메뉴 건너뛰기




Volumn 48, Issue 12, 2009, Pages 5731-5741

Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL ANALYZERS; CROSS VALIDATION; FAST LEAVE-ONE-OUT; FLUIDIZED CATALYTIC CRACKING UNIT; GENERALIZATION ABILITY; INDUSTRIAL PRACTICES; LEAST SQUARES SUPPORT VECTOR REGRESSION; MOVING WINDOW; MULTI-INPUT MULTI-OUTPUT; PREDICTION ERRORS; PROCESS CHANGE; PROCESS CHARACTERISTICS; PRODUCT QUALITY; PRODUCT YIELDS; RECURSIVE LEARNING; RECURSIVE LEAST SQUARES; ROOT-MEAN-SQUARE ERRORS; TIME-VARYING DYNAMICS; TWO STAGE; UPDATED MODEL; VARIABLE MOVING WINDOW;

EID: 67650083264     PISSN: 08885885     EISSN: None     Source Type: Journal    
DOI: 10.1021/ie8012709     Document Type: Article
Times cited : (63)

References (45)
  • 1
    • 0002111519 scopus 로고
    • Soft-sensors for process estimation and inferential control
    • Tham, M. T.; Morris, A. J.; Montague, G. A. Soft-sensors for process estimation and inferential control. J. Process Control 1991, 1, 3-14.
    • (1991) J. Process Control , vol.1 , pp. 3-14
    • Tham, M.T.1    Morris, A.J.2    Montague, G.A.3
  • 2
    • 0141830951 scopus 로고    scopus 로고
    • State and parameter estimation in chemical and biochemical processes: A tutorial
    • Dochain, D. State and parameter estimation in chemical and biochemical processes: A tutorial. J. Process Control 2003, 13, 801-818.
    • (2003) J. Process Control , vol.13 , pp. 801-818
    • Dochain, D.1
  • 3
    • 0032562941 scopus 로고    scopus 로고
    • Dynamic inferential estimation using principal components regression (PCR)
    • Hartnett, M. K.; Lightbody, G.; Irwin, G. W. Dynamic inferential estimation using principal components regression (PCR). Chemom. Intell. Lab. Syst. 1998, 40, 215-224.
    • (1998) Chemom. Intell. Lab. Syst , vol.40 , pp. 215-224
    • Hartnett, M.K.1    Lightbody, G.2    Irwin, G.W.3
  • 4
    • 0026360534 scopus 로고
    • Estimation of distillation compositions from multiple temperature measurements using partial-least-squares regression
    • Mejdell, T.; Skogestad, S. Estimation of distillation compositions from multiple temperature measurements using partial-least-squares regression. Ind. Eng. Chem. Res. 1991, 30, 2543-2555.
    • (1991) Ind. Eng. Chem. Res , vol.30 , pp. 2543-2555
    • Mejdell, T.1    Skogestad, S.2
  • 5
    • 0028460607 scopus 로고    scopus 로고
    • Kresta,; J, V.; Marlin, T. E.; MacGregor, J. F. Development of inferential process models using PLS. Comput. Chem. Eng. 1994, 18, 597-611.
    • Kresta,; J, V.; Marlin, T. E.; MacGregor, J. F. Development of inferential process models using PLS. Comput. Chem. Eng. 1994, 18, 597-611.
  • 6
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin, S. J. Recursive PLS algorithms for adaptive data modeling. Comput. Chem. Eng. 1998, 22, 503-514.
    • (1998) Comput. Chem. Eng , vol.22 , pp. 503-514
    • Qin, S.J.1
  • 7
    • 14944347949 scopus 로고    scopus 로고
    • A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling
    • Li, C. F.; Ye, H.; Wang, G. Z.; Zhang, J. A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling. Chem. Eng. Technol. 2005, 28, 141-152.
    • (2005) Chem. Eng. Technol , vol.28 , pp. 141-152
    • Li, C.F.1    Ye, H.2    Wang, G.Z.3    Zhang, J.4
  • 8
    • 21244451848 scopus 로고    scopus 로고
    • Adaptive multivariate regression modeling based on model performance assessment
    • Lee, Y. H.; Kim, M. J.; Chu, Y. H.; Han, C. H. Adaptive multivariate regression modeling based on model performance assessment. Chemom. Intell. Lab. Syst. 2005, 78, 63-73.
    • (2005) Chemom. Intell. Lab. Syst , vol.78 , pp. 63-73
    • Lee, Y.H.1    Kim, M.J.2    Chu, Y.H.3    Han, C.H.4
  • 9
    • 1642313098 scopus 로고    scopus 로고
    • Multirate dynamic inferential modeling for multivariable processes
    • Lu, N. Y.; Yang, Y.; Gao, F. R.; Wang, F. L. Multirate dynamic inferential modeling for multivariable processes. Chem. Eng. Sci. 2004, 59, 855-864.
