메뉴 건너뛰기




Volumn 10, Issue 1, 2014, Pages

Robust learning approach for neuro-Inspired nanoscale crossbar architecture

Author keywords

Defect and variation tolerance; Memristors; Nanoscale crossbar; Neural network; On Chip learning; Redundant design; Supervised learning

Indexed keywords

GLOBAL RELIABILITY; HARDWARE NEURAL NETWORKS; NANOSCALE CROSSBAR; ON-CHIP LEARNING; PARAMETER VARIABILITY; REDUNDANT DESIGN; SUPERVISED LEARNING METHODS; VARIATION TOLERANCES;

EID: 84892581808     PISSN: 15504832     EISSN: 15504840     Source Type: Journal    
DOI: 10.1145/2539123     Document Type: Article
Times cited : (29)

References (41)
  • 1
    • 77049110379 scopus 로고    scopus 로고
    • 2-Terminal carbon nanotube programmable devices for adaptive architectures
    • AGNUS G. ET AL. 2010. 2-terminal carbon nanotube programmable devices for adaptive architectures. Advanced Material 22, 6, 702-706..
    • (2010) Advanced Material , vol.22 , Issue.6 , pp. 702-706
    • Agnus, G.1
  • 2
    • 60549098976 scopus 로고    scopus 로고
    • A hybrid nanomemristor/transistor logic circuit capable of self-Programming
    • BORGHETTI, J. ET AL. 2009. A hybrid nanomemristor/transistor logic circuit capable of self-programming. PNAS, 106, 6, 1699-1703..
    • (2009) PNAS , vol.106 , Issue.6 , pp. 1699-1703
    • Borghetti, J.1
  • 3
    • 77950852717 scopus 로고    scopus 로고
    • Memristive switches enable stateful logic operations via material implication
    • BORGHETTI, J. ET AL. 2010. Memristive switches enable stateful logic operations via material implication. Nature 464, 873-876..
    • (2010) Nature , vol.464 , pp. 873-876
    • Borghetti, J.1
  • 6
    • 0037392525 scopus 로고    scopus 로고
    • Nanoscale molecular-Switch crossbar circuits
    • CHEN, Y. ET AL. 2003. Nanoscale molecular-switch crossbar circuits. Nanotechnology 14, 4, 462-468
    • (2003) Nanotechnology , vol.14 , Issue.4 , pp. 462-468
    • Chen, Y.1
  • 7
    • 20344384015 scopus 로고    scopus 로고
    • A two-Level redundancy scheme for enhancing scalability of molecularbased crossbar memories
    • CHOI, Y., LEE, M., AND KIM, Y. 2004. A two-level redundancy scheme for enhancing scalability of molecularbased crossbar memories. In Proceedings of the 4th IEEE Conference on Nanotechnology. pp. 505-508
    • (2004) Proceedings of the 4th IEEE Conference on Nanotechnology , pp. 505-508
    • Choi, Y.1    Lee, M.2    Kim, Y.3
  • 8
    • 0142037327 scopus 로고
    • Imprint of sub-25 nm vias and trenches in polymers
    • CHOU, S. Y. ET AL. 1995. Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67, 3114-3116
    • (1995) Appl. Phys. Lett , vol.67 , pp. 3114-3116
    • Chou, S.Y.1
  • 9
    • 0016918810 scopus 로고
    • Memristive devices and systems
    • CHUA, L. O. AND KANG, S. M. 1976. Memristive devices and systems. Proc. IEEE 64, 209-223
    • (1976) Proc.IEEE , vol.64 , pp. 209-223
    • Chua, L.O.1    Kang, S.M.2
  • 10
    • 33748417712 scopus 로고    scopus 로고
    • Mixed-Signal neuron-Synapse implementation for large-Scale neural network
    • HAN, S. 2006. Mixed-signal neuron-synapse implementation for large-scale neural network. Neurocomputing 16, 1860-1867
    • (2006) Neurocomputing , vol.16 , pp. 1860-1867
    • Han, S.1
  • 11
    • 42449083264 scopus 로고    scopus 로고
    • Design and electrical simulation of on-Chip neural learning based on nanocomponents
    • HE, M.,KLEIN, J.-O., AND BELHAIRE, E. 2008. Design and electrical simulation of on-chip neural learning based on nanocomponents. Electron. Lett. 44, 9, 575-576..
    • (2008) Electron. Lett , vol.44 , Issue.9 , pp. 575-576
    • He, M.1    Klein, J.-O.2    Belhaire, E.3
  • 12
    • 0032510985 scopus 로고    scopus 로고
    • A defect-Tolerant computer architecture: Opportunities in nanotechnology
    • HEATH, J. R. ET AL. 1998. A defect-tolerant computer architecture: Opportunities in nanotechnology. Science 280, 5370, 1716-1721
