-
2
-
-
21144479789
-
A FokkerPlanck equation of fractional order with respect to time
-
G. Jumarie A FokkerPlanck equation of fractional order with respect to time J. Math. Phys. 33 1992 3536 3542
-
(1992)
J. Math. Phys.
, vol.33
, pp. 3536-3542
-
-
Jumarie, G.1
-
3
-
-
0036650850
-
Time fractional diffusion: A discrete random walk approach
-
DOI 10.1023/A:1016547232119, Fractional Order Calculus and Its Applications
-
R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi Time fractional diffusion: a discrete random walk approach Nonlinear Dynam. 29 2002 129 143 (Pubitemid 34945395)
-
(2002)
Nonlinear Dynamics
, vol.29
, Issue.1-4
, pp. 129-143
-
-
Gorenflo, R.1
Mainardi, F.2
Moretti, D.3
Paradisi, P.4
-
4
-
-
0012899160
-
Numerical solution of the Bagley-Torvik equation
-
K. Diethelm, and N.J. Ford Numerical solution of the Bagley-Torvik equation BIT 42 2002 490 507
-
(2002)
BIT
, vol.42
, pp. 490-507
-
-
Diethelm, K.1
Ford, N.J.2
-
5
-
-
55549107511
-
New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation
-
P. Zhuang, F. Liu, V. Anh, and I. Turner New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation SIAM J. Numer. Anal. 46 2008 1079 1095
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, pp. 1079-1095
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
6
-
-
67349231192
-
Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
-
F. Liu, C. Yang, and K. Burrage Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term J. Comput. Appl. Math. 231 2009 160 176
-
(2009)
J. Comput. Appl. Math.
, vol.231
, pp. 160-176
-
-
Liu, F.1
Yang, C.2
Burrage, K.3
-
8
-
-
0001553919
-
Fractional diffusion and wave equations
-
W.R. Schneider, and W. Wyss Fractional diffusion and wave equations J. Math. Phys. 30 1989 134 144
-
(1989)
J. Math. Phys.
, vol.30
, pp. 134-144
-
-
Schneider, W.R.1
Wyss, W.2
-
9
-
-
0009481303
-
The fractional diffusion equation
-
W. Wyss The fractional diffusion equation J. Math. Phys. 27 1986 2782 2785
-
(1986)
J. Math. Phys.
, vol.27
, pp. 2782-2785
-
-
Wyss, W.1
-
10
-
-
33751533397
-
Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation
-
F. Liu, S. Shen, V. Anh, and I. Turner Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation ANZIAM J. 46 E 2005 488 504
-
(2005)
ANZIAM J.
, vol.46
, Issue.E
, pp. 488-504
-
-
Liu, F.1
Shen, S.2
Anh, V.3
Turner, I.4
-
11
-
-
44149091687
-
Numerical treatment of fractional heat equations
-
DOI 10.1016/j.apnum.2007.06.003, PII S0168927407001092
-
R. Scherer, S.L. Kalla, L. Boyadjev, and B. Al-Saqabi Numerical treatment of fractional heat equations Appl. Numer. Math. 58 2008 1212 1223 (Pubitemid 351718462)
-
(2008)
Applied Numerical Mathematics
, vol.58
, Issue.8
, pp. 1212-1223
-
-
Scherer, R.1
Kalla, S.L.2
Boyadjiev, L.3
Al-Saqabi, B.4
-
12
-
-
34547548712
-
Finite difference/spectral approximations for the time-fractional diffusion equation
-
Y. Lin, and C. Xu Finite difference/spectral approximations for the time-fractional diffusion equation J. Comput. Phys. 225 2007 1533 1552
-
(2007)
J. Comput. Phys.
, vol.225
, pp. 1533-1552
-
-
Lin, Y.1
Xu, C.2
-
14
-
-
67349106045
-
Numerical simulation of blowup in nonlocal reactiondiffusion equations using a moving mesh method
-
J. Ma, Y. Jiang, and K. Xiang Numerical simulation of blowup in nonlocal reactiondiffusion equations using a moving mesh method J. Comput. Appl. Math. 230 2009 8 21
-
(2009)
J. Comput. Appl. Math.
, vol.230
, pp. 8-21
-
-
Ma, J.1
Jiang, Y.2
Xiang, K.3
|