메뉴 건너뛰기




Volumn 64, Issue 9, 2009, Pages 2245-2255

Improved kernel PCA-based monitoring approach for nonlinear processes

Author keywords

Kernel principal component analysis; Nonlinear dynamic; Process control; Safety; Statistical local approach; System engineering

Indexed keywords

KERNEL PRINCIPAL COMPONENT ANALYSIS; NONLINEAR DYNAMIC; SAFETY; STATISTICAL LOCAL APPROACH; SYSTEM ENGINEERING;

EID: 63249084878     PISSN: 00092509     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ces.2009.01.050     Document Type: Article
Times cited : (208)

References (27)
  • 1
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with applications to multivariate statistical process monitoring
    • Bakshi B.R. Multiscale PCA with applications to multivariate statistical process monitoring. A.I.C.h.E. Journal 40 (1998) 1596-1610
    • (1998) A.I.C.h.E. Journal , vol.40 , pp. 1596-1610
    • Bakshi, B.R.1
  • 2
    • 0032204039 scopus 로고    scopus 로고
    • On-board component fault detection and isolation using the statistical local approach
    • Basseville M. On-board component fault detection and isolation using the statistical local approach. Automatica 34 (1998) 1391-1415
    • (1998) Automatica , vol.34 , pp. 1391-1415
    • Basseville, M.1
  • 6
    • 10244238854 scopus 로고    scopus 로고
    • Fault identification for process monitoring using kernel principal component analysis
    • Cho J.H., Lee J.M., Choi S.W., Lee D.W., and Lee I.B. Fault identification for process monitoring using kernel principal component analysis. Chemical Engineering Science 60 (2005) 279-288
    • (2005) Chemical Engineering Science , vol.60 , pp. 279-288
    • Cho, J.H.1    Lee, J.M.2    Choi, S.W.3    Lee, D.W.4    Lee, I.B.5
  • 8
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis-based on principal curves and neural networks
    • Dong D., and McAvoy T.J. Nonlinear principal component analysis-based on principal curves and neural networks. Computers and Chemical Engineering 20 (1996) 65-78
    • (1996) Computers and Chemical Engineering , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 10
    • 0032144398 scopus 로고    scopus 로고
    • Subspace approach to multidimensional fault identification and reconstruction
    • Dunia R., and Qin S.J. Subspace approach to multidimensional fault identification and reconstruction. A.I.C.h.E. Journal 44 (1998) 1813-1831
    • (1998) A.I.C.h.E. Journal , vol.44 , pp. 1813-1831
    • Dunia, R.1    Qin, S.J.2
  • 12
  • 16
    • 34547567795 scopus 로고    scopus 로고
    • Improved principal component monitoring using the local approach
    • Kruger U., Kumar S., and Littler T. Improved principal component monitoring using the local approach. Automatica 43 (2007) 1532-1542
    • (2007) Automatica , vol.43 , pp. 1532-1542
    • Kruger, U.1    Kumar, S.2    Littler, T.3
  • 20
    • 33646182626 scopus 로고    scopus 로고
    • A multi-scale orthogonal nonlinear strategy for multi-variate statistical process monitoring
    • Maulud A., Wang D., and Romagnoli J.A. A multi-scale orthogonal nonlinear strategy for multi-variate statistical process monitoring. Journal of Process Control 16 (2006) 671-683
    • (2006) Journal of Process Control , vol.16 , pp. 671-683
    • Maulud, A.1    Wang, D.2    Romagnoli, J.A.3
  • 21
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • Nomikos P., and MacGregor J.F. Monitoring batch processes using multiway principal component analysis. A.I.C.h.E. Journal 44 (1994) 1361-1375
    • (1994) A.I.C.h.E. Journal , vol.44 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.F.2
  • 22
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch process
    • Nomikos P., and MacGregor J.F. Multivariate SPC charts for monitoring batch process. Technometrics 37 (1995) 41-59
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 24
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B., Smola A.J., and Müller K. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10 (1998) 1000-1016
    • (1998) Neural Computation , vol.10 , pp. 1000-1016
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.3
  • 25
    • 33645389475 scopus 로고    scopus 로고
    • Evaluation of a pattern matching method for the Tennessee Eastman challenge process
    • Singhai A., and Seborg D.E. Evaluation of a pattern matching method for the Tennessee Eastman challenge process. Journal of Process Control 16 (2006) 601-613
    • (2006) Journal of Process Control , vol.16 , pp. 601-613
    • Singhai, A.1    Seborg, D.E.2
  • 26
    • 0028333480 scopus 로고
    • Early warning of slight changes in systems and plants with application to condition based maintenance
    • Zhang Q.H., Basseville M., and Benveniste A. Early warning of slight changes in systems and plants with application to condition based maintenance. Automatica 30 (1994) 95-114
    • (1994) Automatica , vol.30 , pp. 95-114
    • Zhang, Q.H.1    Basseville, M.2    Benveniste, A.3
  • 27
    • 26944449673 scopus 로고    scopus 로고
    • Multivariate statistical process monitoring using robust nonlinear principal component analysis
    • Zhao S.J., and Xu Y.M. Multivariate statistical process monitoring using robust nonlinear principal component analysis. Tsinghua Science and Technology 10 (2005) 582-586
    • (2005) Tsinghua Science and Technology , vol.10 , pp. 582-586
    • Zhao, S.J.1    Xu, Y.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.