    • (1998) Science , vol.280 , Issue.5370 , pp. 1716-1721
    • Heath, J.R.1
  • 13
    • 0035834415 scopus 로고    scopus 로고
    • Logic gates and computation from assembled nanowire buiding blocks
    • HUANG, Y. ET AL. 2001. Logic gates and computation from assembled nanowire buiding blocks. Science 294, 1313-1317
    • (2001) Science , vol.294 , pp. 1313-1317
    • Huang, Y.1
  • 15
    • 63649138779 scopus 로고    scopus 로고
    • High-Density crossbar arrays based on a si memristive system RID C-8780-2011 RID E-8388-2011
    • JO, S. H., KIM, K.-H., AND LU, W. 2009. High-density crossbar arrays based on a si memristive system RID C-8780-2011 RID E-8388-2011. Nano Letters 9, 2, 870-874
    • (2009) Nano Letters , vol.9 , Issue.2 , pp. 870-874
    • Jo, S.H.1    Kim, K.-H.2    Lu, W.3
  • 16
    • 0141466590 scopus 로고
    • Robustness in multilayer perceptrons
    • KERLIRZIN, P. AND VALLET, F. 1993. Robustness in Multilayer Perceptrons. Neural Computat. 5, 3, 473-482
    • (1993) Neural Computat , vol.5 , Issue.3 , pp. 473-482
    • Kerlirzin, P.1    Vallet, F.2
  • 17
    • 29144522055 scopus 로고    scopus 로고
    • Guided growth of large-Scale, horizontally aligned arrays of single-Walled carbon nanotubes and their use in thin-Film transistors
    • KOCKABAS, C. ET AL. 2005 Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1, 1110-1116
    • (2005) Small , vol.1 , pp. 1110-1116
    • Kockabas, C.1
  • 18
    • 18744397824 scopus 로고    scopus 로고
    • Defect-Tolerant interconnect to nanoelectronic circuits: Internally redundant demultiplexers based on error-Correcting codes
    • KUEKES, P ET AL. 2005. Defect-tolerant interconnect to nanoelectronic circuits: Internally redundant demultiplexers based on error-correcting codes. Nanotechnology 16, 869-882
    • (2005) Nanotechnology , vol.16 , pp. 869-882
    • Kuekes, P.1
  • 19
    • 34249809769 scopus 로고    scopus 로고
    • Defect-Tolerant nanoelectronic pattern classifiers
    • LEE, J. H. AND LIKHAREV, K. K. 2007. Defect-tolerant nanoelectronic pattern classifiers. Int. J. Circuit Theory Appl. 35, 3, 239-264
    • (2007) Int. J. Circuit Theory Appl , vol.35 , Issue.3 , pp. 239-264
    • Lee, J.H.1    Likharev, K.K.2
  • 20
    • 80052875968 scopus 로고    scopus 로고
    • Design of neuro-inspired learning circuit using OG-CNTFETmodelling and technology
    • LIAO S. Y. ET AL. 2011. Design of neuro-inspired learning circuit using OG-CNTFETmodelling and technology, IEEE Trans. CAS I, 58, 2172-2181
    • (2011) IEEE Trans. CAS I , vol.58 , pp. 2172-2181
    • Liao, S.Y.1
  • 21
    • 77957010403 scopus 로고    scopus 로고
    • Cross-Point memory array without cell selectors-Device characteristics and data storage pattern dependencies
    • LIANG, J. AND WONG, H.-S. 2010. Cross-Point Memory Array Without Cell Selectors-Device Characteristics and Data Storage Pattern Dependencies. IEEE Trans. Electron Devices, 57, 2531-2538
    • (2010) IEEE Trans. Electron Devices , vol.57 , pp. 2531-2538
    • Liang, J.1    Wong, H.-S.2
  • 22
    • 77951622926 scopus 로고    scopus 로고
    • Complementary resistive switches for passive nanocrossbar memories
    • LINN, E., ROSEZIN, R., KUGELER, C., AND WASER, R. 2010. Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 5, 403-406
    • (2010) Nat. Mater , vol.9 , Issue.5 , pp. 403-406
    • Linn, E.1    Rosezin, R.2    Kugeler, C.3    Waser, R.4
  • 24
    • 84892565845 scopus 로고    scopus 로고
    • Fault-Tolerance technique for nanocomputer
    • NIKOLÍC, K., SADEK, A., AND FORSHAW, M. 2002. Fault-tolerance technique for nanocomputer. Nanotechnology 13, 280-346..
    • (2002) Nanotechnology , vol.13 , pp. 280-346
    • Nikolíc, K.1    Sadek, A.2    Forshaw, M.3
  • 26
    • 84872962355 scopus 로고    scopus 로고
    • A scalable neuristor built withMottmemristors
    • PICKETT,M. D.MEDEIROS-RIBEIRO, G., ANDWILLIAMS, R. S. 2013. A scalable neuristor built withMottmemristors. Nat. Mater. 12, 2, 114-117
