-
3
-
-
0036887936
-
Chaos, fractional kinetics, and anomalous transport
-
G. M. Zaslavsky (2002). Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371:461-580.
-
(2002)
Phys. Rep.
, vol.371
, pp. 461-580
-
-
Zaslavsky, G.M.1
-
5
-
-
0037081673
-
Analysis of fractional differential equations
-
K. Diethelm and N. J. Ford (2002). Analysis of fractional differential equations. J. Math. Anal. Appl. 265:229-248.
-
(2002)
J. Math. Anal. Appl.
, vol.265
, pp. 229-248
-
-
Diethelm, K.1
Ford, N.J.2
-
6
-
-
4043121080
-
Detailed error analysis for a fractional Adams method
-
DOI 10.1023/B:NUMA.0000027736.85078.be
-
K. Diethelm, N. J. Ford, and A. D. Freed (2004). Detailed error analysis for a fractional Adams method. Numer. Algor. 36:31-52. (Pubitemid 39072748)
-
(2004)
Numerical Algorithms
, vol.36
, Issue.1
, pp. 31-52
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
7
-
-
10644238068
-
Algorithms for the fractional calculus: A selection of numerical methods
-
DOI 10.1016/j.cma.2004.06.006, PII S0045782504002981
-
K. Diethelm, N. J. Ford, A. D. Freed, and Yu. Luchko (2005). Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Engrg. 194:743-773. (Pubitemid 39660444)
-
(2005)
Computer Methods in Applied Mechanics and Engineering
, vol.194
, Issue.6-8
, pp. 743-773
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
Luchko, Yu.4
-
8
-
-
69749102394
-
On the fractional Adams method
-
C. P. Li and C. X. Tao (2009). On the fractional Adams method. Comput. Math. Appl. 58:1573-1588.
-
(2009)
Comput. Math. Appl.
, vol.58
, pp. 1573-1588
-
-
Li, C.P.1
Tao, C.X.2
-
9
-
-
79952454978
-
Numerical approaches to fractional calculus and fractional ordinary differential equation
-
C. P. Li, A. Chen, and J. J. Ye (2011). Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 230:3352-3368.
-
(2011)
J. Comput. Phys.
, vol.230
, pp. 3352-3368
-
-
Li, C.P.1
Chen, A.2
Ye, J.J.3
-
10
-
-
74149085984
-
An algorithm for the numerical solution of differential equations of fractional order
-
Z. Odibat and S. Momani (2008). An algorithm for the numerical solution of differential equations of fractional order. J. Appl. Math. Informatics 26:15-27.
-
(2008)
J. Appl. Math. Informatics
, vol.26
, pp. 15-27
-
-
Odibat, Z.1
Momani, S.2
-
11
-
-
62249116725
-
A computationally effective Predictor-Corrector method for simulating fractional-order dynamical control system
-
C. Yang and F. Liu (2006). A computationally effective Predictor-Corrector method for simulating fractional-order dynamical control system. ANZIAM J. 47:C137-C153.
-
(2006)
ANZIAM J.
, vol.47
-
-
Yang, C.1
Liu, F.2
-
12
-
-
84872296377
-
Numerical simulation of the nonlinear fractional dynamical systems with fractional damping for the extensible and inextensible pendulum
-
C. Yin, F. Liu, and V. Anh (2007). Numerical simulation of the nonlinear fractional dynamical systems with fractional damping for the extensible and inextensible pendulum. J. Algorithm Comput. Tech. 1:427-447.
-
(2007)
J. Algorithm Comput. Tech.
, vol.1
, pp. 427-447
-
-
Yin, C.1
Liu, F.2
Anh, V.3
-
13
-
-
36149001762
-
Numerical algorithm for the time fractional Fokker-Planck equation
-
W. H. Deng (2007). Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. 227:1510-1522.
-
(2007)
J. Comput. Phys.
, vol.227
, pp. 1510-1522
-
-
Deng, W.H.1
-
14
-
-
79961005041
-
Novel techniques in parameter estimation for fractional dynamical models arising from biological systems
-
F. Liu and K. Burrage (2011). Novel techniques in parameter estimation for fractional dynamical models arising from biological systems. Comput. Math. Appl. 62:822-833.
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 822-833
-
-
Liu, F.1
Burrage, K.2
-
15
-
-
61349186917
-
Matrix approach to discrete fractional calculus II: Partial fractional differential equations
-
I. Podlubny, A. Chechkin, T. Skovranek, Y. Q. Chen, and B. Vinagre (2009). Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 228:3137-3153.
-
(2009)
J. Comput. Phys.
, vol.228
, pp. 3137-3153
-
-
Podlubny, I.1
Chechkin, A.2
Skovranek, T.3
Chen, Y.Q.4
Vinagre, B.5
-
16
-
-
33751545053
-
Fractional high order methods for the nonlinear fractional ordinary differential equation
-
DOI 10.1016/j.na.2005.12.027, PII S0362546X05010503
-
R. Lin and F. Liu (2007). Fractional high order methods for the nonlinear fractional ordinary differential equation. Nonlinear Analysis 66:856-869. (Pubitemid 44839109)
-
(2007)
Nonlinear Analysis, Theory, Methods and Applications
, vol.66
, Issue.4
, pp. 856-869
-
-
Lin, R.1
Liu, F.2
-
17
-
-
0000717432
-
Discretized fractional calculus
-
C. Lubich (1986). Discretized fractional calculus. SIAM J. Math. Anal. 17:704-719.
-
(1986)
SIAM J. Math. Anal.
