메뉴 건너뛰기




Volumn 232, Issue 1, 2013, Pages 33-45

Least-Squares Spectral Method for the solution of a fractional advection-dispersion equation

Author keywords

Advection dispersion; Anomalous diffusion; Anomalous transport; Caputo derivative; Fractional derivative; Least Squares; Riemann Liouville derivative; Riesz derivative; Spectral Method

Indexed keywords

ADVECTION; DISPERSIONS; FINITE DIFFERENCE METHOD; LEAST SQUARES APPROXIMATIONS;

EID: 84868465378     PISSN: 00219991     EISSN: 10902716     Source Type: Journal    
DOI: 10.1016/j.jcp.2012.04.050     Document Type: Article
Times cited : (33)

References (61)
  • 1
    • 0347133557 scopus 로고    scopus 로고
    • Anomalous diffusion is the rule in concentration-dependent diffusion processes
    • Küntz M., Lavallée P. Anomalous diffusion is the rule in concentration-dependent diffusion processes. Journal of Physics D: Applied Physics 2004, 37:L5.
    • (2004) Journal of Physics D: Applied Physics , vol.37
    • Küntz, M.1    Lavallée, P.2
  • 2
    • 23744452794 scopus 로고    scopus 로고
    • Anomalous diffusion spreads its wings
    • Klafter J., Sokolov I. Anomalous diffusion spreads its wings. Physics World 2005, 18:29-32.
    • (2005) Physics World , vol.18 , pp. 29-32
    • Klafter, J.1    Sokolov, I.2
  • 5
    • 78649451861 scopus 로고    scopus 로고
    • Solution of a Cattaneo-Maxwell diffusion model using a Spectral Element Least-Squares method
    • Carella A., Dorao C. Solution of a Cattaneo-Maxwell diffusion model using a Spectral Element Least-Squares method. Journal of Natural Gas Science and Engineering 2010, 2:253-258.
    • (2010) Journal of Natural Gas Science and Engineering , vol.2 , pp. 253-258
    • Carella, A.1    Dorao, C.2
  • 6
    • 0041107241 scopus 로고    scopus 로고
    • The generalized Cattaneo equation for the description of anomalous transport processes
    • Compte A., Metzler R. The generalized Cattaneo equation for the description of anomalous transport processes. Journal of Physics A 1997, 30:7277-7289.
    • (1997) Journal of Physics A , vol.30 , pp. 7277-7289
    • Compte, A.1    Metzler, R.2
  • 7
    • 76349090233 scopus 로고    scopus 로고
    • Application of fractional differential equations for modeling the anomalous diffusion of contaminant from fracture into porous rock matrix with bordering alteration zone
    • Fomin S., Chugunov V., Hashida T. Application of fractional differential equations for modeling the anomalous diffusion of contaminant from fracture into porous rock matrix with bordering alteration zone. Transport in Porous Media 2009, 81:187-205.
    • (2009) Transport in Porous Media , vol.81 , pp. 187-205
    • Fomin, S.1    Chugunov, V.2    Hashida, T.3
  • 8
    • 0036828743 scopus 로고    scopus 로고
    • CTRW pathways to the fractional diffusion equation
    • Barkai E. CTRW pathways to the fractional diffusion equation. Chemical Physics 2002, 284:13-27.
    • (2002) Chemical Physics , vol.284 , pp. 13-27
    • Barkai, E.1
  • 9
    • 0000437484 scopus 로고
    • Fractional master equations and fractal time random walks
    • Hilfer R., Anton L. Fractional master equations and fractal time random walks. Physical Review E 1994, 51:R848-R851.
    • (1994) Physical Review E , vol.51
    • Hilfer, R.1    Anton, L.2
  • 10
    • 79952715325 scopus 로고    scopus 로고
    • Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations
    • Luchko Y., Punzi A. Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations. GEM - International Journal on Geomathematics 2011, 1-20. 10.1007/s13137-010-0012-8.
