-
1
-
-
33745274726
-
Mitochondria: Dynamic organelles in disease, aging, and development
-
Chan, D.C. (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 1241-1252
-
(2006)
Cell
, vol.125
, pp. 1241-1252
-
-
Chan, D.C.1
-
3
-
-
16844366524
-
Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging
-
Lemasters, J.J. (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 8, 3-5
-
(2005)
Rejuvenation Res.
, vol.8
, pp. 3-5
-
-
Lemasters, J.J.1
-
4
-
-
4644273585
-
Uth1p is involved in the autophagic degradation of mitochondria
-
Kissova, I., Deffieu, M., Manon, S. and Camougrand, N. (2004) Uth1p is involved in the autophagic degradation of mitochondria. J. Biol. Chem. 279, 39068-39074
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 39068-39074
-
-
Kissova, I.1
Deffieu, M.2
Manon, S.3
Camougrand, N.4
-
5
-
-
78349275317
-
Mitophagy in yeast: Actors and physiological roles
-
Bhatia-Kissova, I. and Camougrand, N. (2010) Mitophagy in yeast: actors and physiological roles. FEMS Yeast Res. 10, 1023-1034
-
(2010)
FEMS Yeast Res.
, vol.10
, pp. 1023-1034
-
-
Bhatia-Kissova, I.1
Camougrand, N.2
-
6
-
-
67650264633
-
Atg32 is a mitochondrial protein that confers selectivity during mitophagy
-
Kanki, T., Wang, K., Cao, Y., Baba, M. and Klionsky, D.J. (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17, 98-109
-
(2009)
Dev. Cell
, vol.17
, pp. 98-109
-
-
Kanki, T.1
Wang, K.2
Cao, Y.3
Baba, M.4
Klionsky, D.J.5
-
7
-
-
67650246357
-
Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
-
Okamoto, K., Kondo-Okamoto, N. and Ohsumi, Y. (2009) Mitochondria- anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17, 87-97
-
(2009)
Dev. Cell
, vol.17
, pp. 87-97
-
-
Okamoto, K.1
Kondo-Okamoto, N.2
Ohsumi, Y.3
-
8
-
-
57749121573
-
Mitophagy in yeast occurs through a selective mechanism
-
Kanki, T. and Klionsky, D.J. (2008) Mitophagy in yeast occurs through a selective mechanism. J. Biol. Chem. 283, 32386-32393
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 32386-32393
-
-
Kanki, T.1
Klionsky, D.J.2
-
9
-
-
80052197610
-
Phosphorylation of serine 114 on Atg32 mediates mitophagy
-
Aoki, Y., Kanki, T., Hirota, Y., Kurihara, Y., Saigusa, T., Uchiumi, T. and Kang, D. (2011) Phosphorylation of serine 114 on Atg32 mediates mitophagy. Mol. Biol. Cell 22, 3206-3217
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 3206-3217
-
-
Aoki, Y.1
Kanki, T.2
Hirota, Y.3
Kurihara, Y.4
Saigusa, T.5
Uchiumi, T.6
Kang, D.7
-
10
-
-
51649124519
-
Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation
-
Kundu, M., Lindsten, T., Yang, C.Y., Wu, J., Zhao, F., Zhang, J., Selak, M.A., Ney, P.A. and Thompson, C.B. (2008) Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493-1502
-
(2008)
Blood
, vol.112
, pp. 1493-1502
-
-
Kundu, M.1
Lindsten, T.2
Yang, C.Y.3
Wu, J.4
Zhao, F.5
Zhang, J.6
Selak, M.A.7
Ney, P.A.8
Thompson, C.B.9
-
11
-
-
0038156122
-
The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation
-
Aerbajinai, W., Giattina, M., Lee, Y.T., Raffeld, M. and Miller, J.L. (2003) The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation. Blood 102, 712-717
-
(2003)
Blood
, vol.102
, pp. 712-717
-
-
Aerbajinai, W.1
Giattina, M.2
Lee, Y.T.3
Raffeld, M.4
Miller, J.L.5
-
12
-
-
47049100413
-
Essential role for Nix in autophagic maturation of erythroid cells
-
Sandoval, H., Thiagarajan, P., Dasgupta, S.K., Schumacher, A., Prchal, J.T., Chen, M. and Wang, J. (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232-235
-
(2008)
Nature
, vol.454
, pp. 232-235