    • (2013) Nat. Mater , vol.12 , Issue.2 , pp. 114-117
    • Pickettm, D.1    Medeiros-Ribeiro, G.2    Williams, R.S.3
  • 27
    • 79956129424 scopus 로고    scopus 로고
    • Analog memory and spike-Timing-Dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device
    • SEO K. ET AL. 2011. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Nanotechnology. 22, 25, 254023
    • (2011) Nanotechnology , vol.22 , Issue.25 , pp. 254023
    • Seo, K.1
  • 28
    • 34548685897 scopus 로고    scopus 로고
    • Self-Organized computation with unreliable, memristive nanodevices
    • SNIDER, G. S. 2007. Self-organized computation with unreliable, memristive nanodevices. Nanotechnology, 18, 36, 365202
    • (2007) Nanotechnology , vol.18 , Issue.36 , pp. 365202
    • Snider, G.S.1
  • 29
    • 18744373862 scopus 로고    scopus 로고
    • CMOL FPGA: A reconfigurable architecture for hybrid digital circuits with two-Terminal nanodevices RID B-2689-2009
    • STRUKOV, D. AND LIKHAREV, K. 2005. CMOL FPGA: A reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices RID B-2689-2009. Nanotechnology 16, 6, 888-900
    • (2005) Nanotechnology , vol.16 , Issue.6 , pp. 888-900
    • Strukov, D.1    Likharev, K.2
  • 32
    • 0022721216 scopus 로고
    • Simple 'neural'optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit
    • TANK, D. AND HOPFIELD, J. 1986. Simple 'neural' optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit. IEEE Trans. Circ. Syst. 33, 5, 533
    • (1986) IEEE Trans. Circ. Syst , vol.33 , Issue.5 , pp. 533
    • Tank, D.1    Hopfield, J.2
  • 33
    • 66049144283 scopus 로고    scopus 로고
    • Resistive non-Volatile memory devices (Invited Paper)
    • WASER, R. 2009. Resistive non-volatile memory devices (Invited Paper). Microelectron. Eng. 86, 7-9, 1925- 1928
    • (2009) Microelectron. Eng , vol.86 , Issue.7-9 , pp. 1925-1928
    • Waser, R.1
  • 36
    • 84859984075 scopus 로고    scopus 로고
    • Engineering nonlinearity into memristors for passive crossbar applications
    • YANG, J. ET AL. 2012. Engineering nonlinearity into memristors for passive crossbar applications. Appl. Phys. Lett. 100, 11, 113501-113501-4
    • (2012) Appl. Phys. Lett , vol.100 , Issue.11 , pp. 113501-1135014
    • Yang, J.1
  • 37
    • 79952640478 scopus 로고    scopus 로고
    • Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory
    • YU, S., WU, Y., AND WONG, H.-S. P. 2011. Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory. Appl. Phys. Lett. 98, 10, 103514
    • (2011) Appl. Phys. Lett. , vol.98 , Issue.10 , pp. 103514
    • Yu, S.1    Wu, Y.2    Wong, H.-S.P.3
  • 38
    • 72849144796 scopus 로고    scopus 로고
    • Memristor-CMOS hybrid integrated circuits for reconfigurable logic
    • XIA, Q. ET AL. 2009. Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9, 3640-5
    • (2009) Nano Lett , vol.9 , pp. 3640-3645
    • Xia, Q.1
  • 39
    • 77954751982 scopus 로고    scopus 로고
    • Nanotube devices based crossbar architecture: Toward neuromorphic computing
    • ZHAO, W. S. ET AL. 2010. Nanotube devices based crossbar architecture: Toward neuromorphic computing, Nanotechnology 21, 175202
    • (2010) Nanotechnology , vol.21 , pp. 175202
    • Zhao, W.S.1
  • 40
    • 84866125003 scopus 로고    scopus 로고
    • Cross-Point architecture for spin transfer torque magnetic random access memory
    • ZHAO, W. S. ET AL. 2012. Cross-point architecture for spin transfer torque magnetic random access memory, IEEE Trans. Nanotech. 11, 907-917
    • (2012) IEEE Trans. Nanotech , vol.11 , pp. 907-917
    • Zhao, W.S.1
  • 41
    • 0344012623 scopus 로고    scopus 로고
    • Nanowire crossbar arrays as address decoders for integrated nanosystems
    • ZHONG, Z. ET AL. 2003. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302, 1377
    • (2003) Science , vol.302 , pp. 1377
    • Zhong, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.