메뉴 건너뛰기




Volumn 49, Issue 6, 2011, Pages 2302-2322

Error estimates of crank-nicolson-type difference schemes for the subdiffusion equation

Author keywords

Convergence; Finite difference; Fractional derivative; Stability; Subdiffusion equation

Indexed keywords

COMPACT SCHEMES; CONVERGENCE; CONVERGENCE ORDER; DIFFERENCE SCHEMES; ERROR ESTIMATES; FINITE DIFFERENCE; FRACTIONAL DERIVATIVE; FRACTIONAL DERIVATIVES; MAXIMUM NORM; NUMERICAL EXPERIMENTS; SOBOLEV; SPATIAL DIRECTION; SUBDIFFUSION; THEORETICAL RESULT; THOMAS ALGORITHM; TRIDIAGONAL; TRUNCATION ERRORS; UNCONDITIONAL STABILITY;

EID: 84862921732     PISSN: 00361429     EISSN: None     Source Type: Journal    
DOI: 10.1137/100812707     Document Type: Article
Times cited : (148)

References (41)
  • 2
    • 15544372486 scopus 로고    scopus 로고
    • Introduction (special issue on fractional derivatives and their applications
    • O. P. Agrawal, J. A. T. Machado, and J. Sabatier, Introduction (special issue on fractional derivatives and their applications), Nonlinear Dyn., 38 (2004), pp. 1-2.
    • (2004) Nonlinear Dyn. , vol.38 , pp. 1-2
    • Agrawal, O.P.1    Machado, J.A.T.2    Sabatier, J.3
  • 4
    • 0040307478 scopus 로고
    • Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications
    • J. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), pp. 127-293.
    • (1990) Phys. Rep. , vol.195 , pp. 127-293
    • Bouchaud, J.1    Georges, A.2
  • 7
    • 0001691616 scopus 로고
    • Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow
    • T. H. Solomon, E. R. Weeks, and H. L. Swinney, Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow, Phys. Rev. Lett., 71 (1993), pp. 3975-3979.
    • (1993) Phys. Rev. Lett. , vol.71 , pp. 3975-3979
    • Solomon, T.H.1    Weeks, E.R.2    Swinney, H.L.3
  • 8
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: A fractional dynamics approach
    • R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), pp. 1-77.
    • (2000) Phys. Rep. , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 9
    • 0000993220 scopus 로고
    • Anomalous diffusion in one dimension
    • V. Balakrishnan, Anomalous diffusion in one dimension, Phys. A, 132 (1985), pp. 569-580.
    • (1985) Phys. A , vol.132 , pp. 569-580
    • Balakrishnan, V.1
  • 10
    • 0009481303 scopus 로고
    • Fractional diffusion equation
    • W. Wyss, Fractional diffusion equation, J. Math. Phys., 27 (1986), pp. 2782-2785.
    • (1986) J. Math. Phys. , vol.27 , pp. 2782-2785
    • Wyss, W.1
  • 11
    • 0001553919 scopus 로고
    • Fractional diffusion and wave equations
    • W. R. Schneider and W. Wyss, Fractional diffusion and wave equations, J. Math. Phys., 30 (1989), pp. 134-144.
    • (1989) J. Math. Phys. , vol.30 , pp. 134-144
    • Schneider, W.R.1    Wyss, W.2
  • 12
    • 25444472344 scopus 로고    scopus 로고
    • An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations
    • DOI 10.1137/030602666
    • S. B. Yuste and L. Acedo, An explicit finite difference method and a new von Neumanntype stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42 (2005), pp. 1862-1874. (Pubitemid 41634613)
    • (2005) SIAM Journal on Numerical Analysis , vol.42 , Issue.5 , pp. 1862-1874
    • Yuste, S.B.1    Acedo, L.2
  • 13
    • 33646128485 scopus 로고    scopus 로고
    • Weighted average finite difference methods for fractional diffusion equations
    • DOI 10.1016/j.jcp.2005.12.006, PII S0021999105005516
    • S. B. Yuste, Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys., 216 (2006), pp. 264-274. (Pubitemid 43632555)
    • (2006) Journal of Computational Physics , vol.216 , Issue.1 , pp. 264-274
    • Yuste, S.B.1
  • 14
    • 36149001420 scopus 로고    scopus 로고
    • A Fourier method for the fractional diffusion equation describing sub-diffusion
    • C. M. Chen, F. Liu, I. Turner, and V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys., 227 (2007), pp. 886-897.
    • (2007) J. Comput. Phys. , vol.227 , pp. 886-897
    • Chen, C.M.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 15
    • 40849115179 scopus 로고    scopus 로고
    • Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation
    • C. M. Chen, F. Liu, and K. Burrage, Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation, Appl. Math. Comput., 198 (2007), pp. 754-769.
    • (2007) Appl. Math. Comput. , vol.198 , pp. 754-769
    • Chen, C.M.1    Liu, F.2    Burrage, K.3
