메뉴 건너뛰기




Volumn 56, Issue 1, 2010, Pages 168-178

Total projection to latent structures for process monitoring

Author keywords

Fault detection; Orthogonal PLS; Partial least squares; Process monitoring; Total PLS

Indexed keywords

LATENT VARIABLE; MULTIVARIATE STATISTICAL PROCESS MONITORING; ORTHOGONAL PLS; PARTIAL LEAST SQUARE (PLS); PROJECTION TO LATENT STRUCTURES; SIMULATION EXAMPLE; SPACE DECOMPOSITION; TOTAL PLS;

EID: 77957599856     PISSN: 00011541     EISSN: 15475905     Source Type: Journal    
DOI: 10.1002/aic.11977     Document Type: Article
Times cited : (470)

References (27)
  • 1
    • 0030530039 scopus 로고    scopus 로고
    • The process chemometrics approach to process monitoring and fault detection
    • Wise BM, Gallagher NB. The process chemometrics approach to process monitoring and fault detection. J Process Control. 1996; 6: 329-348.
    • (1996) J Process Control. , vol.6 , pp. 329-348
    • Wise, B.M.1    Gallagher, N.B.2
  • 2
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Qin SJ. Statistical process monitoring: basics and beyond. J Chemom. 2003; 17: 480-502.
    • (2003) J Chemom. , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 3
    • 30544445406 scopus 로고    scopus 로고
    • Two-dimensional dynamic PCA for batch process monitoring
    • Lu N, Yao Y, Gao F, Wang F. Two-dimensional dynamic PCA for batch process monitoring. AIChE J. 2005; 51: 3300-3304.
    • (2005) AIChE J. , vol.51 , pp. 3300-3304
    • Lu, N.1    Yao, Y.2    Gao, F.3    Wang, F.4
  • 4
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • Lee J, Qin S, Lee I. Fault detection and diagnosis based on modified independent component analysis. AIChE J. 2006; 52: 3501-3514.
    • (2006) AIChE J. , vol.52 , pp. 3501-3514
    • Lee, J.1    Qin, S.2    Lee, I.3
  • 5
    • 67650551326 scopus 로고    scopus 로고
    • Product quality prediction by a neural soft-sensor based on MSA and PCA
    • Shi J, Liu X. Product quality prediction by a neural soft-sensor based on MSA and PCA. Int J Autom Comput. 2006; 3: 17-22.
    • (2006) Int J Autom Comput. , vol.3 , pp. 17-22
    • Shi, J.1    Liu, X.2
  • 6
    • 34547313739 scopus 로고    scopus 로고
    • Sensor fault detection, isolation and reconstruction using nonlinear principal component analysis
    • Harkat M, Djelel S, Doghmane N, Benouaret M. Sensor fault detection, isolation and reconstruction using nonlinear principal component analysis. Int J Autom Comput. 2007; 4: 149-155.
    • (2007) Int J Autom Comput. , vol.4 , pp. 149-155
    • Harkat, M.1    Djelel, S.2    Doghmane, N.3    Benouaret, M.4
  • 8
    • 56349142439 scopus 로고    scopus 로고
    • Virtual metrology and feedback control for semiconductor manufacturing processes using recursive partial least squares
    • Khan A, Moyne J, Tilbury D. Virtual metrology and feedback control for semiconductor manufacturing processes using recursive partial least squares. J Process Control. 2008; 18: 961-974.
    • (2008) J Process Control. , vol.18 , pp. 961-974
    • Khan, A.1    Moyne, J.2    Tilbury, D.3
  • 9
    • 58449118276 scopus 로고    scopus 로고
    • Development of a new soft sensor method using independent component analysis and partial least squares
    • Kaneko H, Arakawa M, Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AIChE J. 2009; 55: 87-98.
    • (2009) AIChE J. , vol.55 , pp. 87-98
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 10
    • 67349245154 scopus 로고    scopus 로고
    • Reconstruction-based contribution for process monitoring
    • Alcala C, Qin S. Reconstruction-based contribution for process monitoring. Automatica. 2009; 45: 1593-1600.
    • (2009) Automatica. , vol.45 , pp. 1593-1600
    • Alcala, C.1    Qin, S.2
  • 11
    • 0030296884 scopus 로고    scopus 로고
    • Missing data methods in PCA and PLS: score calculations with incomplete observations
    • Nelson PRC, Taylor PA, MacGregor JF. Missing data methods in PCA and PLS: score calculations with incomplete observations. Chemom Intell Lab Syst. 1996; 35: 45-65.
    • (1996) Chemom Intell Lab Syst. , vol.35 , pp. 45-65
    • Nelson, P.R.C.1    Taylor, P.A.2    MacGregor, J.F.3
  • 12
    • 0034621628 scopus 로고    scopus 로고