    • (2004) Chem. Eng. Sci , vol.59 , pp. 855-864
    • Lu, N.Y.1    Yang, Y.2    Gao, F.R.3    Wang, F.L.4
  • 11
    • 0037438575 scopus 로고    scopus 로고
    • Estimate of process compositions and plantwide control from multiple secondary measurements using artificial neural networks
    • Yeh, T.; Huang, M. C.; Huang, C. T. Estimate of process compositions and plantwide control from multiple secondary measurements using artificial neural networks. Comput. Chem. Eng. 2003, 27, 55-72.
    • (2003) Comput. Chem. Eng , vol.27 , pp. 55-72
    • Yeh, T.1    Huang, M.C.2    Huang, C.T.3
  • 12
    • 0037086442 scopus 로고    scopus 로고
    • Identification and control of a riser-type FCC unit using neural networks
    • Alaradi, A. A.; Rohani, S. Identification and control of a riser-type FCC unit using neural networks. Comput. Chem. Eng. 2002, 26, 401-421.
    • (2002) Comput. Chem. Eng , vol.26 , pp. 401-421
    • Alaradi, A.A.1    Rohani, S.2
  • 13
    • 0037440549 scopus 로고    scopus 로고
    • Dynamic neural networks partial least squares (DNNPLS) identification of multivariable processes
    • Adebiyi, O. A.; Corripio, A. B. Dynamic neural networks partial least squares (DNNPLS) identification of multivariable processes. Comput. Chem. Eng. 2003, 27, 143-155.
    • (2003) Comput. Chem. Eng , vol.27 , pp. 143-155
    • Adebiyi, O.A.1    Corripio, A.B.2
  • 14
    • 20344389745 scopus 로고    scopus 로고
    • Application of a moving-window-adaptive neural network to the modeling of a full-scale anaerobic filter process
    • Lee, M. W.; Joung, J. Y.; Lee, D. S.; Park, J. M.; Woo, S. H. Application of a moving-window-adaptive neural network to the modeling of a full-scale anaerobic filter process. Ind. Eng. Chem. Res. 2005, 44, 3973-3982.
    • (2005) Ind. Eng. Chem. Res , vol.44 , pp. 3973-3982
    • Lee, M.W.1    Joung, J.Y.2    Lee, D.S.3    Park, J.M.4    Woo, S.H.5
  • 15
    • 50849083804 scopus 로고    scopus 로고
    • Accounts of experiences in the application of artificial neural networks in chemical engineering
    • Himmelblau, D. M. Accounts of experiences in the application of artificial neural networks in chemical engineering. Ind. Eng. Chem. Res. 2008, 47, 5782-5796.
    • (2008) Ind. Eng. Chem. Res , vol.47 , pp. 5782-5796
    • Himmelblau, D.M.1
  • 21
    • 32444444605 scopus 로고    scopus 로고
    • About kernel latent variable approaches and SVM
    • Czekaj, T.; Wu, W.; Walczak, B. About kernel latent variable approaches and SVM. J. Chemom. 2005, 19, 341-354.
    • (2005) J. Chemom , vol.19 , pp. 341-354
    • Czekaj, T.1    Wu, W.2    Walczak, B.3
  • 22
    • 0037279908 scopus 로고    scopus 로고
    • Support vector machines: A useful tool for process engineering applications
    • Agrawal, M.; Jade, A. M.; Jayaraman, V. K.; Kulkarni, B. D. Support vector machines: A useful tool for process engineering applications. Chem. Eng. Prog. 2003, 98, 57-62.
    • (2003) Chem. Eng. Prog , vol.98 , pp. 57-62
    • Agrawal, M.1    Jade, A.M.2    Jayaraman, V.K.3    Kulkarni, B.D.4
  • 23
    • 4644258808 scopus 로고    scopus 로고
    • Thissen, U.; Pepers, M.; Ü stün, B.; Melssen, W. J.; Buydens, L. M. C. Comparing support vector machines to PLS for spectral regression applications. Chemom. Intell. Lab. Syst. 2004, 73, 169-179.
    • Thissen, U.; Pepers, M.; Ü stün, B.; Melssen, W. J.; Buydens, L. M. C. Comparing support vector machines to PLS for spectral regression applications. Chemom. Intell. Lab. Syst. 2004, 73, 169-179.