-
-
Sandoval, H.1
Thiagarajan, P.2
Dasgupta, S.K.3
Schumacher, A.4
Prchal, J.T.5
Chen, M.6
Wang, J.7
-
13
-
-
37649017266
-
NIX is required for programmed mitochondrial clearance during reticulocyte maturation
-
Schweers, R.L., Zhang, J., Randall, M.S., Loyd, M.R., Li, W., Dorsey, F.C., Kundu, M., Opferman, J.T., Cleveland, J.L., Miller, J.L. and Ney, P.A. (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl. Acad. Sci. U.S.A. 104, 19500-19505
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 19500-19505
-
-
Schweers, R.L.1
Zhang, J.2
Randall, M.S.3
Loyd, M.R.4
Li, W.5
Dorsey, F.C.6
Kundu, M.7
Opferman, J.T.8
Cleveland, J.L.9
Miller, J.L.10
Ney, P.A.11
-
14
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
Novak, I., Kirkin, V., McEwan, D.G., Zhang, J., Wild, P., Rozenknop, A., Rogov, V., Lohr, F., Popovic, D., Occhipinti, A. et al. (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45-51
-
(2010)
EMBO Rep.
, vol.11
, pp. 45-51
-
-
Novak, I.1
Kirkin, V.2
McEwan, D.G.3
Zhang, J.4
Wild, P.5
Rozenknop, A.6
Rogov, V.7
Lohr, F.8
Popovic, D.9
Occhipinti, A.10
-
15
-
-
84866543686
-
A short linear motif in BNIP3L (NIX) mediates mitochondrial clearance in reticulocytes
-
Zhang, J., Loyd, M.R., Randall, M.S., Waddell, M.B., Kriwacki, R.W. and Ney, P.A. (2012) A short linear motif in BNIP3L (NIX) mediates mitochondrial clearance in reticulocytes. Autophagy 8, 1325-1332
-
(2012)
Autophagy
, vol.8
, pp. 1325-1332
-
-
Zhang, J.1
Loyd, M.R.2
Randall, M.S.3
Waddell, M.B.4
Kriwacki, R.W.5
Ney, P.A.6
-
16
-
-
77956252454
-
Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming
-
Ding, W.X., Ni, H.M., Li, M., Liao, Y., Chen, X., Stolz, D.B., Dorn, 2nd, G.W. and Yin, X.M. (2010) Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62- mediated mitochondrial priming. J. Biol. Chem. 285, 27879-27890
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 27879-27890
-
-
Ding, W.X.1
Ni, H.M.2
Li, M.3
Liao, Y.4
Chen, X.5
Stolz, D.B.6
Dorn II, G.W.7
Yin, X.M.8
-
17
-
-
0032499264
-
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
-
Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y. and Shimizu, N. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605-608
-
(1998)
Nature
, vol.392
, pp. 605-608
-
-
Kitada, T.1
Asakawa, S.2
Hattori, N.3
Matsumine, H.4
Yamamura, Y.5
Minoshima, S.6
Yokochi, M.7
Mizuno, Y.8
Shimizu, N.9
-
18
-
-
2442668926
-
Hereditary early-onset Parkinson's disease caused by mutations in PINK1
-
Valente, E.M., Abou-Sleiman, P.M., Caputo, V., Muqit, M.M., Harvey, K., Gispert, S., Ali, Z., Del Turco, D., Bentivoglio, A.R., Healy, D.G. et al. (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158-1160
-
(2004)
Science
, vol.304
, pp. 1158-1160
-
-
Valente, E.M.1
Abou-Sleiman, P.M.2
Caputo, V.3
Muqit, M.M.4
Harvey, K.5
Gispert, S.6
Ali, Z.7
Del Turco, D.8
Bentivoglio, A.R.9
Healy, D.G.10
-
19
-
-
0037386532
-
Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants
-
Greene, J.C., Whitworth, A.J., Kuo, I., Andrews, L.A., Feany, M.B. and Pallanck, L.J. (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. U.S.A. 100, 4078-4083
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 4078-4083
-
-
Greene, J.C.1
Whitworth, A.J.2
Kuo, I.3
Andrews, L.A.4
Feany, M.B.5
Pallanck, L.J.6
-
20
-
-
33745602748
-
Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
-
Park, J., Lee, S.B., Lee, S., Kim, Y., Song, S., Kim, S., Bae, E., Kim, J., Shong, M., Kim, J.M. and Chung, J. (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157-1161
-
