메뉴 건너뛰기




Volumn 34, Issue 2, 2013, Pages 149-179

The finite difference methods for fractional ordinary differential equations

Author keywords

Caputo derivative; Convergence; Fractional Adams method; Fractional differential equations; Fractional Euler method; High order methods; Riemman Liouville derivative; Stability

Indexed keywords

ADAMS METHOD; CAPUTO DERIVATIVES; CONVERGENCE; EULER METHOD; FRACTIONAL DIFFERENTIAL EQUATIONS; HIGH-ORDER METHODS;

EID: 84871814483     PISSN: 01630563     EISSN: 15322467     Source Type: Journal    
DOI: 10.1080/01630563.2012.706673     Document Type: Article
Times cited : (195)

References (28)
  • 3
    • 0036887936 scopus 로고    scopus 로고
    • Chaos, fractional kinetics, and anomalous transport
    • G. M. Zaslavsky (2002). Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371:461-580.
    • (2002) Phys. Rep. , vol.371 , pp. 461-580
    • Zaslavsky, G.M.1
  • 5
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of fractional differential equations
    • K. Diethelm and N. J. Ford (2002). Analysis of fractional differential equations. J. Math. Anal. Appl. 265:229-248.
    • (2002) J. Math. Anal. Appl. , vol.265 , pp. 229-248
    • Diethelm, K.1    Ford, N.J.2
  • 6
    • 4043121080 scopus 로고    scopus 로고
    • Detailed error analysis for a fractional Adams method
    • DOI 10.1023/B:NUMA.0000027736.85078.be
    • K. Diethelm, N. J. Ford, and A. D. Freed (2004). Detailed error analysis for a fractional Adams method. Numer. Algor. 36:31-52. (Pubitemid 39072748)
    • (2004) Numerical Algorithms , vol.36 , Issue.1 , pp. 31-52
    • Diethelm, K.1    Ford, N.J.2    Freed, A.D.3
  • 7
  • 8
    • 69749102394 scopus 로고    scopus 로고
    • On the fractional Adams method
    • C. P. Li and C. X. Tao (2009). On the fractional Adams method. Comput. Math. Appl. 58:1573-1588.
    • (2009) Comput. Math. Appl. , vol.58 , pp. 1573-1588
    • Li, C.P.1    Tao, C.X.2
  • 9
    • 79952454978 scopus 로고    scopus 로고
    • Numerical approaches to fractional calculus and fractional ordinary differential equation
    • C. P. Li, A. Chen, and J. J. Ye (2011). Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 230:3352-3368.
    • (2011) J. Comput. Phys. , vol.230 , pp. 3352-3368
    • Li, C.P.1    Chen, A.2    Ye, J.J.3
  • 10
    • 74149085984 scopus 로고    scopus 로고
    • An algorithm for the numerical solution of differential equations of fractional order
    • Z. Odibat and S. Momani (2008). An algorithm for the numerical solution of differential equations of fractional order. J. Appl. Math. Informatics 26:15-27.
    • (2008) J. Appl. Math. Informatics , vol.26 , pp. 15-27
    • Odibat, Z.1    Momani, S.2
  • 11
    • 62249116725 scopus 로고    scopus 로고
    • A computationally effective Predictor-Corrector method for simulating fractional-order dynamical control system
    • C. Yang and F. Liu (2006). A computationally effective Predictor-Corrector method for simulating fractional-order dynamical control system. ANZIAM J. 47:C137-C153.
    • (2006) ANZIAM J. , vol.47
    • Yang, C.1    Liu, F.2
  • 12
    • 84872296377 scopus 로고    scopus 로고
    • Numerical simulation of the nonlinear fractional dynamical systems with fractional damping for the extensible and inextensible pendulum
    • C. Yin, F. Liu, and V. Anh (2007). Numerical simulation of the nonlinear fractional dynamical systems with fractional damping for the extensible and inextensible pendulum. J. Algorithm Comput. Tech. 1:427-447.
    • (2007) J. Algorithm Comput. Tech. , vol.1 , pp. 427-447
    • Yin, C.1    Liu, F.2    Anh, V.3
  • 13
    • 36149001762 scopus 로고    scopus 로고
    • Numerical algorithm for the time fractional Fokker-Planck equation
    • W. H. Deng (2007). Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. 227:1510-1522.
    • (2007) J. Comput. Phys. , vol.227 , pp. 1510-1522
    • Deng, W.H.1
  • 14
    • 79961005041 scopus 로고    scopus 로고
    • Novel techniques in parameter estimation for fractional dynamical models arising from biological systems
    • F. Liu and K. Burrage (2011). Novel techniques in parameter estimation for fractional dynamical models arising from biological systems. Comput. Math. Appl. 62:822-833.
    • (2011) Comput. Math. Appl. , vol.62 , pp. 822-833
    • Liu, F.1    Burrage, K.2
  • 15
    • 61349186917 scopus 로고    scopus 로고
    • Matrix approach to discrete fractional calculus II: Partial fractional differential equations
    • I. Podlubny, A. Chechkin, T. Skovranek, Y. Q. Chen, and B. Vinagre (2009). Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 228:3137-3153.
    • (2009) J. Comput. Phys. , vol.228 , pp. 3137-3153
    • Podlubny, I.1    Chechkin, A.2    Skovranek, T.3    Chen, Y.Q.4    Vinagre, B.5
  • 16
    • 33751545053 scopus 로고    scopus 로고
    • Fractional high order methods for the nonlinear fractional ordinary differential equation
    • DOI 10.1016/j.na.2005.12.027, PII S0362546X05010503