    • (2011) GEM - International Journal on Geomathematics , pp. 1-20
    • Luchko, Y.1    Punzi, A.2
  • 11
    • 62349097511 scopus 로고    scopus 로고
    • Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications
    • Zhang Y., Benson D.A., Reeves D.M. Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Advances in Water Resources 2009, 32:561-581.
    • (2009) Advances in Water Resources , vol.32 , pp. 561-581
    • Zhang, Y.1    Benson, D.A.2    Reeves, D.M.3
  • 14
    • 85189842428 scopus 로고    scopus 로고
    • An historical perspective on fractional calculus in linear viscoelasticity
    • in press
    • F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity, History and Overview, in press, http://arxiv.org/abs/1007.2959.
    • History and Overview
    • Mainardi, F.1
  • 16
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: a fractional dynamics approach
    • Metzler R., Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 2000, 339:1-77.
    • (2000) Physics Reports , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 17
    • 0020765202 scopus 로고
    • A theoretical basis for the application of fractional calculus to viscoelasticity
    • Bagley R.L., Torvik P.J. A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology 1983, 27:201-210.
    • (1983) Journal of Rheology , vol.27 , pp. 201-210
    • Bagley, R.L.1    Torvik, P.J.2
  • 18
    • 0036650850 scopus 로고    scopus 로고
    • Time fractional diffusion: a discrete random walk approach
    • Gorenflo R., Mainardi F., Moretti D., Paradisi P. Time fractional diffusion: a discrete random walk approach. Nonlinear Dynamics 2002, 29:129-143. 10.1023/A:101654723211.
    • (2002) Nonlinear Dynamics , vol.29 , pp. 129-143
    • Gorenflo, R.1    Mainardi, F.2    Moretti, D.3    Paradisi, P.4
  • 19
    • 70350567183 scopus 로고    scopus 로고
    • Fractional differential equations in electrochemistry
    • (Civil-Comp Special Issue)
    • Oldham K.B. Fractional differential equations in electrochemistry. Advances in Engineering Software 2010, 41:9-12. (Civil-Comp Special Issue).
    • (2010) Advances in Engineering Software , vol.41 , pp. 9-12
    • Oldham, K.B.1
  • 21
    • 41349088572 scopus 로고    scopus 로고
    • Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations
    • Chechkin A., Gorenflo R., Sokolov I. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Physical Review E 2002, 66:046129.
    • (2002) Physical Review E , vol.66 , pp. 046129
    • Chechkin, A.1    Gorenflo, R.2    Sokolov, I.3
  • 22
    • 85189840958 scopus 로고    scopus 로고
    • Fractional model for solute spreading in randomly heterogeneous porous media
    • in: XXI International Congress of Theoretical and Applied Mechanics, August 15-21, Warsaw, Poland
    • K. Logvinova, M.-C. Néel, Fractional model for solute spreading in randomly heterogeneous porous media, in: XXI International Congress of Theoretical and Applied Mechanics, August 15-21, Warsaw, Poland, 2004, p. 2p.
    • (2004) , pp. 2
    • Logvinova, K.1    Néel, M.-C.2
  • 24
    • 76449122108 scopus 로고    scopus 로고
    • A note on the finite element method for the space-fractional advection diffusion equation
    • (Fractional Differentiation and Its Applications)
    • Zheng Y., Li C., Zhao Z. A note on the finite element method for the space-fractional advection diffusion equation. Computers & Mathematics with Applications 2010, 59:1718-1726. (Fractional Differentiation and Its Applications).
    • (2010) Computers & Mathematics with Applications , vol.59 , pp. 1718-1726
    • Zheng, Y.1    Li, C.2    Zhao, Z.3
  • 25
    • 4444368867 scopus 로고    scopus 로고
    • Finite difference approximations for fractional advection-dispersion flow equations
    • Meerschaert M., Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations. Journal of computational and Applied Mathematics 2004, 172:65-77.
