-
1
-
-
0002111519
-
Soft-sensors for process estimation and inferential control
-
Tham, M. T.; Morris, A. J.; Montague, G. A. Soft-sensors for process estimation and inferential control J. Process Control. 1991, 1, 3-14
-
(1991)
J. Process Control.
, vol.1
, pp. 3-14
-
-
Tham, M.T.1
Morris, A.J.2
Montague, G.A.3
-
2
-
-
0028460607
-
Development of inferential process models using PLS
-
Kresta, J. V.; Marlin, T. E.; MacGregor, J. F. Development of inferential process models using PLS Comput. Chem. Eng. 1994, 18, 597-611
-
(1994)
Comput. Chem. Eng.
, vol.18
, pp. 597-611
-
-
Kresta, J.V.1
Marlin, T.E.2
MacGregor, J.F.3
-
3
-
-
0032562941
-
Dynamic inferential estimation using principal components regression (PCR)
-
Hartnett, M. K.; Lightbody, G.; Irwin, G. W. Dynamic inferential estimation using principal components regression (PCR) Chem. Intel. Lab. Syst. 1998, 40, 215-224
-
(1998)
Chem. Intel. Lab. Syst.
, vol.40
, pp. 215-224
-
-
Hartnett, M.K.1
Lightbody, G.2
Irwin, G.W.3
-
5
-
-
35548968908
-
Data-based process monitoring, process control and quality improvement: Recent developments and applications in steel industry
-
Kano, M.; Nakagawa, Y. Data-based process monitoring, process control and quality improvement: recent developments and applications in steel industry Comput. Chem. Eng. 2008, 32, 12-24
-
(2008)
Comput. Chem. Eng.
, vol.32
, pp. 12-24
-
-
Kano, M.1
Nakagawa, Y.2
-
6
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
Kadlec, P.; Gabrys, B.; Strandt, S. Data-driven soft sensors in the process industry Comput. Chem. Eng. 2009, 33, 795-814
-
(2009)
Comput. Chem. Eng.
, vol.33
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
7
-
-
0032044750
-
Recursive PLS algorithm for adaptive data modeling
-
Qin, S. J. Recursive PLS algorithm for adaptive data modeling Comput. Chem. Eng. 1998, 22, 503-514
-
(1998)
Comput. Chem. Eng.
, vol.22
, pp. 503-514
-
-
Qin, S.J.1
-
8
-
-
1642313098
-
Multirate dynamic inferential modeling for mulvariable processes
-
Lu, N. Y.; Yang, Y.; Gao, F. R.; Wang, F. L. Multirate dynamic inferential modeling for mulvariable processes Chem. Eng. Sci. 2004, 59, 855-864
-
(2004)
Chem. Eng. Sci.
, vol.59
, pp. 855-864
-
-
Lu, N.Y.1
Yang, Y.2
Gao, F.R.3
Wang, F.L.4
-
9
-
-
14944347949
-
A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling
-
Li, C. F.; Ye, H.; Wang, G. Z.; Zhang, J. A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling Chem. Eng. Technol. 2005, 28, 141-152
-
(2005)
Chem. Eng. Technol.
, vol.28
, pp. 141-152
-
-
Li, C.F.1
Ye, H.2
Wang, G.Z.3
Zhang, J.4
-
10
-
-
21244451848
-
Adaptive multivariate regression modeling based on model performance assessment
-
Lee, Y. H.; Kim, M. J.; Chu, Y. H.; Han, C. H. Adaptive multivariate regression modeling based on model performance assessment Chem. Intel. Lab. Syst. 2005, 78, 63-73
-
(2005)
Chem. Intel. Lab. Syst.
, vol.78
, pp. 63-73
-
-
Lee, Y.H.1
Kim, M.J.2
Chu, Y.H.3
Han, C.H.4
-
11
-
-
34147222905
-
On-line soft sensor for polyethylene process with multiple production grades
-
Liu, J. L. On-line soft sensor for polyethylene process with multiple production grades Control Eng. Pract. 2007, 15, 769-778
-
(2007)
Control Eng. Pract.
, vol.15
, pp. 769-778
-
-
Liu, J.L.1
-
12
-
-
42149134815
-
Quality prediction based on phase-specific average trajectory for batch processes
-
Zhao, C. H.; Wang, F. L.; Mao, Z. Z.; Lu, N. Y.; Jia, M. X. Quality prediction based on phase-specific average trajectory for batch processes AIChE J. 2008, 54, 693-705
-
(2008)
AIChE J.
