메뉴 건너뛰기




Volumn 29, Issue 11-12 SPEC. ISS., 2005, Pages 2355-2362

Introduction of a nonlinearity measure for principal component models

Author keywords

Accuracy bounds; Disjunct regions; Eigenvalues; Nonlinearity measure; Principal component analysis

Indexed keywords

COMPUTER SIMULATION; DATA REDUCTION; EIGENVALUES AND EIGENFUNCTIONS; MATHEMATICAL MODELS; NONLINEAR SYSTEMS; SET THEORY;

EID: 27844491086     PISSN: 00981354     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compchemeng.2005.05.013     Document Type: Article
Times cited : (42)

References (16)
  • 1
    • 0034130478 scopus 로고    scopus 로고
    • The application of principal component analysis and kernel density estimation to enhance process monitoring
    • Q. Chen, R. Wayne, P.R. Goulding, and D.J. Sandoz The application of principal component analysis and kernel density estimation to enhance process monitoring Control Engineering Practice 8 5 2000 531 543
    • (2000) Control Engineering Practice , vol.8 , Issue.5 , pp. 531-543
    • Chen, Q.1    Wayne, R.2    Goulding, P.R.3    Sandoz, D.J.4
  • 4
    • 0030262558 scopus 로고    scopus 로고
    • Multivariate spc methods for process and product management
    • T. Kourti, and J.F. MacGregor Multivariate spc methods for process and product management Journal of Quality Technology 28 1996 409 428
    • (1996) Journal of Quality Technology , vol.28 , pp. 409-428
    • Kourti, T.1    MacGregor, J.F.2
  • 5
    • 0000726850 scopus 로고
    • Cross-validatory choice in principal component analysis: Some sampling results
    • W.J. Krzanowski Cross-validatory choice in principal component analysis: Some sampling results Journal of Statistical Computation and Simulation 18 1983 299 314
    • (1983) Journal of Statistical Computation and Simulation , vol.18 , pp. 299-314
    • Krzanowski, W.J.1
  • 7
    • 84947841031 scopus 로고
    • Applications of multivariate statistical methods to process monitoring and controller design
    • M.J. Piovoso, and K.A. Kosanovich Applications of multivariate statistical methods to process monitoring and controller design International Journal of Control 59 3 1994 743 765
    • (1994) International Journal of Control , vol.59 , Issue.3 , pp. 743-765
    • Piovoso, M.J.1    Kosanovich, K.A.2
  • 8
    • 0030127409 scopus 로고    scopus 로고
    • Statistical process monitoring and disturbance diagnosis in multivariable continuous processes
    • A. Raich, and A. Çinar Statistical process monitoring and disturbance diagnosis in multivariable continuous processes AIChE Journal 42 4 1996 995 1009
    • (1996) AIChE Journal , vol.42 , Issue.4 , pp. 995-1009
    • Raich, A.1    Çinar, A.2
  • 10
    • 0032853906 scopus 로고    scopus 로고
    • Wavelets and non-linear principal component analysis for process monitoring
    • R. Shao, F. Jia, E.B. Martin, and A.J. Morris Wavelets and non-linear principal component analysis for process monitoring Control Engineering Practice 7 7 1999 865 879
    • (1999) Control Engineering Practice , vol.7 , Issue.7 , pp. 865-879
    • Shao, R.1    Jia, F.2    Martin, E.B.3    Morris, A.J.4
  • 14
    • 0002539433 scopus 로고
    • Identification of finite impulse response models by principal component regression
    • B.M. Wise, and N.L. Ricker Identification of finite impulse response models by principal component regression Process Control and Quality 4 1992 77 86
    • (1992) Process Control and Quality , vol.4 , pp. 77-86
    • Wise, B.M.1    Ricker, N.L.2
  • 15
    • 84951601886 scopus 로고
    • Cross-validatory estimation of the number of principal components in factor and principal component models
    • S. Wold Cross-validatory estimation of the number of principal components in factor and principal component models Technometrics 20 4 1978 397 406
    • (1978) Technometrics , vol.20 , Issue.4 , pp. 397-406
    • Wold, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.