    • (2004) Journal of computational and Applied Mathematics , vol.172 , pp. 65-77
    • Meerschaert, M.1    Tadjeran, C.2
  • 26
    • 55649099424 scopus 로고    scopus 로고
    • A finite element solution for the fractional advection-dispersion equation
    • Huang Q., Huang G., Zhan H. A finite element solution for the fractional advection-dispersion equation. Advances in Water Resources 2008, 31:1578-1589.
    • (2008) Advances in Water Resources , vol.31 , pp. 1578-1589
    • Huang, Q.1    Huang, G.2    Zhan, H.3
  • 27
    • 0035928627 scopus 로고    scopus 로고
    • Experimental evidence and theoretical analysis of anomalous diffusion during water infiltration in porous building materials
    • Küntz M., Lavallée P. Experimental evidence and theoretical analysis of anomalous diffusion during water infiltration in porous building materials. Journal of Physics D 2001, 34:2547-2554.
    • (2001) Journal of Physics D , vol.34 , pp. 2547-2554
    • Küntz, M.1    Lavallée, P.2
  • 28
    • 0000930143 scopus 로고
    • A new dissipation model based on memory mechanism
    • Caputo M., Mainardi F. A new dissipation model based on memory mechanism. Pure and Applied Geophysics 1971, 91:134-147. 10.1007/BF00879562.
    • (1971) Pure and Applied Geophysics , vol.91 , pp. 134-147
    • Caputo, M.1    Mainardi, F.2
  • 29
    • 79951578729 scopus 로고    scopus 로고
    • The analysis of the impact response of a thin plate via fractional derivative standard linear solid model
    • Rossikhin Y.A., Shitikova M.V. The analysis of the impact response of a thin plate via fractional derivative standard linear solid model. Journal of Sound and Vibration 2011, 330:1985-2003.
    • (2011) Journal of Sound and Vibration , vol.330 , pp. 1985-2003
    • Rossikhin, Y.A.1    Shitikova, M.V.2
  • 30
    • 33745698040 scopus 로고    scopus 로고
    • Analysis of damped vibrations of linear viscoelastic plates with damping modeled with fractional derivatives
    • (Special Section: Fractional Calculus Applications in Signals and Systems)
    • Rossikhin Y.A., Shitikova M. Analysis of damped vibrations of linear viscoelastic plates with damping modeled with fractional derivatives. Signal Processing 2006, 86:2703-2711. (Special Section: Fractional Calculus Applications in Signals and Systems).
    • (2006) Signal Processing , vol.86 , pp. 2703-2711
    • Rossikhin, Y.A.1    Shitikova, M.2
  • 31
    • 33745869026 scopus 로고    scopus 로고
    • Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives
    • Heymans N., Podlubny I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta 2006, 45:765-771. 10.1007/s00397-005-0043-5.
    • (2006) Rheologica Acta , vol.45 , pp. 765-771
    • Heymans, N.1    Podlubny, I.2
  • 32
    • 77950866104 scopus 로고    scopus 로고
    • Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative
    • Malinowska A.B., Torres D.F. Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Computers & Mathematics with Applications 2010, 59:3110-3116.
    • (2010) Computers & Mathematics with Applications , vol.59 , pp. 3110-3116
    • Malinowska, A.B.1    Torres, D.F.2
  • 34
    • 33847315613 scopus 로고    scopus 로고
    • The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: defining the fractional dispersive flux with the Caputo derivatives
    • Zhang X., Lv M., Crawford J.W., Young I.M. The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: defining the fractional dispersive flux with the Caputo derivatives. Advances in Water Resources 2007, 30:1205-1217.
    • (2007) Advances in Water Resources , vol.30 , pp. 1205-1217
    • Zhang, X.1    Lv, M.2    Crawford, J.W.3    Young, I.M.4
  • 35
    • 54249111560 scopus 로고    scopus 로고
    • Quadrature rule for Abel's equations: uniformly approximating fractional derivatives
    • Sugiura H., Hasegawa T. Quadrature rule for Abel's equations: uniformly approximating fractional derivatives. Journal of Computational and Applied Mathematics 2009, 223:459-468.