  • 16
    • 17144427014 scopus 로고    scopus 로고
    • The accuracy and stability of an implicit solution method for the fractional diffusion equation
    • DOI 10.1016/j.jcp.2004.11.025, PII S0021999104004887
    • T. A. M. Langlands and B. I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205 (2005), pp. 719-736. (Pubitemid 40518394)
    • (2005) Journal of Computational Physics , vol.205 , Issue.2 , pp. 719-736
    • Langlands, T.A.M.1    Henry, B.I.2
  • 17
    • 55549107511 scopus 로고    scopus 로고
    • New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
    • P. Zhuang, F. Liu, V. Anh, and I. Turner, New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 46 (2008), pp. 1079-1095.
    • (2008) SIAM J. Numer. Anal. , vol.46 , pp. 1079-1095
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 18
    • 59349113701 scopus 로고    scopus 로고
    • Finite element method for the space and time fractional Fokker-Planck equation
    • W. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47 (2008), pp. 204-226.
    • (2008) SIAM J. Numer. Anal. , vol.47 , pp. 204-226
    • Deng, W.1
  • 19
    • 69049086472 scopus 로고    scopus 로고
    • Compact finite difference method for the fractional diffusion equation
    • M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 228 (2009), pp. 7792-7804.
    • (2009) J. Comput. Phys. , vol.228 , pp. 7792-7804
    • Cui, M.1
  • 20
    • 51749116733 scopus 로고    scopus 로고
    • Finite difference approximations for the fractional Fokker-Plank equation
    • S. Chen and F. Liu, Finite difference approximations for the fractional Fokker-Plank equation, Appl. Math. Model., 33 (2009), pp. 256-273.
    • (2009) Appl. Math. Model. , vol.33 , pp. 256-273
    • Chen, S.1    Liu, F.2
  • 21
    • 4444368867 scopus 로고    scopus 로고
    • Finite difference approximations for fractional advection-dispersion flow equations
    • DOI 10.1016/j.cam.2004.01.033, PII S0377042704000986
    • M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172 (2004), pp. 65-77. (Pubitemid 39204390)
    • (2004) Journal of Computational and Applied Mathematics , vol.172 , Issue.1 , pp. 65-77
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 22
    • 31744438550 scopus 로고    scopus 로고
    • A second-order accurate numerical approximation for the fractional diffusion equation
    • DOI 10.1016/j.jcp.2005.08.008, PII S0021999105003773
    • C. Tadjeran, M. M. Meerschaert, and H. P. Scheffler, A second order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 213 (2006), pp. 205-213. (Pubitemid 43174872)
    • (2006) Journal of Computational Physics , vol.213 , Issue.1 , pp. 205-213
    • Tadjeran, C.1    Meerschaert, M.M.2    Scheffler, H.-P.3
  • 23
    • 25444463578 scopus 로고    scopus 로고
    • Finite difference methods for two-dimensional fractional dispersion equation
    • DOI 10.1016/j.jcp.2005.05.017, PII S0021999105002731
    • M. M. Meerschaert, H. P. Scheffler, and C. Tadjeran, Finite difference method for two dimensional fractional dispersion equation, J. Comput. Phys., 211 (2006), pp. 249-261. (Pubitemid 41363984)
    • (2006) Journal of Computational Physics , vol.211 , Issue.1 , pp. 249-261
    • Meerschaert, M.M.1    Scheffler, H.-P.2    Tadjeran, C.3
  • 24
    • 28044468843 scopus 로고    scopus 로고
    • Finite difference approximations for two-sided space-fractional partial differential equations
    • DOI 10.1016/j.apnum.2005.02.008, PII S0168927405000590
    • M. M. Meerschaert and C. Tadjeran, Finite difference approximations for two-sided spacefractional partial differential equations, Appl. Numer. Math., 56 (2006), pp. 80-90. (Pubitemid 41690768)
    • (2006) Applied Numerical Mathematics , vol.56 , Issue.1 , pp. 80-90
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 25
    • 33845628108 scopus 로고    scopus 로고
    • A second-order accurate numerical method for the two-dimensional fractional diffusion equation
    • DOI 10.1016/j.jcp.2006.05.030, PII S0021999106002610
    • C. Tadjeran and M. M. Meerschaert, A second order accurate numerical method for the two dimensional fractional diffusion equation, J. Comput. Phys., 220 (2007), pp. 813-823. (Pubitemid 44942995)
    • (2007) Journal of Computational Physics , vol.220 , Issue.2 , pp. 813-823
    • Tadjeran, C.1    Meerschaert, M.M.2
  • 26
    • 70350134071 scopus 로고    scopus 로고
