메뉴 건너뛰기




Volumn 49, Issue 18, 2010, Pages 8685-8693

Nonlinear soft sensor development based on relevance vector machine

Author keywords

[No Author keywords available]

Indexed keywords

KERNEL FUNCTION; LEAST-SQUARES SUPPORT VECTOR MACHINES; MACHINE-LEARNING; ONLINE PREDICTION; PARAMETER-TUNING; POINT ESTIMATION; PROBABILISTIC PREDICTION; RELEVANCE VECTOR MACHINE; SOFT SENSORS; SOFT-SENSING; SOFT-SENSOR MODELING; TYPE METHODS;

EID: 77956406437     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie101146d     Document Type: Article
Times cited : (48)

References (46)
  • 1
    • 0002111519 scopus 로고
    • Soft-sensors for process estimation and inferential control
    • Tham, M. T.; Morris, A. J.; Montague, G. A. Soft-sensors for process estimation and inferential control J. Process Control. 1991, 1, 3-14
    • (1991) J. Process Control. , vol.1 , pp. 3-14
    • Tham, M.T.1    Morris, A.J.2    Montague, G.A.3
  • 2
  • 3
    • 0032562941 scopus 로고    scopus 로고
    • Dynamic inferential estimation using principal components regression (PCR)
    • Hartnett, M. K.; Lightbody, G.; Irwin, G. W. Dynamic inferential estimation using principal components regression (PCR) Chem. Intel. Lab. Syst. 1998, 40, 215-224
    • (1998) Chem. Intel. Lab. Syst. , vol.40 , pp. 215-224
    • Hartnett, M.K.1    Lightbody, G.2    Irwin, G.W.3
  • 5
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control and quality improvement: Recent developments and applications in steel industry
    • Kano, M.; Nakagawa, Y. Data-based process monitoring, process control and quality improvement: recent developments and applications in steel industry Comput. Chem. Eng. 2008, 32, 12-24
    • (2008) Comput. Chem. Eng. , vol.32 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 6
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec, P.; Gabrys, B.; Strandt, S. Data-driven soft sensors in the process industry Comput. Chem. Eng. 2009, 33, 795-814
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 7
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithm for adaptive data modeling
    • Qin, S. J. Recursive PLS algorithm for adaptive data modeling Comput. Chem. Eng. 1998, 22, 503-514
    • (1998) Comput. Chem. Eng. , vol.22 , pp. 503-514
    • Qin, S.J.1
  • 8
    • 1642313098 scopus 로고    scopus 로고
    • Multirate dynamic inferential modeling for mulvariable processes
    • Lu, N. Y.; Yang, Y.; Gao, F. R.; Wang, F. L. Multirate dynamic inferential modeling for mulvariable processes Chem. Eng. Sci. 2004, 59, 855-864
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 855-864
    • Lu, N.Y.1    Yang, Y.2    Gao, F.R.3    Wang, F.L.4
  • 9
    • 14944347949 scopus 로고    scopus 로고
    • A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling
    • Li, C. F.; Ye, H.; Wang, G. Z.; Zhang, J. A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling Chem. Eng. Technol. 2005, 28, 141-152
    • (2005) Chem. Eng. Technol. , vol.28 , pp. 141-152
    • Li, C.F.1    Ye, H.2    Wang, G.Z.3    Zhang, J.4
  • 10
    • 21244451848 scopus 로고    scopus 로고
    • Adaptive multivariate regression modeling based on model performance assessment
    • Lee, Y. H.; Kim, M. J.; Chu, Y. H.; Han, C. H. Adaptive multivariate regression modeling based on model performance assessment Chem. Intel. Lab. Syst. 2005, 78, 63-73
    • (2005) Chem. Intel. Lab. Syst. , vol.78 , pp. 63-73
    • Lee, Y.H.1    Kim, M.J.2    Chu, Y.H.3    Han, C.H.4
  • 11
    • 34147222905 scopus 로고    scopus 로고
    • On-line soft sensor for polyethylene process with multiple production grades
    • Liu, J. L. On-line soft sensor for polyethylene process with multiple production grades Control Eng. Pract. 2007, 15, 769-778
    • (2007) Control Eng. Pract. , vol.15 , pp. 769-778
    • Liu, J.L.1
  • 12
    • 42149134815 scopus 로고    scopus 로고
    • Quality prediction based on phase-specific average trajectory for batch processes
    • Zhao, C. H.; Wang, F. L.; Mao, Z. Z.; Lu, N. Y.; Jia, M. X. Quality prediction based on phase-specific average trajectory for batch processes AIChE J. 2008, 54, 693-705
    • (2008) AIChE J. , vol.54 , pp. 693-705
    • Zhao, C.H.1    Wang, F.L.2    Mao, Z.Z.3    Lu, N.Y.4    Jia, M.X.5
  • 13
    • 60649090799 scopus 로고    scopus 로고
    • Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process
    • Facco, P.; Doplicher, F.; Bezzo, F.; Barolo, M. Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process J. Process Control 2009, 19, 520-529
    • (2009) J. Process Control , vol.19 , pp. 520-529
    • Facco, P.1    Doplicher, F.2    Bezzo, F.3    Barolo, M.4
  • 14
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation based just-in-time modeling
    • Fujiwara, K.; Kano, M.; Hasebe, S.; Takinami, A. Soft-sensor development using correlation based just-in-time modeling AIChE J. 2009, 55, 1754-1765
    • (2009) AIChE J. , vol.55 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 15
    • 58149308461 scopus 로고    scopus 로고
    • Improved calibration investigation using phase-wise local and cumulative quality interpretation and prediction
    • Zhao, C. H.; Wang, F. L.; Gao, F. R. Improved calibration investigation using phase-wise local and cumulative quality interpretation and prediction Chem. Intel. Lab. Syst. 2009, 95, 107-121
    • (2009) Chem. Intel. Lab. Syst. , vol.95 , pp. 107-121
    • Zhao, C.H.1    Wang, F.L.2    Gao, F.R.3
  • 16
    • 0037440549 scopus 로고    scopus 로고
    • Dynamic neural networks partial least squares (DNNPLS) identification of multivariable processes
    • Adebiyi, O. A.; Corripio, A. B. Dynamic neural networks partial least squares (DNNPLS) identification of multivariable processes Comput. Chem. Eng. 2003, 27, 143-155
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 143-155
    • Adebiyi, O.A.1    Corripio, A.B.2
  • 17
    • 42149172522 scopus 로고    scopus 로고
    • K-OPLS package: Kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space
    • Bylesjo, M.; Rantalainen, M.; Nicholson, J. K.; Holmes, E.; Trygg, J. K-OPLS package: Kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space BMC Bioinf. 2008, 9, 106
    • (2008) BMC Bioinf. , vol.9 , pp. 106
    • Bylesjo, M.1    Rantalainen, M.2    Nicholson, J.K.3    Holmes, E.4    Trygg, J.5
  • 18
    • 67650076522 scopus 로고    scopus 로고
    • Improving the prediction model of protein in milk powder using GA-PLS combined with PC-ANN arithmetic
    • Sun, Q.; Wang, J. H.; Han, D. H. Improving the prediction model of protein in milk powder using GA-PLS combined with PC-ANN arithmetic Spectrosc. Spectral Anal. 2009, 29, 1818-1821
    • (2009) Spectrosc. Spectral Anal. , vol.29 , pp. 1818-1821
    • Sun, Q.1    Wang, J.H.2    Han, D.H.3
  • 19
    • 69349083126 scopus 로고    scopus 로고
    • Complex process monitoring using modified partial least squares method of independent component regression
    • Zhang, Y. W.; Zhang, Y. Complex process monitoring using modified partial least squares method of independent component regression Chem. Intel. Lab. Syst. 2009, 98, 143-148
    • (2009) Chem. Intel. Lab. Syst. , vol.98 , pp. 143-148
    • Zhang, Y.W.1    Zhang, Y.2
  • 22
    • 20344389745 scopus 로고    scopus 로고
    • Application of a moving-window-adaptive neural network to the modeling of a full-scale anaerobic filter process
    • Lee, M. W.; Joung, J. Y.; Lee, D. S.; Park, J. M.; Woo, S. H. Application of a moving-window-adaptive neural network to the modeling of a full-scale anaerobic filter process Ind. Eng. Chem. Res. 2005, 44, 3973-3982
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 3973-3982
    • Lee, M.W.1    Joung, J.Y.2    Lee, D.S.3    Park, J.M.4    Woo, S.H.5
  • 23
    • 50849083804 scopus 로고    scopus 로고
    • Accounts of experience in the application of artificial neural networks in chemical engineering
    • Himmelblau, D. M. Accounts of experience in the application of artificial neural networks in chemical engineering Ind. Eng. Chem. Res. 2008, 47, 5782-5796
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 5782-5796
    • Himmelblau, D.M.1
  • 24
    • 57049112694 scopus 로고    scopus 로고
    • ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
    • Gonzaga, J. C. B.; Meleiro, L. A. C.; Kiang, C.; Filho, R. M. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process Comput. Chem. Eng. 2009, 33, 43-49
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 43-49
    • Gonzaga, J.C.B.1    Meleiro, L.A.C.2    Kiang, C.3    Filho, R.M.4
  • 27
    • 0037279908 scopus 로고    scopus 로고