    • Generalized contribution plots in multivariate statistical process monitoring
    • Westerhuis JA, Gurden SP, Smilde AK. Generalized contribution plots in multivariate statistical process monitoring. Chemom Intell Lab Syst. 2000; 51: 95-114.
    • (2000) Chemom Intell Lab Syst. , vol.51 , pp. 95-114
    • Westerhuis, J.A.1    Gurden, S.P.2    Smilde, A.K.3
  • 13
    • 10444237307 scopus 로고    scopus 로고
    • Multiblock PLS-based localized process diagnosis
    • Choi SW, Lee IB. Multiblock PLS-based localized process diagnosis. J Process Control. 2005; 15: 295-306.
    • (2005) J Process Control. , vol.15 , pp. 295-306
    • Choi, S.W.1    Lee, I.B.2
  • 14
    • 84877712271 scopus 로고    scopus 로고
    • Geometric properties of partial least squares for process monitoring
    • In press.
    • Li G, Qin SJ, Zhou DH. Geometric properties of partial least squares for process monitoring. Automatica. In press.
    • Automatica.
    • Li, G.1    Qin, S.J.2    Zhou, D.H.3
  • 16
    • 0033982350 scopus 로고    scopus 로고
    • On orthogonal signal correction
    • Fearn T. On orthogonal signal correction. Chemom Intell Lab Syst. 2000; 50: 47-52.
    • (2000) Chemom Intell Lab Syst. , vol.50 , pp. 47-52
    • Fearn, T.1
  • 17
    • 0036083139 scopus 로고    scopus 로고
    • Orthogonal projections to latent structures (O-PLS)
    • Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). J Chemom. 2002; 16: 119-128.
    • (2002) J Chemom. , vol.16 , pp. 119-128
    • Trygg, J.1    Wold, S.2
  • 19
    • 0027530250 scopus 로고
    • SIMPLS: an alternative approach to partial least squares regression
    • De Jong S. SIMPLS: an alternative approach to partial least squares regression. Chemom Intell Lab Syst. 1993; 18: 251-263.
    • (1993) Chemom Intell Lab Syst. , vol.18 , pp. 251-263
    • De Jong, S.1
  • 20
    • 0033903077 scopus 로고    scopus 로고
    • Determining the number of principal components for best reconstruction
    • Qin SJ, Dunia R. Determining the number of principal components for best reconstruction. J Process Control. 2000; 10: 245-250.
    • (2000) J Process Control. , vol.10 , pp. 245-250
    • Qin, S.J.1    Dunia, R.2
  • 21
    • 3242731235 scopus 로고    scopus 로고
    • Some theoretical properties of the O-PLS method
    • Verron T, Sabatier R, Joffre R. Some theoretical properties of the O-PLS method. J Chemom. 2004; 18: 62-68.
    • (2004) J Chemom. , vol.18 , pp. 62-68
    • Verron, T.1    Sabatier, R.2    Joffre, R.3
  • 22
    • 0029252734 scopus 로고
    • Multivariate SPC Charts for Monitoring Batch Processes
    • Nomikos P, Macgregor JF. Multivariate SPC Charts for Monitoring Batch Processes. Technometrics. 1995; 37: 41-59.
    • (1995) Technometrics. , vol.37 , pp. 41-59
    • Nomikos, P.1    Macgregor, J.F.2
  • 23
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs JJ, Vogel EF. A plant-wide industrial process control problem. Comput Chem Eng. 1993; 17: 245-255.
    • (1993) Comput Chem Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 25
    • 0033283531 scopus 로고    scopus 로고
    • PLS modelling and fault detection on the Tennessee Eastman benchmark
    • American Control Conference, 1999. Proceedings of the 1999.
    • Wilson DJH, Irwin GW. PLS modelling and fault detection on the Tennessee Eastman benchmark. In: American Control Conference, 1999. Proceedings of the 1999. Vol. 6. 1999: 3975-3979.
    • (1999) , vol.6 , pp. 3975-3979
    • Wilson, D.J.H.1    Irwin, G.W.2
  • 26
    • 0034643075 scopus 로고    scopus 로고
    • Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis
    • Chiang LH, Russell EL, Braatz RD. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemom Intell Lab Syst. 2000; 50: 243-252.
    • (2000) Chemom Intell Lab Syst. , vol.50 , pp. 243-252
    • Chiang, L.H.1    Russell, E.L.2    Braatz, R.D.3
  • 27
    • 9744237208 scopus 로고    scopus 로고
    • Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS
    • Lee G, Han CH, Yoon ES. Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS. Ind Eng Chem Res. 2004; 43: 8037-8048.
    • (2004) Ind Eng Chem Res. , vol.43 , pp. 8037-8048
    • Lee, G.1    Han, C.H.2    Yoon, E.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.