    • Stability and convergence of an implicit numerical method for the nonlinear fractional reaction-subdiffusion process
    • P. Zhuang, F. Liu, V. Anh, and I. Turner, Stability and convergence of an implicit numerical method for the nonlinear fractional reaction-subdiffusion process, IMA J. Appl. Math., 74 (2009), pp. 645-667.
    • (2009) IMA J. Appl. Math. , vol.74 , pp. 645-667
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 27
    • 77951184169 scopus 로고    scopus 로고
    • An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation
    • Y. Gu, P. Zhuang, and F. Liu, An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation, CMES Comput. Model. Eng. Sci., 56 (2010), pp. 303-334.
    • (2010) CMES Comput. Model. Eng. Sci. , vol.56 , pp. 303-334
    • Gu, Y.1    Zhuang, P.2    Liu, F.3
  • 28
    • 79251616666 scopus 로고    scopus 로고
    • An implicit RBF meshless approach for time fractional diffusion equations
    • Q. Liu, Y. T. Gu, P. Zhuang, F. Liu, and Y. F. Nie, An implicit RBF meshless approach for time fractional diffusion equations, Comput. Mech., 48 (2011), pp. 1-12.
    • (2011) Comput. Mech. , vol.48 , pp. 1-12
    • Liu, Q.1    Gu, Y.T.2    Zhuang, P.3    Liu, F.4    Nie, Y.F.5
  • 29
    • 77950690888 scopus 로고    scopus 로고
    • Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation
    • C. Chen, F. Liu, I. Turner, and V. Anh, Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation, Numer. Algorithms, 54 (2010), pp. 1-12.
    • (2010) Numer. Algorithms , vol.54 , pp. 1-12
    • Chen, C.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 30
    • 30744474991 scopus 로고    scopus 로고
    • A fully discrete difference scheme for a diffusion-wave system
    • Z. Z. Sun and X. N. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), pp. 193-209.
    • (2006) Appl. Numer. Math. , vol.56 , pp. 193-209
    • Sun, Z.Z.1    Wu, X.N.2
  • 31
    • 34547548712 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the time-fractional diffusion equation
    • X. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), pp. 1533-1552.
    • (2007) J. Comput. Phys. , vol.225 , pp. 1533-1552
    • Lin, X.1    Xu, C.2
  • 32
    • 77958536189 scopus 로고    scopus 로고
    • A space-time spectral method for the time fractional diffusion equation
    • X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), pp. 2108-2131.
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 2108-2131
    • Li, X.1    Xu, C.2
  • 33
    • 79955669422 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the fractional cable equation
    • Y. Lin, X. Li, and C. Xu, Finite difference/spectral approximations for the fractional cable equation, Math. Comp., 80 (2011), pp. 1369-1396.
    • (2011) Math. Comp. , vol.80 , pp. 1369-1396
    • Lin, Y.1    Li, X.2    Xu, C.3
  • 34
    • 77955704784 scopus 로고    scopus 로고
    • Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation
    • C.-M. Chen, F. Liu, V. Anh, and I. Turner, Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J. Sci. Comput., 32 (2010), pp. 1740-1760.
    • (2010) SIAM J. Sci. Comput. , vol.32 , pp. 1740-1760
    • Chen, C.-M.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 35
    • 78649334165 scopus 로고    scopus 로고
    • A compact difference scheme for the fractional sub-diffusion equations
    • G. H. Gao and Z. Z. Sun, A compact difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 230 (2011), pp. 586-595.
    • (2011) J. Comput. Phys. , vol.230 , pp. 586-595
    • Gao, G.H.1    Sun, Z.Z.2
  • 37
    • 0002847893 scopus 로고    scopus 로고
    • Fractional calculus: Some numerical methods
    • S. Carpinteri and F. Mainardi, eds., Springer-Verlag, New York
    • R. Gorenflo, Fractional calculus: Some numerical methods, in Fractals and Fractional Calculus in Continuum Mechanics, S. Carpinteri and F. Mainardi, eds., Springer-Verlag, New York, 1997, pp. 277-290.
    • (1997) Fractals and Fractional Calculus in Continuum Mechanics , pp. 277-290
    • Gorenflo, R.1
  • 38
    • 77952888765 scopus 로고    scopus 로고
    • A compact difference scheme for the fractional diffusionwave equation
    • R. Du, W. R. Cao, and Z. Z. Sun, A compact difference scheme for the fractional diffusionwave equation, Appl. Math. Model., 34 (2010), pp. 2998-3007.
    • (2010) Appl. Math. Model. , vol.34 , pp. 2998-3007
    • Du, R.1    Cao, W.R.2    Sun, Z.Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.