, vol.54
, pp. 693-705
-
-
Zhao, C.H.1
Wang, F.L.2
Mao, Z.Z.3
Lu, N.Y.4
Jia, M.X.5
-
13
-
-
60649090799
-
Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process
-
Facco, P.; Doplicher, F.; Bezzo, F.; Barolo, M. Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process J. Process Control 2009, 19, 520-529
-
(2009)
J. Process Control
, vol.19
, pp. 520-529
-
-
Facco, P.1
Doplicher, F.2
Bezzo, F.3
Barolo, M.4
-
14
-
-
68049143320
-
Soft-sensor development using correlation based just-in-time modeling
-
Fujiwara, K.; Kano, M.; Hasebe, S.; Takinami, A. Soft-sensor development using correlation based just-in-time modeling AIChE J. 2009, 55, 1754-1765
-
(2009)
AIChE J.
, vol.55
, pp. 1754-1765
-
-
Fujiwara, K.1
Kano, M.2
Hasebe, S.3
Takinami, A.4
-
15
-
-
58149308461
-
Improved calibration investigation using phase-wise local and cumulative quality interpretation and prediction
-
Zhao, C. H.; Wang, F. L.; Gao, F. R. Improved calibration investigation using phase-wise local and cumulative quality interpretation and prediction Chem. Intel. Lab. Syst. 2009, 95, 107-121
-
(2009)
Chem. Intel. Lab. Syst.
, vol.95
, pp. 107-121
-
-
Zhao, C.H.1
Wang, F.L.2
Gao, F.R.3
-
16
-
-
0037440549
-
Dynamic neural networks partial least squares (DNNPLS) identification of multivariable processes
-
Adebiyi, O. A.; Corripio, A. B. Dynamic neural networks partial least squares (DNNPLS) identification of multivariable processes Comput. Chem. Eng. 2003, 27, 143-155
-
(2003)
Comput. Chem. Eng.
, vol.27
, pp. 143-155
-
-
Adebiyi, O.A.1
Corripio, A.B.2
-
17
-
-
42149172522
-
K-OPLS package: Kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space
-
Bylesjo, M.; Rantalainen, M.; Nicholson, J. K.; Holmes, E.; Trygg, J. K-OPLS package: Kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space BMC Bioinf. 2008, 9, 106
-
(2008)
BMC Bioinf.
, vol.9
, pp. 106
-
-
Bylesjo, M.1
Rantalainen, M.2
Nicholson, J.K.3
Holmes, E.4
Trygg, J.5
-
18
-
-
67650076522
-
Improving the prediction model of protein in milk powder using GA-PLS combined with PC-ANN arithmetic
-
Sun, Q.; Wang, J. H.; Han, D. H. Improving the prediction model of protein in milk powder using GA-PLS combined with PC-ANN arithmetic Spectrosc. Spectral Anal. 2009, 29, 1818-1821
-
(2009)
Spectrosc. Spectral Anal.
, vol.29
, pp. 1818-1821
-
-
Sun, Q.1
Wang, J.H.2
Han, D.H.3
-
19
-
-
69349083126
-
Complex process monitoring using modified partial least squares method of independent component regression
-
Zhang, Y. W.; Zhang, Y. Complex process monitoring using modified partial least squares method of independent component regression Chem. Intel. Lab. Syst. 2009, 98, 143-148
-
(2009)
Chem. Intel. Lab. Syst.
, vol.98
, pp. 143-148
-
-
Zhang, Y.W.1
Zhang, Y.2
-
20
-
-
0026954989
-
Artificial neural networks in process estimation and control
-
Willis, M. J.; Montague, G. A.; Massimo, C. D.; Tham, M. T.; Morris, A. J. Artificial neural networks in process estimation and control Automatica 1992, 28, 1181-1187
-
(1992)
Automatica
, vol.28
, pp. 1181-1187
-
-
Willis, M.J.1
Montague, G.A.2
Massimo, C.D.3
Tham, M.T.4
Morris, A.J.5
-
22
-
-
20344389745
-
Application of a moving-window-adaptive neural network to the modeling of a full-scale anaerobic filter process
-
Lee, M. W.; Joung, J. Y.; Lee, D. S.; Park, J. M.; Woo, S. H. Application of a moving-window-adaptive neural network to the modeling of a full-scale anaerobic filter process Ind. Eng. Chem. Res. 2005, 44, 3973-3982
-
(2005)
Ind. Eng. Chem. Res.