(2006)
Nature
, vol.441
, pp. 1157-1161
-
-
Park, J.1
Lee, S.B.2
Lee, S.3
Kim, Y.4
Song, S.5
Kim, S.6
Bae, E.7
Kim, J.8
Shong, M.9
Kim, J.M.10
Chung, J.11
-
21
-
-
33745589773
-
Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
-
Clark, I.E., Dodson, M.W., Jiang, C., Cao, J.H., Huh, J.R., Seol, J.H., Yoo, S.J., Hay, B.A. and Guo, M. (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162-1166
-
(2006)
Nature
, vol.441
, pp. 1162-1166
-
-
Clark, I.E.1
Dodson, M.W.2
Jiang, C.3
Cao, J.H.4
Huh, J.R.5
Seol, J.H.6
Yoo, S.J.7
Hay, B.A.8
Guo, M.9
-
22
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra, D., Tanaka, A., Suen, D.F. and Youle, R.J. (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795-803
-
(2008)
J. Cell Biol.
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
23
-
-
79551603345
-
Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization
-
Van Laar, V.S., Arnold, B., Cassady, S.J., Chu, C.T., Burton, E.A. and Berman, S.B. (2011) Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization. Hum. Mol. Genet. 20, 927-940
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 927-940
-
-
Van Laar, V.S.1
Arnold, B.2
Cassady, S.J.3
Chu, C.T.4
Burton, E.A.5
Berman, S.B.6
-
24
-
-
84873843566
-
Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: Study in human primary fibroblasts and induced pluripotent stem cell-derived neurons
-
Rakovic, A., Shurkewitsch, K., Seibler, P., Grunewald, A., Zanon, A., Hagenah, J., Krainc, D. and Klein, C. (2013) Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. J. Biol. Chem. 288, 2223-2237
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 2223-2237
-
-
Rakovic, A.1
Shurkewitsch, K.2
Seibler, P.3
Grunewald, A.4
Zanon, A.5
Hagenah, J.6
Krainc, D.7
Klein, C.8
-
25
-
-
13844313915
-
Parkin-deficient mice are not a robust model of parkinsonism
-
Perez, F.A. and Palmiter, R.D. (2005) Parkin-deficient mice are not a robust model of parkinsonism. Proc. Natl. Acad. Sci. U.S.A. 102, 2174-2179
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 2174-2179
-
-
Perez, F.A.1
Palmiter, R.D.2
-
26
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
-
Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C.A., Sou, Y.S., Saiki, S., Kawajiri, S., Sato, F. et al. (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211-221
-
(2010)
J. Cell Biol.
, vol.189
, pp. 211-221
-
-
Matsuda, N.1
Sato, S.2
Shiba, K.3
Okatsu, K.4
Saisho, K.5
Gautier, C.A.6
Sou, Y.S.7
Saiki, S.8
Kawajiri, S.9
Sato, F.10
-
27
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
Narendra, D.P., Jin, S.M., Tanaka, A., Suen, D.F., Gautier, C.A., Shen, J., Cookson, M.R. and Youle, R.J. (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298
-
(2010)
PLoS Biol.
, vol.8
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
Shen, J.6
Cookson, M.R.7
Youle, R.J.8
-
28
-
-
84873045973
-
PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding
-
Lazarou, M., Narendra, D.P., Jin, S.M., Tekle, E., Banerjee, S. and Youle, R.J. (2013) PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J. Cell Biol. 200, 163-172
-
(2013)
J. Cell Biol.
, vol.200
, pp. 163-172
-
-
Lazarou, M.1
Narendra, D.P.2
Jin, S.M.3
Tekle, E.4
Banerjee, S.5
Youle, R.J.6
-
29
-
-
84871426886
-
The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli
-
Lokireddy, S., Wijesoma, I.W., Teng, S., Bonala, S., Gluckman, P.D., McFarlane, C., Sharma, M. and Kambadur, R. (2012) The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli. Cell Metab. 16, 613-624
-
(2012)
Cell Metab.