    • (2009) Journal of Computational and Applied Mathematics , vol.223 , pp. 459-468
    • Sugiura, H.1    Hasegawa, T.2
  • 36
    • 73449097072 scopus 로고    scopus 로고
    • Approximate solution of the fractional advection-dispersion equation
    • Jiang W., Lin Y. Approximate solution of the fractional advection-dispersion equation. Computer Physics Communications 2010, 181:557-561.
    • (2010) Computer Physics Communications , vol.181 , pp. 557-561
    • Jiang, W.1    Lin, Y.2
  • 37
    • 73449121039 scopus 로고    scopus 로고
    • Efficient solution of a vibration equation involving fractional derivatives
    • Pálfalvi A. Efficient solution of a vibration equation involving fractional derivatives. International Journal of Non-Linear Mechanics 2010, 45:169-175.
    • (2010) International Journal of Non-Linear Mechanics , vol.45 , pp. 169-175
    • Pálfalvi, A.1
  • 38
    • 69249214155 scopus 로고    scopus 로고
    • Numerical methods for fractional partial differential equations with Riesz space fractional derivatives
    • Yang Q., Liu F., Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Applied Mathematical Modelling 2010, 34:200-218.
    • (2010) Applied Mathematical Modelling , vol.34 , pp. 200-218
    • Yang, Q.1    Liu, F.2    Turner, I.3
  • 40
    • 34547548712 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the time-fractional diffusion equation
    • Lin Y., Xu C. Finite difference/spectral approximations for the time-fractional diffusion equation. Journal of Computational Physics 2007, 225:1533-1552.
    • (2007) Journal of Computational Physics , vol.225 , pp. 1533-1552
    • Lin, Y.1    Xu, C.2
  • 41
    • 0036554885 scopus 로고    scopus 로고
    • A numerical scheme for dynamic systems containing fractional derivatives
    • Yuan L., Agrawal O.P. A numerical scheme for dynamic systems containing fractional derivatives. Journal of Vibration and Acoustics 2002, 124:321-324.
    • (2002) Journal of Vibration and Acoustics , vol.124 , pp. 321-324
    • Yuan, L.1    Agrawal, O.P.2
  • 42
    • 76049087706 scopus 로고    scopus 로고
    • An improvement of a nonclassical numerical method for the computation of fractional derivatives
    • Diethelm K. An improvement of a nonclassical numerical method for the computation of fractional derivatives. Journal of Vibration and Acoustics 2009, 131:014502.
    • (2009) Journal of Vibration and Acoustics , vol.131 , pp. 014502
    • Diethelm, K.1
  • 43
    • 19744367302 scopus 로고    scopus 로고
    • Wave field simulation for heterogeneous porous media with singular memory drag force
    • Lu J.-F., Hanyga A. Wave field simulation for heterogeneous porous media with singular memory drag force. Journal of Computational Physics 2005, 208:651-674.
    • (2005) Journal of Computational Physics , vol.208 , pp. 651-674
    • Lu, J.-F.1    Hanyga, A.2
  • 44
    • 77954952866 scopus 로고    scopus 로고
    • An improved non-classical method for the solution of fractional differential equations
    • Birk C., Song C. An improved non-classical method for the solution of fractional differential equations. Computational Mechanics 2010, 46:721-734. 10.1007/s00466-010-0510-4.
    • (2010) Computational Mechanics , vol.46 , pp. 721-734
    • Birk, C.1    Song, C.2
  • 45
    • 84860675597 scopus 로고    scopus 로고
    • A fast time stepping method for evaluating fractional integrals
    • Li J.-R. A fast time stepping method for evaluating fractional integrals. SIAM Journal on Scientific Computing 2010, 31:4696-4714.
    • (2010) SIAM Journal on Scientific Computing , vol.31 , pp. 4696-4714
    • Li, J.-R.1
  • 46
    • 34249335010 scopus 로고    scopus 로고
    • Short memory principle and a predictor-corrector approach for fractional differential equations
    • Deng W. Short memory principle and a predictor-corrector approach for fractional differential equations. Journal of Computational and Applied Mathematics 2007, 206:174-188.