, vol.44
, pp. 3973-3982
-
-
Lee, M.W.1
Joung, J.Y.2
Lee, D.S.3
Park, J.M.4
Woo, S.H.5
-
23
-
-
50849083804
-
Accounts of experience in the application of artificial neural networks in chemical engineering
-
Himmelblau, D. M. Accounts of experience in the application of artificial neural networks in chemical engineering Ind. Eng. Chem. Res. 2008, 47, 5782-5796
-
(2008)
Ind. Eng. Chem. Res.
, vol.47
, pp. 5782-5796
-
-
Himmelblau, D.M.1
-
24
-
-
57049112694
-
ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
-
Gonzaga, J. C. B.; Meleiro, L. A. C.; Kiang, C.; Filho, R. M. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process Comput. Chem. Eng. 2009, 33, 43-49
-
(2009)
Comput. Chem. Eng.
, vol.33
, pp. 43-49
-
-
Gonzaga, J.C.B.1
Meleiro, L.A.C.2
Kiang, C.3
Filho, R.M.4
-
26
-
-
0003408420
-
-
MIT Press: Cambridge, MA.
-
Scholkopf, B.; Smola, A. J. Learning with Kernels: Support Vector Machine, Regularization, Optimization, And Beyond; MIT Press: Cambridge, MA, 2002.
-
(2002)
Learning with Kernels: Support Vector Machine, Regularization, Optimization, and beyond
-
-
Scholkopf, B.1
Smola, A.J.2
-
27
-
-
0037279908
-
Support vector machine: A useful tool for process engineering applications
-
Agrawal, M.; Jade, A. M.; Jayaraman, V. K.; Kulkarni, B. D. Support vector machine: A useful tool for process engineering applications Chem. Eng. Prog. 2003, 98, 57-62
-
(2003)
Chem. Eng. Prog.
, vol.98
, pp. 57-62
-
-
Agrawal, M.1
Jade, A.M.2
Jayaraman, V.K.3
Kulkarni, B.D.4
-
29
-
-
2342567014
-
Soft sensing modeling based on support vector machine and Bayesian model selection
-
Yan, W. W.; Shao, H. H.; Wang, X. F. Soft sensing modeling based on support vector machine and Bayesian model selection Comput. Chem. Eng. 2004, 28, 1489-1498
-
(2004)
Comput. Chem. Eng.
, vol.28
, pp. 1489-1498
-
-
Yan, W.W.1
Shao, H.H.2
Wang, X.F.3
-
30
-
-
33745777639
-
Incremental support vector learning: Analysis, implementation and application
-
Laskov, P.; Gehl, C.; Kruger, S.; Muller, K. R. Incremental support vector learning: analysis, implementation and application J. Mach. Learn. Res. 2006, 7, 1909-1936
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1909-1936
-
-
Laskov, P.1
Gehl, C.2
Kruger, S.3
Muller, K.R.4
-
31
-
-
33947266512
-
Development of a soft sensor for a batch distillation column using support vector regression techniques
-
Jain, P.; Rahman, I.; Kulkarni, B. D. Development of a soft sensor for a batch distillation column using support vector regression techniques Chem. Eng. Res. Des. 2007, 85, 283-287
-
(2007)
Chem. Eng. Res. Des.
, vol.85
, pp. 283-287
-
-
Jain, P.1
Rahman, I.2
Kulkarni, B.D.3
-
32
-
-
58749115727
-
Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
-
Zhang, Y. W. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM Chem. Eng. Sci. 2009, 64, 801-811
-
(2009)
Chem. Eng. Sci.
, vol.64
, pp. 801-811
-
-
Zhang, Y.W.1
-
33
-
-
0037695279
-
-
World Scientific: Singapore.
-
Suykens, J. A. K.; Van Gestel, T.; De Brabanter, J.; De Moor, B.; Vandewalle, J. Least Squares Support Vector Machines.: World Scientific: Singapore, 2002.
-
(2002)
Least Squares Support Vector Machines.
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
34
-
-
67650083264
-
Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size
-
Liu, Y.; Hu, N. P.; Wang, H. Q.; Li, P. Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size Ind. Eng. Chem. Res. 2009, 48, 5731-5741
-
(2009)
Ind. Eng. Chem. Res.