, vol.16
, pp. 613-624
-
-
Lokireddy, S.1
Wijesoma, I.W.2
Teng, S.3
Bonala, S.4
Gluckman, P.D.5
McFarlane, C.6
Sharma, M.7
Kambadur, R.8
-
30
-
-
84876524198
-
Regulation of mitophagy by the Gp78 E3 ubiquitin ligase
-
Fu, M., St Pierre, P., Shankar, J., Wang, P.T., Joshi, B. and Nabi, I.R. (2013) Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Mol. Biol. Cell 24, 1153-1162
-
(2013)
Mol. Biol. Cell
, vol.24
, pp. 1153-1162
-
-
Fu, M.1
St Pierre, P.2
Shankar, J.3
Wang, P.T.4
Joshi, B.5
Nabi, I.R.6
-
31
-
-
78649300971
-
P62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
-
Narendra, D., Kane, L.A., Hauser, D.N., Fearnley, I.M. and Youle, R.J. (2010) p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6, 1090-1106
-
(2010)
Autophagy
, vol.6
, pp. 1090-1106
-
-
Narendra, D.1
Kane, L.A.2
Hauser, D.N.3
Fearnley, I.M.4
Youle, R.J.5
-
32
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
Geisler, S., Holmstrom, K.M., Skujat, D., Fiesel, F.C., Rothfuss, O.C., Kahle, P.J. and Springer, W. (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119-131
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 119-131
-
-
Geisler, S.1
Holmstrom, K.M.2
Skujat, D.3
Fiesel, F.C.4
Rothfuss, O.C.5
Kahle, P.J.6
Springer, W.7
-
33
-
-
84862789618
-
Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
-
Liu, L., Feng, D., Chen, G., Chen, M., Zheng, Q., Song, P., Ma, Q., Zhu, C., Wang, R., Qi, W. et al. (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177-185
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 177-185
-
-
Liu, L.1
Feng, D.2
Chen, G.3
Chen, M.4
Zheng, Q.5
Song, P.6
Ma, Q.7
Zhu, C.8
Wang, R.9
Qi, W.10
-
34
-
-
77952495224
-
Mitochondria supply membranes for autophagosome biogenesis during starvation
-
Hailey, D.W., Rambold, A.S., Satpute-Krishnan, P., Mitra, K., Sougrat, R., Kim, P.K. and Lippincott-Schwartz, J. (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656-667
-
(2010)
Cell
, vol.141
, pp. 656-667
-
-
Hailey, D.W.1
Rambold, A.S.2
Satpute-Krishnan, P.3
Mitra, K.4
Sougrat, R.5
Kim, P.K.6
Lippincott-Schwartz, J.7
-
35
-
-
84857850213
-
Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy
-
Itakura, E., Kishi-Itakura, C., Koyama-Honda, I. and Mizushima, N. (2012) Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J. Cell Sci. 125, 1488-1499
-
(2012)
J. Cell Sci.
, vol.125
, pp. 1488-1499
-
-
Itakura, E.1
Kishi-Itakura, C.2
Koyama-Honda, I.3
Mizushima, N.4
-
36
-
-
0035166814
-
Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells
-
Smirnova, E., Griparic, L., Shurland, D.L. and van der Bliek, A.M. (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12, 2245-2256
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 2245-2256
-
-
Smirnova, E.1
Griparic, L.2
Shurland, D.L.3
Van Der Bliek, A.M.4
-
37
-
-
0141592470
-
HFis1, a novel component of the mammalian mitochondrial fission machinery
-
James, D.I., Parone, P.A., Mattenberger, Y. and Martinou, J.C. (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J. Biol. Chem. 278, 36373-36379
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 36373-36379
-
-
James, D.I.1
Parone, P.A.2
Mattenberger, Y.3
Martinou, J.C.4
-
38
-
-
78650167618
-
Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells
-
Otera, H., Wang, C., Cleland, M.M., Setoguchi, K., Yokota, S., Youle, R.J. and Mihara, K. (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 191, 1141-1158
-
(2010)