  • 24
    • 33744831196 scopus 로고    scopus 로고
    • Modeling and inferential control of the batch acetylation of cellulose
    • Dubey, A.; Realff, M. J.; Lee, J. H.; Schork, F. J.; Butte, A.; Olle, B.; Kizer, L. E. Modeling and inferential control of the batch acetylation of cellulose. AIChE J. 2006, 52, 2149-2160.
    • (2006) AIChE J , vol.52 , pp. 2149-2160
    • Dubey, A.1    Realff, M.J.2    Lee, J.H.3    Schork, F.J.4    Butte, A.5    Olle, B.6    Kizer, L.E.7
  • 25
    • 33947266512 scopus 로고    scopus 로고
    • Development of a soft sensor for a batch distillation column using support vector regression techniques
    • Jain, P.; Rahman, I.; Kulkarni, B. D. Development of a soft sensor for a batch distillation column using support vector regression techniques. Chem. Eng. Res. Des. 2007, 85, 283-287.
    • (2007) Chem. Eng. Res. Des , vol.85 , pp. 283-287
    • Jain, P.1    Rahman, I.2    Kulkarni, B.D.3
  • 26
    • 15944390632 scopus 로고    scopus 로고
    • Weighted support vector machine for quality estimation in the polymerization process
    • Lee, D. E.; Song, J. H.; Song, H. O.; Yoon, E. S. Weighted support vector machine for quality estimation in the polymerization process. Ind. Eng. Chem. Res. 2005, 44, 2101-2105.
    • (2005) Ind. Eng. Chem. Res , vol.44 , pp. 2101-2105
    • Lee, D.E.1    Song, J.H.2    Song, H.O.3    Yoon, E.S.4
  • 27
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Yan, W. W.; Shao, H. H.; Wang, X. F. Soft sensing modeling based on support vector machine and Bayesian model selection. Comput. Chem. Eng. 2004, 28, 1489-1498.
    • (2004) Comput. Chem. Eng , vol.28 , pp. 1489-1498
    • Yan, W.W.1    Shao, H.H.2    Wang, X.F.3
  • 29
    • 12344280395 scopus 로고    scopus 로고
    • Melt index modeling with support vector machines, partial least squares, and artificial neural networks
    • Han, I. S.; Han, C. H.; Chung, C. B. Melt index modeling with support vector machines, partial least squares, and artificial neural networks. J. Appl. Polym. Sci. 2005, 95, 967-974.
    • (2005) J. Appl. Polym. Sci , vol.95 , pp. 967-974
    • Han, I.S.1    Han, C.H.2    Chung, C.B.3
  • 30
    • 37249063664 scopus 로고    scopus 로고
    • Datadriven dynamic modeling and control of a surface aeration system
    • Gandhi, A. B.; Joshi, J. B.; Jayaraman, V. K.; Kulkarni, B. D. Datadriven dynamic modeling and control of a surface aeration system. Ind. Eng. Chem. Res. 2007, 46, 8607-8613.
    • (2007) Ind. Eng. Chem. Res , vol.46 , pp. 8607-8613
    • Gandhi, A.B.1    Joshi, J.B.2    Jayaraman, V.K.3    Kulkarni, B.D.4
  • 31
    • 39749196097 scopus 로고    scopus 로고
    • Localization of embedded inclusions using detection of fluorescence: Feasibility study based on simulation data, LS-SVM modeling and EPO pre-processing
    • Chauchard, F.; Svensson, J.; Axelsson, J.; Andersson-Engels, S.; Roussel, S. Localization of embedded inclusions using detection of fluorescence: feasibility study based on simulation data, LS-SVM modeling and EPO pre-processing. Chemom. Intell. Lab. Syst. 2008, 91, 34-42.
    • (2008) Chemom. Intell. Lab. Syst , vol.91 , pp. 34-42
    • Chauchard, F.1    Svensson, J.2    Axelsson, J.3    Andersson-Engels, S.4    Roussel, S.5
  • 32
    • 60949086321 scopus 로고    scopus 로고
    • Prediction of cell voltage and current efficiency in a lab scale chlor-alkali membrane cell based on support vector machines
    • Kaveh, N. S.; Mohammadi, F.; Ashrafizadeh, S. N. Prediction of cell voltage and current efficiency in a lab scale chlor-alkali membrane cell based on support vector machines. Chem. Eng. J. 2009, 147, 161-172.
