Vibration 2011, 330:1985-2003.
-
(2011)
Journal of Sound and Vibration
, vol.330
, pp. 1985-2003
-
-
Rossikhin, Y.A.1
Shitikova, M.V.2
-
30
-
-
33745698040
-
Analysis of damped vibrations of linear viscoelastic plates with damping modeled with fractional derivatives
-
(Special Section: Fractional Calculus Applications in Signals and Systems)
-
Rossikhin Y.A., Shitikova M. Analysis of damped vibrations of linear viscoelastic plates with damping modeled with fractional derivatives. Signal Processing 2006, 86:2703-2711. (Special Section: Fractional Calculus Applications in Signals and Systems).
-
(2006)
Signal Processing
, vol.86
, pp. 2703-2711
-
-
Rossikhin, Y.A.1
Shitikova, M.2
-
31
-
-
33745869026
-
Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives
-
Heymans N., Podlubny I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta 2006, 45:765-771. 10.1007/s00397-005-0043-5.
-
(2006)
Rheologica Acta
, vol.45
, pp. 765-771
-
-
Heymans, N.1
Podlubny, I.2
-
32
-
-
77950866104
-
Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative
-
Malinowska A.B., Torres D.F. Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Computers & Mathematics with Applications 2010, 59:3110-3116.
-
(2010)
Computers & Mathematics with Applications
, vol.59
, pp. 3110-3116
-
-
Malinowska, A.B.1
Torres, D.F.2
-
33
-
-
70449122339
-
How to impose physically coherent initial conditions to a fractional system?
-
Sabatier J., Merveillaut M., Malti R., Oustaloup A. How to impose physically coherent initial conditions to a fractional system?. Communications in Nonlinear Science and Numerical Simulation 2010, 15:1318-1326.
-
(2010)
Communications in Nonlinear Science and Numerical Simulation
, vol.15
, pp. 1318-1326
-
-
Sabatier, J.1
Merveillaut, M.2
Malti, R.3
Oustaloup, A.4
-
34
-
-
33847315613
-
The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: defining the fractional dispersive flux with the Caputo derivatives
-
Zhang X., Lv M., Crawford J.W., Young I.M. The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: defining the fractional dispersive flux with the Caputo derivatives. Advances in Water Resources 2007, 30:1205-1217.
-
(2007)
Advances in Water Resources
, vol.30
, pp. 1205-1217
-
-
Zhang, X.1
Lv, M.2
Crawford, J.W.3
Young, I.M.4
-
35
-
-
54249111560
-
Quadrature rule for Abel's equations: uniformly approximating fractional derivatives
-
Sugiura H., Hasegawa T. Quadrature rule for Abel's equations: uniformly approximating fractional derivatives. Journal of Computational and Applied Mathematics 2009, 223:459-468.
-
(2009)
Journal of Computational and Applied Mathematics
, vol.223
, pp. 459-468
-
-
Sugiura, H.1
Hasegawa, T.2
-
36
-
-
73449097072
-
Approximate solution of the fractional advection-dispersion equation
-
Jiang W., Lin Y. Approximate solution of the fractional advection-dispersion equation. Computer Physics Communications 2010, 181:557-561.
-
(2010)
Computer Physics Communications
, vol.181
, pp. 557-561
-
-
Jiang, W.1
Lin, Y.2
-
37
-
-
73449121039
-
Efficient solution of a vibration equation involving fractional derivatives
-
Pálfalvi A. Efficient solution of a vibration equation involving fractional derivatives. International Journal of Non-Linear Mechanics 2010, 45:169-175.
-
(2010)
International Journal of Non-Linear Mechanics
, vol.45
, pp. 169-175
-
-
Pálfalvi, A.1
-
38
-
-
69249214155
-
Numerical methods for fractional partial differential equations with Riesz space fractional derivatives
-
Yang Q., Liu F., Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Applied Mathematical Modelling 2010, 34:200-218.
-
(2010)
Applied Mathematical Modelling
, vol.34
, pp. 200-218
-
-
Yang, Q.1
Liu, F.2
Turner, I.3
-
39
-
-
26444438049
-
Pitfalls in fast numerical solvers for fractional differential equations
-
Diethelm K., Ford J.M., Ford N.J., Weilbeer M. Pitfalls in fast numerical solvers for fractional differential equations. Journal of Computational and Applied Mathematics 2006, 186:482-503.
-
(2006)
Journal of Computational and Applied Mathematics
, vol.186
, pp. 482-503
-
-
Diethelm, K.1
Ford, J.M.2
Ford, N.J.3
Weilbeer, M.4
-
40
-
-
34547548712
-
Finite difference/spectral approximations for the time-fractional diffusion equation
-
Lin Y., Xu C. Finite difference/spectral approximations for the time-fractional diffusion equation. Journal of Computational Physics 2007, 225:1533-1552.
-
(2007)
Journal of Computational Physics
, vol.225
, pp. 1533-1552
-
-
Lin, Y.1
Xu, C.2
-
41
-
-
0036554885
-
A numerical scheme for dynamic systems containing fractional derivatives
-
Yuan L., Agrawal O.P. A numerical scheme for dynamic systems containing fractional derivatives. Journal of Vibration and Acoustics 2002, 124:321-324.
-
(2002)
Journal of Vibration and Acoustics
, vol.124
, pp. 321-324
-
-
Yuan, L.1
Agrawal, O.P.2
-
42
-
-
76049087706
-
An improvement of a nonclassical numerical method for the computation of fractional derivatives
-
Diethelm K. An improvement of a nonclassical numerical method for the computation of fractional derivatives. Journal of Vibration and Acoustics 2009, 131:014502.