    • R. Lin and F. Liu (2007). Fractional high order methods for the nonlinear fractional ordinary differential equation. Nonlinear Analysis 66:856-869. (Pubitemid 44839109)
    • (2007) Nonlinear Analysis, Theory, Methods and Applications , vol.66 , Issue.4 , pp. 856-869
    • Lin, R.1    Liu, F.2
  • 17
    • 0000717432 scopus 로고
    • Discretized fractional calculus
    • C. Lubich (1986). Discretized fractional calculus. SIAM J. Math. Anal. 17:704-719.
    • (1986) SIAM J. Math. Anal. , vol.17 , pp. 704-719
    • Lubich, C.1
  • 18
    • 0012661804 scopus 로고
    • A finite difference scheme for partial integro-differential equations with weakly singular kernel
    • T. Tang (1993). A finite difference scheme for partial integro-differential equations with weakly singular kernel. Appl. Numer. Math. 11:309-319.
    • (1993) Appl. Numer. Math. , vol.11 , pp. 309-319
    • Tang, T.1
  • 19
    • 58149320535 scopus 로고
    • Optimal convergence of an Euler and finite difference method for nonlinear partial integro-differential equations
    • Q. Sheng and T. Tang (1995). Optimal convergence of an Euler and finite difference method for nonlinear partial integro-differential equations. Math. Comput. Model. 21:1-11.
    • (1995) Math. Comput. Model. , vol.21 , pp. 1-11
    • Sheng, Q.1    Tang, T.2
  • 20
    • 0034517076 scopus 로고    scopus 로고
    • A perspective on the numerical treatment of Volterra equations
    • C. T. H. Baker (2002). A perspective on the numerical treatment of Volterra equations. J. Comput. Appl. Math. 125:217-249.
    • (2002) J. Comput. Appl. Math. , vol.125 , pp. 217-249
    • Baker, C.T.H.1
  • 21
    • 26444438049 scopus 로고    scopus 로고
    • Pitfalls in fast numerical solvers for fractional differential equations
    • DOI 10.1016/j.cam.2005.03.023, PII S0377042705001287
    • K. Diethelm, N. J. Ford, A. D. Freed, and M. Weilbeer (2006). Pitfalls in fast numerical solvers for fractional differential equations. J. Comput. Appl. Math. 186:482-503. (Pubitemid 41433596)
    • (2006) Journal of Computational and Applied Mathematics , vol.186 , Issue.2 , pp. 482-503
    • Diethelm, K.1    Ford, J.M.2    Ford, N.J.3    Weilbeer, M.4
  • 22
    • 64549112216 scopus 로고    scopus 로고
    • Explicit methods for fractional differential equations and their stability properties
    • L. Galeone and R. Garrappa (2009). Explicit methods for fractional differential equations and their stability properties. J. Comput. Appl. Math. 228:548-560.
    • (2009) J. Comput. Appl. Math. , vol.228 , pp. 548-560
    • Galeone, L.1    Garrappa, R.2
  • 23
    • 67349208958 scopus 로고    scopus 로고
    • On some explicit Adams multistep methods for fractional differential equations
    • R. Garrappa (2009). On some explicit Adams multistep methods for fractional differential equations. J. Comput. Appl. Math. 229:392-399.
    • (2009) J. Comput. Appl. Math. , vol.229 , pp. 392-399
    • Garrappa, R.1
  • 24
    • 0041938913 scopus 로고
    • A stability analysis of convolution quadratures for Abel-Volterra integral equations
    • C. Lubich (1986). A stability analysis of convolution quadratures for Abel-Volterra integral equations. IMA Journal of Numerical Analysis 6:87-101.
    • (1986) IMA Journal of Numerical Analysis , vol.6 , pp. 87-101
    • Lubich, C.1
  • 25
    • 77956214769 scopus 로고    scopus 로고
    • On linear stability of predictor-corrector algorithms for fractional differential equations
    • R. Garrappa (2010). On linear stability of predictor-corrector algorithms for fractional differential equations. Int. J. Comput. Math. 87:2281-2290.
    • (2010) Int. J. Comput. Math. , vol.87 , pp. 2281-2290
    • Garrappa, R.1
  • 26
    • 0038687918 scopus 로고    scopus 로고
    • A generalization of discrete Gronwall inequality and its application to weakly singular Volterra integral equation of the second kind
    • Y. Huang and T. Läu (2003). A generalization of discrete Gronwall inequality and its application to weakly singular Volterra integral equation of the second kind. J. Math. Anal. Appl. 282:56-62.
    • (2003) J. Math. Anal. Appl. , vol.282 , pp. 56-62
    • Huang, Y.1    Läu, T.2
  • 27
    • 34250115277 scopus 로고
    • On the order of the error in discretization methods for weakly singular second kind non-smooth solutions
    • J. Dixon (1985). On the order of the error in discretization methods for weakly singular second kind non-smooth solutions. BIT 25:623-634.
    • (1985) BIT , vol.25 , pp. 623-634
    • Dixon, J.1
  • 28
    • 0042922604 scopus 로고    scopus 로고
    • Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation
    • H. P. Ma and W. W. Sun (2001). Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation. SIAM J. Numer. Anal. 39:1380-1394.
    • (2001) SIAM J. Numer. Anal. , vol.39 , pp. 1380-1394
    • A, H.P.M.1    Sun, W.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.