, vol.17
, pp. 704-719
-
-
Lubich, C.1
-
18
-
-
0012661804
-
A finite difference scheme for partial integro-differential equations with weakly singular kernel
-
T. Tang (1993). A finite difference scheme for partial integro-differential equations with weakly singular kernel. Appl. Numer. Math. 11:309-319.
-
(1993)
Appl. Numer. Math.
, vol.11
, pp. 309-319
-
-
Tang, T.1
-
19
-
-
58149320535
-
Optimal convergence of an Euler and finite difference method for nonlinear partial integro-differential equations
-
Q. Sheng and T. Tang (1995). Optimal convergence of an Euler and finite difference method for nonlinear partial integro-differential equations. Math. Comput. Model. 21:1-11.
-
(1995)
Math. Comput. Model.
, vol.21
, pp. 1-11
-
-
Sheng, Q.1
Tang, T.2
-
20
-
-
0034517076
-
A perspective on the numerical treatment of Volterra equations
-
C. T. H. Baker (2002). A perspective on the numerical treatment of Volterra equations. J. Comput. Appl. Math. 125:217-249.
-
(2002)
J. Comput. Appl. Math.
, vol.125
, pp. 217-249
-
-
Baker, C.T.H.1
-
21
-
-
26444438049
-
Pitfalls in fast numerical solvers for fractional differential equations
-
DOI 10.1016/j.cam.2005.03.023, PII S0377042705001287
-
K. Diethelm, N. J. Ford, A. D. Freed, and M. Weilbeer (2006). Pitfalls in fast numerical solvers for fractional differential equations. J. Comput. Appl. Math. 186:482-503. (Pubitemid 41433596)
-
(2006)
Journal of Computational and Applied Mathematics
, vol.186
, Issue.2
, pp. 482-503
-
-
Diethelm, K.1
Ford, J.M.2
Ford, N.J.3
Weilbeer, M.4
-
22
-
-
64549112216
-
Explicit methods for fractional differential equations and their stability properties
-
L. Galeone and R. Garrappa (2009). Explicit methods for fractional differential equations and their stability properties. J. Comput. Appl. Math. 228:548-560.
-
(2009)
J. Comput. Appl. Math.
, vol.228
, pp. 548-560
-
-
Galeone, L.1
Garrappa, R.2
-
23
-
-
67349208958
-
On some explicit Adams multistep methods for fractional differential equations
-
R. Garrappa (2009). On some explicit Adams multistep methods for fractional differential equations. J. Comput. Appl. Math. 229:392-399.
-
(2009)
J. Comput. Appl. Math.
, vol.229
, pp. 392-399
-
-
Garrappa, R.1
-
24
-
-
0041938913
-
A stability analysis of convolution quadratures for Abel-Volterra integral equations
-
C. Lubich (1986). A stability analysis of convolution quadratures for Abel-Volterra integral equations. IMA Journal of Numerical Analysis 6:87-101.
-
(1986)
IMA Journal of Numerical Analysis
, vol.6
, pp. 87-101
-
-
Lubich, C.1
-
25
-
-
77956214769
-
On linear stability of predictor-corrector algorithms for fractional differential equations
-
R. Garrappa (2010). On linear stability of predictor-corrector algorithms for fractional differential equations. Int. J. Comput. Math. 87:2281-2290.
-
(2010)
Int. J. Comput. Math.
, vol.87
, pp. 2281-2290
-
-
Garrappa, R.1
-
26
-
-
0038687918
-
A generalization of discrete Gronwall inequality and its application to weakly singular Volterra integral equation of the second kind
-
Y. Huang and T. Läu (2003). A generalization of discrete Gronwall inequality and its application to weakly singular Volterra integral equation of the second kind. J. Math. Anal. Appl. 282:56-62.
-
(2003)
J. Math. Anal. Appl.
, vol.282
, pp. 56-62
-
-
Huang, Y.1
Läu, T.2
-
27
-
-
34250115277
-
On the order of the error in discretization methods for weakly singular second kind non-smooth solutions
-
J. Dixon (1985). On the order of the error in discretization methods for weakly singular second kind non-smooth solutions. BIT 25:623-634.
-
(1985)
BIT
, vol.25
, pp. 623-634
-
-
Dixon, J.1
-
28
-
-
0042922604
-
Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation
-
H. P. Ma and W. W. Sun (2001). Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation. SIAM J. Numer. Anal. 39:1380-1394.
-
(2001)
SIAM J. Numer. Anal.
, vol.39
, pp. 1380-1394
-
-
A, H.P.M.1
Sun, W.W.2
|