-
(2009)
Journal of Vibration and Acoustics
, vol.131
, pp. 014502
-
-
Diethelm, K.1
-
43
-
-
19744367302
-
Wave field simulation for heterogeneous porous media with singular memory drag force
-
Lu J.-F., Hanyga A. Wave field simulation for heterogeneous porous media with singular memory drag force. Journal of Computational Physics 2005, 208:651-674.
-
(2005)
Journal of Computational Physics
, vol.208
, pp. 651-674
-
-
Lu, J.-F.1
Hanyga, A.2
-
44
-
-
77954952866
-
An improved non-classical method for the solution of fractional differential equations
-
Birk C., Song C. An improved non-classical method for the solution of fractional differential equations. Computational Mechanics 2010, 46:721-734. 10.1007/s00466-010-0510-4.
-
(2010)
Computational Mechanics
, vol.46
, pp. 721-734
-
-
Birk, C.1
Song, C.2
-
45
-
-
84860675597
-
A fast time stepping method for evaluating fractional integrals
-
Li J.-R. A fast time stepping method for evaluating fractional integrals. SIAM Journal on Scientific Computing 2010, 31:4696-4714.
-
(2010)
SIAM Journal on Scientific Computing
, vol.31
, pp. 4696-4714
-
-
Li, J.-R.1
-
46
-
-
34249335010
-
Short memory principle and a predictor-corrector approach for fractional differential equations
-
Deng W. Short memory principle and a predictor-corrector approach for fractional differential equations. Journal of Computational and Applied Mathematics 2007, 206:174-188.
-
(2007)
Journal of Computational and Applied Mathematics
, vol.206
, pp. 174-188
-
-
Deng, W.1
-
47
-
-
77958536189
-
A space-time spectral method for the time fractional diffusion equation
-
Li X., Xu C. A space-time spectral method for the time fractional diffusion equation. SIAM Journal on Numerical Analysis 2009, 47:2108-2131.
-
(2009)
SIAM Journal on Numerical Analysis
, vol.47
, pp. 2108-2131
-
-
Li, X.1
Xu, C.2
-
48
-
-
77954143774
-
Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation
-
Li X., Xu C. Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Communications in Computational Physics 2010, 8:1016-1051.
-
(2010)
Communications in Computational Physics
, vol.8
, pp. 1016-1051
-
-
Li, X.1
Xu, C.2
-
49
-
-
33646191893
-
Computational aspects of fem approximation of fractional advection dispersion equations on bounded domains in
-
Roop J.P. Computational aspects of fem approximation of fractional advection dispersion equations on bounded domains in. Journal of Computational and Applied Mathematics 2006, 193:243-268.
-
(2006)
Journal of Computational and Applied Mathematics
, vol.193
, pp. 243-268
-
-
Roop, J.P.1
-
50
-
-
48049106196
-
Numerical approximation of a one-dimensional space fractional advection-dispersion equation with boundary layer
-
Roop J.P. Numerical approximation of a one-dimensional space fractional advection-dispersion equation with boundary layer. Computers & Mathematics with Applications 2008, 56:1808-1819.
-
(2008)
Computers & Mathematics with Applications
, vol.56
, pp. 1808-1819
-
-
Roop, J.P.1
-
51
-
-
14644446063
-
Least Squares finite-element solution of a fractional order two-point boundary value problem
-
Fix G., Roop J. Least Squares finite-element solution of a fractional order two-point boundary value problem. Computers & Mathematics with Applications 2004, 48:1017-1033.
-
(2004)
Computers & Mathematics with Applications
, vol.48
, pp. 1017-1033
-
-
Fix, G.1
Roop, J.2
-
53
-
-
0002745423
-
A fractional diffusion equation to describe lévy flights
-
Chaves A.S. A fractional diffusion equation to describe lévy flights. Physics Letters A 1998, 239:13-16.
-
(1998)
Physics Letters A
, vol.239
, pp. 13-16
-
-
Chaves, A.S.1
-
54
-
-
0035130739
-
Eulerian derivation of the fractional advection-dispersion equation
-
Schumer R., Benson D.A., Meerschaert M.M., Wheatcraft S.W. Eulerian derivation of the fractional advection-dispersion equation. Journal of Contaminant Hydrology 2001, 48:69-88.
-
(2001)
Journal of Contaminant Hydrology
, vol.48
, pp. 69-88
-
-
Schumer, R.1
Benson, D.A.2
Meerschaert, M.M.3
Wheatcraft, S.W.4
-
56
-
-
56549085438
-
Maximum principle for the generalized time-fractional diffusion equation
-
Luchko Y. Maximum principle for the generalized time-fractional diffusion equation. Journal of Mathematical Analysis and Applications 2009, 351:218-223.
-
(2009)
Journal of Mathematical Analysis and Applications
, vol.351
, pp. 218-223
-
-
Luchko, Y.1
-
57
-
-
79954926078
-
On the numerical solution of space-time fractional diffusion models
-
Hanert E. On the numerical solution of space-time fractional diffusion models. Computers & Fluids 2011, 46:33-39.
-
(2011)
Computers & Fluids
, vol.46
, pp. 33-39
-
-
Hanert, E.1
-
58
-
-
0003621102
-
An introduction to the conjugate gradient method without the agonizing pain
-
in: School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
-
J. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain, in: School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1994, p. 64p.
-
(1994)
, pp. 64
-
-
Shewchuk, J.1
-
61
-
-
44149091687
-
Numerical treatment of fractional heat equations
-
Scherer R., Kalla S., Boyadjiev L., Al-Saqabi B. Numerical treatment of fractional heat equations. Applied Numerical Mathematics 2008, 58:1212-1223.
-
(2008)
Applied Numerical Mathematics
, vol.58
, pp. 1212-1223
-
-
Scherer, R.1
Kalla, S.2
Boyadjiev, L.3
Al-Saqabi, B.4
|