, vol.48
, pp. 5731-5741
-
-
Liu, Y.1
Hu, N.P.2
Wang, H.Q.3
Li, P.4
-
36
-
-
52649119206
-
Statistical-based monitoring of multivariate non-gaussian systems
-
Liu, X.; Xie, L.; Kruger, U.; Littler, T.; Wang, S. Q. Statistical-based monitoring of multivariate non-gaussian systems AIChE J. 2008, 54, 2379-2391
-
(2008)
AIChE J.
, vol.54
, pp. 2379-2391
-
-
Liu, X.1
Xie, L.2
Kruger, U.3
Littler, T.4
Wang, S.Q.5
-
37
-
-
71849088402
-
Sensor fault identification and isolation for multivariate non-gaussian processes
-
Ge, Z. Q.; Xie, L.; Kruger, U.; Lamont, L.; Song, Z. H.; Wang, S. Q. Sensor fault identification and isolation for multivariate non-gaussian processes J. Process Control 2009, 19, 1707-1715
-
(2009)
J. Process Control
, vol.19
, pp. 1707-1715
-
-
Ge, Z.Q.1
Xie, L.2
Kruger, U.3
Lamont, L.4
Song, Z.H.5
Wang, S.Q.6
-
39
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping, M. E. Sparse Bayesian learning and the relevance vector machine J. Mach. Learn. Res. 2001, 1, 211-244
-
(2001)
J. Mach. Learn. Res.
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
41
-
-
77956414854
-
-
University of Ioannina: Ioanni, Greece, Illinois Institute of Technology: Chicago, IL.
-
Tzikas, G. D.; Wei, L. Y.; Likas, A.; Yang, Y.; Galatsanos, N. P. A tutorial on relevance vector machines for regression and classification with applications. University of Ioannina: Ioanni, Greece, Illinois Institute of Technology: Chicago, IL, 2006.
-
(2006)
A Tutorial on Relevance Vector Machines for Regression and Classification with Applications.
-
-
Tzikas, G.D.1
Wei, L.Y.2
Likas, A.3
Yang, Y.4
Galatsanos, N.P.5
-
42
-
-
57149086674
-
Relevance vector machines for multivariate calibration purposes
-
Hernandez, N.; Talavera, I.; Dago, A.; Biscay, R. J.; Ferreira, M. M. C.; Porro, D. Relevance vector machines for multivariate calibration purposes J. Chemom. 2008, 22, 686-694
-
(2008)
J. Chemom.
, vol.22
, pp. 686-694
-
-
Hernandez, N.1
Talavera, I.2
Dago, A.3
Biscay, R.J.4
Ferreira, M.M.C.5
Porro, D.6
-
43
-
-
64449084585
-
Automatic EEG signal classification for epilepsy diagnosis with relevance vector machines
-
Lima, C. A. M.; Coelho, A. L. V.; Chagas, S. Automatic EEG signal classification for epilepsy diagnosis with relevance vector machines Expert Syst. Appl. 2009, 36, 10054-10059
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 10054-10059
-
-
Lima, C.A.M.1
Coelho, A.L.V.2
Chagas, S.3
-
44
-
-
0029256836
-
Plant-wide control of the Tennessee Eastman problem
-
Lyman, P. R.; Georgakist, C. Plant-wide control of the Tennessee Eastman problem Comput. Chem. Eng. 1995, 19, 321-331
-
(1995)
Comput. Chem. Eng.
, vol.19
, pp. 321-331
-
-
Lyman, P.R.1
Georgakist, C.2
-
45
-
-
0027561446
-
A plant-wide industrial process control problem
-
Downs, J. J.; Vogel, E. F. A plant-wide industrial process control problem Comput. Chem. Eng. 1993, 17, 245-255
-
(1993)
Comput. Chem. Eng.
, vol.17
, pp. 245-255
-
-
Downs, J.J.1
Vogel, E.F.2
-
46
-
-
0347379723
-
Soft analyzers for a sulfur recovery unit
-
Fortuna, L.; Rizzo, A.; Sinatra, M.; Xibilia, M. G. Soft analyzers for a sulfur recovery unit Control Eng. Pract. 2003, 11, 1491-1500
-
(2003)
Control Eng. Pract.
, vol.11
, pp. 1491-1500
-
-
Fortuna, L.1
Rizzo, A.2
Sinatra, M.3
Xibilia, M.G.4
|