    • (2009) Chem. Eng. J , vol.147 , pp. 161-172
    • Kaveh, N.S.1    Mohammadi, F.2    Ashrafizadeh, S.N.3
  • 34
    • 33745777639 scopus 로고    scopus 로고
    • Incremental support vector learning: Analysis, implementation and applications
    • Laskov, P.; Gehl, C.; Kruger, S.; Muller, K. R. Incremental support vector learning: Analysis, implementation and applications. J. Mach. Learn. Res. 2006, 7, 1909-1936.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 1909-1936
    • Laskov, P.1    Gehl, C.2    Kruger, S.3    Muller, K.R.4
  • 35
    • 0037497947 scopus 로고    scopus 로고
    • Recursive update algorithm for least squares support vector machines
    • Chi, H. M.; Ersoy, O. K. Recursive update algorithm for least squares support vector machines. Neural Process. Lett. 2003, 17, 165-173.
    • (2003) Neural Process. Lett , vol.17 , pp. 165-173
    • Chi, H.M.1    Ersoy, O.K.2
  • 36
    • 26844494933 scopus 로고    scopus 로고
    • Study of on-line weighted least squares support vector machines
    • Wen, X. J.; Xu, X. M.; Cai, Y. Z. Study of on-line weighted least squares support vector machines. Lect. Notes Comput. 2005, 3610, 51-60.
    • (2005) Lect. Notes Comput , vol.3610 , pp. 51-60
    • Wen, X.J.1    Xu, X.M.2    Cai, Y.Z.3
  • 38
    • 33746573365 scopus 로고    scopus 로고
    • Online weighted LSSVM for hysteretic structural system identification
    • Tang, H. S.; Xue, S. T.; Chen, R.; Sato, T. Online weighted LSSVM for hysteretic structural system identification. Eng. Struct. 2006, 28, 1728-1735.
    • (2006) Eng. Struct , vol.28 , pp. 1728-1735
    • Tang, H.S.1    Xue, S.T.2    Chen, R.3    Sato, T.4
  • 39
    • 33749472827 scopus 로고    scopus 로고
    • Kernel classifier with adaptive structure and fixed memory for process diagnosis
    • Wang, H. Q.; Li, P.; Gao, F. R.; Song, Z. H.; Ding, S. X. Kernel classifier with adaptive structure and fixed memory for process diagnosis. AIChE J. 2006, 52, 3515-3531.
    • (2006) AIChE J , vol.52 , pp. 3515-3531
    • Wang, H.Q.1    Li, P.2    Gao, F.R.3    Song, Z.H.4    Ding, S.X.5
  • 40
    • 0037507242 scopus 로고    scopus 로고
    • Pruning error minimization in least squares support vector machines
    • de Kruif, B. J.; de Vries, T. J. A. Pruning error minimization in least squares support vector machines. IEEE Trans. Neural Networks 2003, 14, 696-702.
    • (2003) IEEE Trans. Neural Networks , vol.14 , pp. 696-702
    • de Kruif, B.J.1    de Vries, T.J.A.2
  • 41
    • 34047118751 scopus 로고    scopus 로고
    • Comments on "Pruning error minimization in least squares support vector machines
    • Kuh, A.; De Wilde, P. Comments on "Pruning error minimization in least squares support vector machines". IEEE Trans. Neural Networks 2007, 18, 606-609.
    • (2007) IEEE Trans. Neural Networks , vol.18 , pp. 606-609
    • Kuh, A.1    De Wilde, P.2
  • 42
    • 8444241860 scopus 로고    scopus 로고
    • Fast exact leave-one-out crossvalidation of sparse least-squares support vector machines
    • Cawley, G. C.; Talbot, N. L. C. Fast exact leave-one-out crossvalidation of sparse least-squares support vector machines. Neural Networks 2004, 17, 1467-1475.
    • (2004) Neural Networks , vol.17 , pp. 1467-1475
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 43
    • 34247558132 scopus 로고    scopus 로고
    • Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters
    • Cawley, G. C.; Talbot, N. L. C. Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters. J. Mach. Learn. Res. 2007, 8, 841-861.
    • (2007) J. Mach. Learn. Res , vol.8 , pp. 841-861
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 44
    • 34248546466 scopus 로고    scopus 로고
    • Dissimilarity analysis based batch process monitoring using moving windows
    • Zhao, C. H.; Wang, F. L.; Jia, M. X. Dissimilarity analysis based batch process monitoring using moving windows. AIChE J. 2007, 53, 1267-1277.
    • (2007) AIChE J , vol.53 , pp. 1267-1277
    • Zhao, C.H.1    Wang, F.L.2    Jia, M.X.3
  • 45
    • 0004236492 scopus 로고    scopus 로고
    • 3rd Edition; The John Hopkins University Press: Baltimore, MD
    • Golub, G. H.; van Loan, C. F. Matrix Computations, 3rd Edition; The John Hopkins University Press: Baltimore, MD, 1996.
    • (1996) Matrix Computations
    • Golub, G.H.1    van Loan, C.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.