    • Support vector machine: A useful tool for process engineering applications
    • Agrawal, M.; Jade, A. M.; Jayaraman, V. K.; Kulkarni, B. D. Support vector machine: A useful tool for process engineering applications Chem. Eng. Prog. 2003, 98, 57-62
    • (2003) Chem. Eng. Prog. , vol.98 , pp. 57-62
    • Agrawal, M.1    Jade, A.M.2    Jayaraman, V.K.3    Kulkarni, B.D.4
  • 29
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Yan, W. W.; Shao, H. H.; Wang, X. F. Soft sensing modeling based on support vector machine and Bayesian model selection Comput. Chem. Eng. 2004, 28, 1489-1498
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1489-1498
    • Yan, W.W.1    Shao, H.H.2    Wang, X.F.3
  • 30
    • 33745777639 scopus 로고    scopus 로고
    • Incremental support vector learning: Analysis, implementation and application
    • Laskov, P.; Gehl, C.; Kruger, S.; Muller, K. R. Incremental support vector learning: analysis, implementation and application J. Mach. Learn. Res. 2006, 7, 1909-1936
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1909-1936
    • Laskov, P.1    Gehl, C.2    Kruger, S.3    Muller, K.R.4
  • 31
    • 33947266512 scopus 로고    scopus 로고
    • Development of a soft sensor for a batch distillation column using support vector regression techniques
    • Jain, P.; Rahman, I.; Kulkarni, B. D. Development of a soft sensor for a batch distillation column using support vector regression techniques Chem. Eng. Res. Des. 2007, 85, 283-287
    • (2007) Chem. Eng. Res. Des. , vol.85 , pp. 283-287
    • Jain, P.1    Rahman, I.2    Kulkarni, B.D.3
  • 32
    • 58749115727 scopus 로고    scopus 로고
    • Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
    • Zhang, Y. W. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM Chem. Eng. Sci. 2009, 64, 801-811
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 801-811
    • Zhang, Y.W.1
  • 34
    • 67650083264 scopus 로고    scopus 로고
    • Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size
    • Liu, Y.; Hu, N. P.; Wang, H. Q.; Li, P. Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size Ind. Eng. Chem. Res. 2009, 48, 5731-5741
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 5731-5741
    • Liu, Y.1    Hu, N.P.2    Wang, H.Q.3    Li, P.4
  • 35
  • 36
    • 52649119206 scopus 로고    scopus 로고
    • Statistical-based monitoring of multivariate non-gaussian systems
    • Liu, X.; Xie, L.; Kruger, U.; Littler, T.; Wang, S. Q. Statistical-based monitoring of multivariate non-gaussian systems AIChE J. 2008, 54, 2379-2391
    • (2008) AIChE J. , vol.54 , pp. 2379-2391
    • Liu, X.1    Xie, L.2    Kruger, U.3    Littler, T.4    Wang, S.Q.5
  • 37
    • 71849088402 scopus 로고    scopus 로고
    • Sensor fault identification and isolation for multivariate non-gaussian processes
    • Ge, Z. Q.; Xie, L.; Kruger, U.; Lamont, L.; Song, Z. H.; Wang, S. Q. Sensor fault identification and isolation for multivariate non-gaussian processes J. Process Control 2009, 19, 1707-1715
    • (2009) J. Process Control , vol.19 , pp. 1707-1715
    • Ge, Z.Q.1    Xie, L.2    Kruger, U.3    Lamont, L.4    Song, Z.H.5    Wang, S.Q.6
  • 39
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M. E. Sparse Bayesian learning and the relevance vector machine J. Mach. Learn. Res. 2001, 1, 211-244
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 43
    • 64449084585 scopus 로고    scopus 로고
    • Automatic EEG signal classification for epilepsy diagnosis with relevance vector machines
    • Lima, C. A. M.; Coelho, A. L. V.; Chagas, S. Automatic EEG signal classification for epilepsy diagnosis with relevance vector machines Expert Syst. Appl. 2009, 36, 10054-10059
    • (2009) Expert Syst. Appl. , vol.36 , pp. 10054-10059
    • Lima, C.A.M.1    Coelho, A.L.V.2    Chagas, S.3
  • 44
    • 0029256836 scopus 로고
    • Plant-wide control of the Tennessee Eastman problem
    • Lyman, P. R.; Georgakist, C. Plant-wide control of the Tennessee Eastman problem Comput. Chem. Eng. 1995, 19, 321-331
    • (1995) Comput. Chem. Eng. , vol.19 , pp. 321-331
    • Lyman, P.R.1    Georgakist, C.2
  • 45
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs, J. J.; Vogel, E. F. A plant-wide industrial process control problem Comput. Chem. Eng. 1993, 17, 245-255
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.