메뉴 건너뛰기




Volumn 19, Issue 10, 2009, Pages 1707-1715

Sensor fault identification and isolation for multivariate non-Gaussian processes

Author keywords

Fault identification; Fault reconstruction; Non Gaussian processes; Support vector data description

Indexed keywords

CONTROL LIMITS; FAULT IDENTIFICATIONS; FAULT RECONSTRUCTION; MULTIVARIATE PROCESS; NON-GAUSSIAN DISTRIBUTION; NON-GAUSSIAN PROCESS; NON-GAUSSIAN SOURCES; PROCESS CONDITION; SENSOR FAULT; SIMULATION EXAMPLE; SUPPORT VECTOR DATA DESCRIPTION; TENNESSEE EASTMAN;

EID: 71849088402     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2009.05.001     Document Type: Article
Times cited : (38)

References (22)
  • 1
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Qin S.J. Statistical process monitoring: basics and beyond. Journal of Chemometrics 17 (2003) 480-502
    • (2003) Journal of Chemometrics , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 4
    • 0031335324 scopus 로고    scopus 로고
    • Identification of multiple sensor disturbances during process monitoring
    • Stork C.L., Veltkamp D.J., and Kowalski B.R. Identification of multiple sensor disturbances during process monitoring. Analytical Chemistry 69 (1997) 5031-5036
    • (1997) Analytical Chemistry , vol.69 , pp. 5031-5036
    • Stork, C.L.1    Veltkamp, D.J.2    Kowalski, B.R.3
  • 5
    • 33645880467 scopus 로고    scopus 로고
    • Improved reliability in diagnosing faults using multivariate statistics
    • Lieftucht D., Kruger U., and Irwin G.W. Improved reliability in diagnosing faults using multivariate statistics. Computers and Chemical Engineering 30 (2006) 901-912
    • (2006) Computers and Chemical Engineering , vol.30 , pp. 901-912
    • Lieftucht, D.1    Kruger, U.2    Irwin, G.W.3
  • 6
    • 0033083952 scopus 로고    scopus 로고
    • Isolation enhanced principal component analysis
    • Gertler J., Li W.H., Huang Y.B., and McAvoy T. Isolation enhanced principal component analysis. AIChE Journal 45 (1999) 323-334
    • (1999) AIChE Journal , vol.45 , pp. 323-334
    • Gertler, J.1    Li, W.H.2    Huang, Y.B.3    McAvoy, T.4
  • 7
    • 0001212550 scopus 로고    scopus 로고
    • Detection and identification of faulty sensors in dynamic processes
    • Qin S.J., and Li W.H. Detection and identification of faulty sensors in dynamic processes. AIChE Journal 47 (2001) 1581-1593
    • (2001) AIChE Journal , vol.47 , pp. 1581-1593
    • Qin, S.J.1    Li, W.H.2
  • 8
    • 0032144398 scopus 로고    scopus 로고
    • Subspace approach to multidimensional fault identification and reconstruction
    • Dunia R., and Qin S.J. Subspace approach to multidimensional fault identification and reconstruction. AIChE Journal 44 (1998) 1813-1831
    • (1998) AIChE Journal , vol.44 , pp. 1813-1831
    • Dunia, R.1    Qin, S.J.2
  • 9
    • 0037093020 scopus 로고    scopus 로고
    • Fault detection behavior and performance analysis of principal component analysis based process monitoring methods
    • Wang H., Song Z., and Li P. Fault detection behavior and performance analysis of principal component analysis based process monitoring methods. Industrial and Engineering Chemistry Research 41 (2002) 2455-2464
    • (2002) Industrial and Engineering Chemistry Research , vol.41 , pp. 2455-2464
    • Wang, H.1    Song, Z.2    Li, P.3
  • 10
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction-based fault identification using a combined index
    • Yue H.H., and Qin S.J. Reconstruction-based fault identification using a combined index. Industrial and Engineering Chemistry Research 40 (2001) 4403-4414
    • (2001) Industrial and Engineering Chemistry Research , vol.40 , pp. 4403-4414
    • Yue, H.H.1    Qin, S.J.2
  • 11
    • 33749864316 scopus 로고    scopus 로고
    • Fault isolation by partial dynamic principal component analysis in dynamic process
    • Li R.Y., and Rong G. Fault isolation by partial dynamic principal component analysis in dynamic process. Chinese Journal of Chemical Engineering 14 (2006) 486-493
    • (2006) Chinese Journal of Chemical Engineering , vol.14 , pp. 486-493
    • Li, R.Y.1    Rong, G.2
  • 12
    • 3042632377 scopus 로고    scopus 로고
    • Statistical monitoring of dynamic processes based on dynamic independent component analysis
    • Lee J.-M., Yoo C., and Lee I.-B. Statistical monitoring of dynamic processes based on dynamic independent component analysis. Chemical Engineering Science 59 (2004) 2995-3006
    • (2004) Chemical Engineering Science , vol.59 , pp. 2995-3006
    • Lee, J.-M.1    Yoo, C.2    Lee, I.-B.3
  • 13
    • 52649119206 scopus 로고    scopus 로고
    • Statistical-based monitoring of multivariate non-Gaussian systems
    • Liu X., Xie L., Kruger U., Littler T., and Wang S. Statistical-based monitoring of multivariate non-Gaussian systems. AIChE Journal 54 (2008) 2379-2391
    • (2008) AIChE Journal , vol.54 , pp. 2379-2391
    • Liu, X.1    Xie, L.2    Kruger, U.3    Littler, T.4    Wang, S.5
  • 14
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • Lee J.M., Yoo C.K., and Lee I.B. Statistical process monitoring with independent component analysis. Journal of Process Control 14 (2004) 467-485
    • (2004) Journal of Process Control , vol.14 , pp. 467-485
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 15
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: algorithms and applications
    • Hyvarinen A., and Oja E. Independent component analysis: algorithms and applications. Neural Networks 13 (2000) 411-430
    • (2000) Neural Networks , vol.13 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 17
    • 33748435025 scopus 로고    scopus 로고
    • Global optimal ICA and its application in MEG data analysis
    • Xie L., and Wu J. Global optimal ICA and its application in MEG data analysis. Neurocomputing 69 (2006) 2438-2442
    • (2006) Neurocomputing , vol.69 , pp. 2438-2442
    • Xie, L.1    Wu, J.2
  • 18
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax D.M.J., and Duin R.P.W. Support vector data description. Machine Learning 54 (2004) 45-66
    • (2004) Machine Learning , vol.54 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.