    • (2007) Journal of Computational and Applied Mathematics , vol.206 , pp. 174-188
    • Deng, W.1
  • 47
    • 77958536189 scopus 로고    scopus 로고
    • A space-time spectral method for the time fractional diffusion equation
    • Li X., Xu C. A space-time spectral method for the time fractional diffusion equation. SIAM Journal on Numerical Analysis 2009, 47:2108-2131.
    • (2009) SIAM Journal on Numerical Analysis , vol.47 , pp. 2108-2131
    • Li, X.1    Xu, C.2
  • 48
    • 77954143774 scopus 로고    scopus 로고
    • Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation
    • Li X., Xu C. Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Communications in Computational Physics 2010, 8:1016-1051.
    • (2010) Communications in Computational Physics , vol.8 , pp. 1016-1051
    • Li, X.1    Xu, C.2
  • 49
    • 33646191893 scopus 로고    scopus 로고
    • Computational aspects of fem approximation of fractional advection dispersion equations on bounded domains in
    • Roop J.P. Computational aspects of fem approximation of fractional advection dispersion equations on bounded domains in. Journal of Computational and Applied Mathematics 2006, 193:243-268.
    • (2006) Journal of Computational and Applied Mathematics , vol.193 , pp. 243-268
    • Roop, J.P.1
  • 50
    • 48049106196 scopus 로고    scopus 로고
    • Numerical approximation of a one-dimensional space fractional advection-dispersion equation with boundary layer
    • Roop J.P. Numerical approximation of a one-dimensional space fractional advection-dispersion equation with boundary layer. Computers & Mathematics with Applications 2008, 56:1808-1819.
    • (2008) Computers & Mathematics with Applications , vol.56 , pp. 1808-1819
    • Roop, J.P.1
  • 51
    • 14644446063 scopus 로고    scopus 로고
    • Least Squares finite-element solution of a fractional order two-point boundary value problem
    • Fix G., Roop J. Least Squares finite-element solution of a fractional order two-point boundary value problem. Computers & Mathematics with Applications 2004, 48:1017-1033.
    • (2004) Computers & Mathematics with Applications , vol.48 , pp. 1017-1033
    • Fix, G.1    Roop, J.2
  • 53
    • 0002745423 scopus 로고    scopus 로고
    • A fractional diffusion equation to describe lévy flights
    • Chaves A.S. A fractional diffusion equation to describe lévy flights. Physics Letters A 1998, 239:13-16.
    • (1998) Physics Letters A , vol.239 , pp. 13-16
    • Chaves, A.S.1
  • 55
    • 0001505107 scopus 로고    scopus 로고
    • Multidimensional advection and fractional dispersion
    • Meerschaert M.M., Benson D.A., Bäumer B. Multidimensional advection and fractional dispersion. Physical Review E 1999, 59:5026-5028.
    • (1999) Physical Review E , vol.59 , pp. 5026-5028
    • Meerschaert, M.M.1    Benson, D.A.2    Bäumer, B.3
  • 56
    • 56549085438 scopus 로고    scopus 로고
    • Maximum principle for the generalized time-fractional diffusion equation
    • Luchko Y. Maximum principle for the generalized time-fractional diffusion equation. Journal of Mathematical Analysis and Applications 2009, 351:218-223.
    • (2009) Journal of Mathematical Analysis and Applications , vol.351 , pp. 218-223
    • Luchko, Y.1
  • 57
    • 79954926078 scopus 로고    scopus 로고
    • On the numerical solution of space-time fractional diffusion models
    • Hanert E. On the numerical solution of space-time fractional diffusion models. Computers & Fluids 2011, 46:33-39.
    • (2011) Computers & Fluids , vol.46 , pp. 33-39
    • Hanert, E.1
  • 58
    • 0003621102 scopus 로고
    • An introduction to the conjugate gradient method without the agonizing pain
    • in: School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
    • J. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain, in: School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1994, p. 64p.
    • (1994) , pp. 64
    • Shewchuk, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.