J. Cell Biol.
, vol.191
, pp. 1141-1158
-
-
Otera, H.1
Wang, C.2
Cleland, M.M.3
Setoguchi, K.4
Yokota, S.5
Youle, R.J.6
Mihara, K.7
-
39
-
-
77955298543
-
Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1
-
Chang, C.R. and Blackstone, C. (2010) Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann. N.Y. Acad. Sci. 1201, 34-39
-
(2010)
Ann. N.Y. Acad. Sci.
, vol.1201
, pp. 34-39
-
-
Chang, C.R.1
Blackstone, C.2
-
40
-
-
0035057837
-
Control of mitochondrial morphology by a human mitofusin
-
Santel, A. and Fuller, M.T. (2001) Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114, 867-874
-
(2001)
J. Cell Sci.
, vol.114
, pp. 867-874
-
-
Santel, A.1
Fuller, M.T.2
-
41
-
-
0037013266
-
Primary structure of a dynamin-related mouse mitochondrial GTPase and its distribution in brain, subcellular localization, and effect on mitochondrial morphology
-
Misaka, T., Miyashita, T. and Kubo, Y. (2002) Primary structure of a dynamin-related mouse mitochondrial GTPase and its distribution in brain, subcellular localization, and effect on mitochondrial morphology. J. Biol. Chem. 277, 15834-15842
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 15834-15842
-
-
Misaka, T.1
Miyashita, T.2
Kubo, Y.3
-
42
-
-
84875365804
-
Autophagosomes form at ER-mitochondria contact sites
-
Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto, A., Fujita, N., Oomori, H., Noda, T., Haraguchi, T., Hiraoka, Y. et al. (2013) Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389-393
-
(2013)
Nature
, vol.495
, pp. 389-393
-
-
Hamasaki, M.1
Furuta, N.2
Matsuda, A.3
Nezu, A.4
Yamamoto, A.5
Fujita, N.6
Oomori, H.7
Noda, T.8
Haraguchi, T.9
Hiraoka, Y.10
-
43
-
-
33745699393
-
OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion
-
Frezza, C., Cipolat, S., Martins de Brito, O., Micaroni, M., Beznoussenko, G.V., Rudka, T., Bartoli, D., Polishuck, R.S., Danial, N.N., De Strooper, B. and Scorrano, L. (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177-189
-
(2006)
Cell
, vol.126
, pp. 177-189
-
-
Frezza, C.1
Cipolat, S.2
Martins De Brito, O.3
Micaroni, M.4
Beznoussenko, G.V.5
Rudka, T.6
Bartoli, D.7
Polishuck, R.S.8
Danial, N.N.9
De Strooper, B.10
Scorrano, L.11
-
44
-
-
80053424677
-
Mitochondrial elongation during autophagy: A stereotypical response to survive in difficult times
-
Gomes, L.C. and Scorrano, L. (2011) Mitochondrial elongation during autophagy: a stereotypical response to survive in difficult times. Autophagy 7, 1251-1253
-
(2011)
Autophagy
, vol.7
, pp. 1251-1253
-
-
Gomes, L.C.1
Scorrano, L.2
-
45
-
-
38549110110
-
Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
-
Twig, G., Elorza, A., Molina, A.J., Mohamed, H., Wikstrom, J.D., Walzer, G., Stiles, L., Haigh, S.E., Katz, S., Las, G. et al. (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433-446
-
(2008)
EMBO J.
