-
1
-
-
0242354134
-
Statistical process monitoring: basics and beyond
-
Qin S.J. Statistical process monitoring: basics and beyond. Journal of Chemometrics 17 (2003) 480-502
-
(2003)
Journal of Chemometrics
, vol.17
, pp. 480-502
-
-
Qin, S.J.1
-
4
-
-
0031335324
-
Identification of multiple sensor disturbances during process monitoring
-
Stork C.L., Veltkamp D.J., and Kowalski B.R. Identification of multiple sensor disturbances during process monitoring. Analytical Chemistry 69 (1997) 5031-5036
-
(1997)
Analytical Chemistry
, vol.69
, pp. 5031-5036
-
-
Stork, C.L.1
Veltkamp, D.J.2
Kowalski, B.R.3
-
7
-
-
0001212550
-
Detection and identification of faulty sensors in dynamic processes
-
Qin S.J., and Li W.H. Detection and identification of faulty sensors in dynamic processes. AIChE Journal 47 (2001) 1581-1593
-
(2001)
AIChE Journal
, vol.47
, pp. 1581-1593
-
-
Qin, S.J.1
Li, W.H.2
-
8
-
-
0032144398
-
Subspace approach to multidimensional fault identification and reconstruction
-
Dunia R., and Qin S.J. Subspace approach to multidimensional fault identification and reconstruction. AIChE Journal 44 (1998) 1813-1831
-
(1998)
AIChE Journal
, vol.44
, pp. 1813-1831
-
-
Dunia, R.1
Qin, S.J.2
-
9
-
-
0037093020
-
Fault detection behavior and performance analysis of principal component analysis based process monitoring methods
-
Wang H., Song Z., and Li P. Fault detection behavior and performance analysis of principal component analysis based process monitoring methods. Industrial and Engineering Chemistry Research 41 (2002) 2455-2464
-
(2002)
Industrial and Engineering Chemistry Research
, vol.41
, pp. 2455-2464
-
-
Wang, H.1
Song, Z.2
Li, P.3
-
10
-
-
0035802262
-
Reconstruction-based fault identification using a combined index
-
Yue H.H., and Qin S.J. Reconstruction-based fault identification using a combined index. Industrial and Engineering Chemistry Research 40 (2001) 4403-4414
-
(2001)
Industrial and Engineering Chemistry Research
, vol.40
, pp. 4403-4414
-
-
Yue, H.H.1
Qin, S.J.2
-
11
-
-
33749864316
-
Fault isolation by partial dynamic principal component analysis in dynamic process
-
Li R.Y., and Rong G. Fault isolation by partial dynamic principal component analysis in dynamic process. Chinese Journal of Chemical Engineering 14 (2006) 486-493
-
(2006)
Chinese Journal of Chemical Engineering
, vol.14
, pp. 486-493
-
-
Li, R.Y.1
Rong, G.2
-
12
-
-
3042632377
-
Statistical monitoring of dynamic processes based on dynamic independent component analysis
-
Lee J.-M., Yoo C., and Lee I.-B. Statistical monitoring of dynamic processes based on dynamic independent component analysis. Chemical Engineering Science 59 (2004) 2995-3006
-
(2004)
Chemical Engineering Science
, vol.59
, pp. 2995-3006
-
-
Lee, J.-M.1
Yoo, C.2
Lee, I.-B.3
-
13
-
-
52649119206
-
Statistical-based monitoring of multivariate non-Gaussian systems
-
Liu X., Xie L., Kruger U., Littler T., and Wang S. Statistical-based monitoring of multivariate non-Gaussian systems. AIChE Journal 54 (2008) 2379-2391
-
(2008)
AIChE Journal
, vol.54
, pp. 2379-2391
-
-
Liu, X.1
Xie, L.2
Kruger, U.3
Littler, T.4
Wang, S.5
-
14
-
-
1342285571
-
Statistical process monitoring with independent component analysis
-
Lee J.M., Yoo C.K., and Lee I.B. Statistical process monitoring with independent component analysis. Journal of Process Control 14 (2004) 467-485
-
(2004)
Journal of Process Control
, vol.14
, pp. 467-485
-
-
Lee, J.M.1
Yoo, C.K.2
Lee, I.B.3
-
15
-
-
0042826822
-
Independent component analysis: algorithms and applications
-
Hyvarinen A., and Oja E. Independent component analysis: algorithms and applications. Neural Networks 13 (2000) 411-430
-
(2000)
Neural Networks
, vol.13
, pp. 411-430
-
-
Hyvarinen, A.1
Oja, E.2
-
17
-
-
33748435025
-
Global optimal ICA and its application in MEG data analysis
-
Xie L., and Wu J. Global optimal ICA and its application in MEG data analysis. Neurocomputing 69 (2006) 2438-2442
-
(2006)
Neurocomputing
, vol.69
, pp. 2438-2442
-
-
Xie, L.1
Wu, J.2
-
18
-
-
0942266514
-
Support vector data description
-
Tax D.M.J., and Duin R.P.W. Support vector data description. Machine Learning 54 (2004) 45-66
-
(2004)
Machine Learning
, vol.54
, pp. 45-66
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
19
-
-
84898970836
-
-
MIT Press, Denver, Co
-
S. Mika, B. Scholkopf, A. Smola, K.R. Muller, M. Scholz, G. Ratsch, Kernel PCA and de-noising in feature spaces, MIT Press, Denver, Co., 1998, pp. 536-542.
-
(1998)
Kernel PCA and de-noising in feature spaces
, pp. 536-542
-
-
Mika, S.1
Scholkopf, B.2
Smola, A.3
Muller, K.R.4
Scholz, M.5
Ratsch, G.6
-
20
-
-
84902173149
-
-
Springer-Verlag Berlin, Madrid, Spain
-
T. Takahashi, T. Kurita, in: Robust De-noising by Kernel PCA, Springer-Verlag Berlin, Madrid, Spain, 2002, pp. 739-744.
-
(2002)
Robust De-noising by Kernel PCA
, pp. 739-744
-
-
Takahashi, T.1
Kurita, T.2
-
21
-
-
0037394190
-
Monitoring independent components for fault detection
-
Kano M., Tanaka S., Hasebe S., Hashimoto I., and Ohno H. Monitoring independent components for fault detection. AIChE Journal 49 (2003) 969-976
-
(2003)
AIChE Journal
, vol.49
, pp. 969-976
-
-
Kano, M.1
Tanaka, S.2
Hasebe, S.3
Hashimoto, I.4
Ohno, H.5
|