-
1
-
-
33845886915
-
Abdominal obesity and metabolic syndrome
-
Després JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444(7121):881-887.
-
(2006)
Nature
, vol.444
, Issue.7121
, pp. 881-887
-
-
Després, J.P.1
Lemieux, I.2
-
2
-
-
0842277242
-
Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition
-
Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109(3): 433-438.
-
(2004)
Circulation
, vol.109
, Issue.3
, pp. 433-438
-
-
Grundy, S.M.1
Brewer Jr., H.B.2
Cleeman, J.I.3
Smith Jr., S.C.4
Lenfant, C.5
-
3
-
-
12844273382
-
Metabolic syndrome, obesity, and mortality: Impact of cardiorespiratory fitness
-
Katzmarzyk PT, Church TS, Janssen I, Ross R, Blair SN. Metabolic syndrome, obesity, and mortality: impact of cardiorespiratory fitness. Diabetes Care. 2005;28(2):391-397.
-
(2005)
Diabetes Care
, vol.28
, Issue.2
, pp. 391-397
-
-
Katzmarzyk, P.T.1
Church, T.S.2
Janssen, I.3
Ross, R.4
Blair, S.N.5
-
4
-
-
69249205739
-
Obesity, inflammation, and atherosclerosis
-
Rocha VZ, Libby P. Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol. 2009;6(6):399-409.
-
(2009)
Nat Rev Cardiol
, vol.6
, Issue.6
, pp. 399-409
-
-
Rocha, V.Z.1
Libby, P.2
-
5
-
-
84856961540
-
Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity
-
Ryan KK, Woods SC, Seeley RJ. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab. 2012;15(2):137-149.
-
(2012)
Cell Metab
, vol.15
, Issue.2
, pp. 137-149
-
-
Ryan, K.K.1
Woods, S.C.2
Seeley, R.J.3
-
6
-
-
84866076374
-
Leptin revisited: Its mechanism of action and potential for treating diabetes
-
Coppari R, Bjørbaek C. Leptin revisited: its mechanism of action and potential for treating diabetes. Nat Rev Drug Discov. 2012; 11(9):692-708.
-
(2012)
Nat Rev Drug Discov
, vol.11
, Issue.9
, pp. 692-708
-
-
Coppari, R.1
Bjørbaek, C.2
-
7
-
-
78049311283
-
Obesity and leptin resistance: Distinguishing cause from effect
-
Myers MG Jr, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab. 2010;21(11):643-651.
-
(2010)
Trends Endocrinol Metab
, vol.21
, Issue.11
, pp. 643-651
-
-
Myers Jr., M.G.1
Leibel, R.L.2
Seeley, R.J.3
Schwartz, M.W.4
-
8
-
-
2442654859
-
Identification and expression cloning of a leptin receptor, OB-R
-
Tartaglia LA, Dembski M, Weng X, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995;83(7):1263- 1271.
-
(1995)
Cell
, vol.83
, Issue.7
, pp. 1263-1271
-
-
Tartaglia, L.A.1
Dembski, M.2
Weng, X.3
-
10
-
-
0345168238
-
The role of leptin receptor signaling in feeding and neuroendocrine function
-
Bates SH, Myers MG Jr. The role of leptin receptor signaling in feeding and neuroendocrine function. Trends Endocrinol Metab. 2003;14(10):447-452.
-
(2003)
Trends Endocrinol Metab
, vol.14
, Issue.10
, pp. 447-452
-
-
Bates, S.H.1
Myers Jr., M.G.2
-
11
-
-
2342439732
-
Leptin signaling in the central nervous system and the periphery
-
Bjørbaek C, Kahn BB. Leptin signaling in the central nervous system and the periphery. Recent Prog Horm Res. 2004;59:305-331.
-
(2004)
Recent Prog Horm Res
, vol.59
, pp. 305-331
-
-
Bjørbaek, C.1
Kahn, B.B.2
-
12
-
-
61449105725
-
Leptin: A pivotal regulator of human energy homeostasis
-
Farooqi IS, O'Rahilly S. Leptin: a pivotal regulator of human energy homeostasis. Am J Clin Nutr. 2009;89(3):980S-984S.
-
(2009)
Am J Clin Nutr
, vol.89
, Issue.3
-
-
Farooqi, I.S.1
O'Rahilly, S.2
-
13
-
-
0037494960
-
Cloning of adiponectin receptors that mediate antidiabetic metabolic effects
-
Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003; 423(6941):762-769.