, vol.27
, pp. 433-446
-
-
Twig, G.1
Elorza, A.2
Molina, A.J.3
Mohamed, H.4
Wikstrom, J.D.5
Walzer, G.6
Stiles, L.7
Haigh, S.E.8
Katz, S.9
Las, G.10
-
46
-
-
78650729600
-
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
-
Tanaka, A., Cleland, M.M., Xu, S., Narendra, D.P., Suen, D.F., Karbowski, M. and Youle, R.J. (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191, 1367-1380
-
(2010)
J. Cell Biol.
, vol.191
, pp. 1367-1380
-
-
Tanaka, A.1
Cleland, M.M.2
Xu, S.3
Narendra, D.P.4
Suen, D.F.5
Karbowski, M.6
Youle, R.J.7
-
47
-
-
81055140895
-
PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
-
Wang, X., Winter, D., Ashrafi, G., Schlehe, J., Wong, Y.L., Selkoe, D., Rice, S., Steen, J., LaVoie, M.J. and Schwarz, T.L. (2011) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147, 893-906
-
(2011)
Cell
, vol.147
, pp. 893-906
-
-
Wang, X.1
Winter, D.2
Ashrafi, G.3
Schlehe, J.4
Wong, Y.L.5
Selkoe, D.6
Rice, S.7
Steen, J.8
Lavoie, M.J.9
Schwarz, T.L.10
-
48
-
-
80052172908
-
The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections
-
Kornmann, B., Osman, C. and Walter, P. (2011) The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections. Proc. Natl. Acad. Sci. U.S.A. 108, 14151-14156
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 14151-14156
-
-
Kornmann, B.1
Osman, C.2
Walter, P.3
-
49
-
-
79955623510
-
During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
-
Gomes, L.C., Di Benedetto, G. and Scorrano, L. (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13, 589-598
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 589-598
-
-
Gomes, L.C.1
Di Benedetto, G.2
Scorrano, L.3
-
50
-
-
79959987510
-
Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
-
Rambold, A.S., Kostelecky, B., Elia, N. and Lippincott-Schwartz, J. (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. U.S.A. 108, 10190-10195
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 10190-10195
-
-
Rambold, A.S.1
Kostelecky, B.2
Elia, N.3
Lippincott-Schwartz, J.4
-
51
-
-
80051752834
-
Essential amino acids and glutamine regulate induction of mitochondrial elongation during autophagy
-
Gomes, L.C., Di Benedetto, G. and Scorrano, L. (2011) Essential amino acids and glutamine regulate induction of mitochondrial elongation during autophagy. Cell Cycle 10, 2635-2639
-
(2011)
Cell Cycle
, vol.10
, pp. 2635-2639
-
-
Gomes, L.C.1
Di Benedetto, G.2
Scorrano, L.3
-
52
-
-
79953158981
-
Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2
-
Mendl, N., Occhipinti, A., Muller, M., Wild, P., Dikic, I. and Reichert, A.S. (2011) Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2. J. Cell Sci. 124, 1339-1350
-
(2011)
J. Cell Sci.
, vol.124
, pp. 1339-1350
-
-
Mendl, N.1
Occhipinti, A.2
Muller, M.3
Wild, P.4
Dikic, I.5
Reichert, A.S.6
-
53
-
-
79251574964
-
Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation
-
Kim, I. and Lemasters, J.J. (2011) Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation. Am. J. Physiol. Cell Physiol. 300, C308-C317
-
(2011)
Am. J. Physiol. Cell Physiol.
, vol.300
-
-
Kim, I.1
Lemasters, J.J.2
-
54
-
-
84874904524
-
The role of calcium stores in apoptosis and autophagy
-
Smaili, S.S., Pereira, G.J., Costa, M.M., Rocha, K.K., Rodrigues, L., do Carmo, L.G., Hirata, H. and Hsu, Y.T. (2013) The role of calcium stores in apoptosis and autophagy. Curr. Mol. Med. 13, 252-265
-
(2013)
Curr. Mol. Med.
, vol.13
, pp. 252-265
-
-
Smaili, S.S.1
Pereira, G.J.2
Costa, M.M.3
Rocha, K.K.4
Rodrigues, L.5
Do Carmo, L.G.6
Hirata, H.7
Hsu, Y.T.8
-
55
-
-
84865427488
-
Mitochondria as sensors and regulators of calcium signalling
-
Rizzuto, R., De Stefani, D., Raffaello, A. and Mammucari, C. (2012) Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 13, 566-578
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 566-578
-
-
Rizzuto, R.1
De Stefani, D.2
Raffaello, A.3
Mammucari, C.4
|