-
(2003)
Nature
, vol.423
, Issue.6941
, pp. 762-769
-
-
Yamauchi, T.1
Kamon, J.2
Ito, Y.3
-
14
-
-
35448964335
-
Spatial regulation of Raf kinase signaling by RKTG
-
Feng L, Xie X, Ding Q, et al. Spatial regulation of Raf kinase signaling by RKTG. Proc Natl Acad Sci USA. 2007;104(36):14348- 14353.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, Issue.36
, pp. 14348-14353
-
-
Feng, L.1
Xie, X.2
Ding, Q.3
-
15
-
-
46949085149
-
RKTG sequesters B-Raf to the Golgi apparatus and inhibits the proliferation and tumorigenicity of human malignant melanoma cells
-
Fan F, Feng L, He J, et al. RKTG sequesters B-Raf to the Golgi apparatus and inhibits the proliferation and tumorigenicity of human malignant melanoma cells. Carcinogenesis. 2008;29(6):1157- 1163.
-
(2008)
Carcinogenesis
, vol.29
, Issue.6
, pp. 1157-1163
-
-
Fan, F.1
Feng, L.2
He, J.3
-
16
-
-
73549119237
-
Regulation of G-protein signaling by RKTG via sequestration of the G βγ subunit to the Golgi apparatus
-
Jiang Y, Xie X, Zhang Y, et al. Regulation of G-protein signaling by RKTG via sequestration of the G βγ subunit to the Golgi apparatus. Mol Cell Biol. 2010;30(1):78-90.
-
(2010)
Mol Cell Biol
, vol.30
, Issue.1
, pp. 78-90
-
-
Jiang, Y.1
Xie, X.2
Zhang, Y.3
-
17
-
-
49649127212
-
Suppressive function of RKTG on chemical carcinogen-induced skin carcinogenesis in mouse
-
Xie X, Zhang Y, Jiang Y, et al. Suppressive function of RKTG on chemical carcinogen-induced skin carcinogenesis in mouse. Carcinogenesis. 2008;29(8):1632-1638.
-
(2008)
Carcinogenesis
, vol.29
, Issue.8
, pp. 1632-1638
-
-
Xie, X.1
Zhang, Y.2
Jiang, Y.3
-
18
-
-
77957564884
-
RKTG inhibits angiogenesis by suppressing MAPK-mediated autocrine VEGF signaling and is downregulated in clear-cell renal cell carcinoma
-
Zhang Y, Jiang X, Qin X, et al. RKTG inhibits angiogenesis by suppressing MAPK-mediated autocrine VEGF signaling and is downregulated in clear-cell renal cell carcinoma. Oncogene. 2010; 29(39):5404-5415.
-
(2010)
Oncogene
, vol.29
, Issue.39
, pp. 5404-5415
-
-
Zhang, Y.1
Jiang, X.2
Qin, X.3
-
19
-
-
79954571639
-
Functional cooperation of RKTG with p53 in tumorigenesis and epithelial-mesenchymal transition
-
Jiang Y, Xie X, Li Z, et al. Functional cooperation of RKTG with p53 in tumorigenesis and epithelial-mesenchymal transition. Cancer Res. 2011;71(8):2959-2968.
-
(2011)
Cancer Res
, vol.71
, Issue.8
, pp. 2959-2968
-
-
Jiang, Y.1
Xie, X.2
Li, Z.3
-
20
-
-
84868610225
-
PAQR3 plays a suppressive role in the tumorigenesis of colorectal cancers
-
Wang X, Li X, Fan F, et al. PAQR3 plays a suppressive role in the tumorigenesis of colorectal cancers. Carcinogenesis. 2012;33(11): 2228-2235.
-
(2012)
Carcinogenesis
, vol.33
, Issue.11
, pp. 2228-2235
-
-
Wang, X.1
Li, X.2
Fan, F.3
-
21
-
-
84873035497
-
PAQR3 modulates insulin signaling by shunting phosphoinositide 3-kinase p110α to the Golgi apparatus
-
Wang X, Wang L, Zhu L, et al. PAQR3 modulates insulin signaling by shunting phosphoinositide 3-kinase p110α to the Golgi apparatus. Diabetes. 2013;62(2):444-456.
-
(2013)
Diabetes
, vol.62
, Issue.2
, pp. 444-456
-
-
Wang, X.1
Wang, L.2
Zhu, L.3
-
22
-
-
33646383684
-
Apharmacological map of the PI3-K family defines a role for p110α in insulin signaling
-
Knight ZA, Gonzalez B, Feldman ME, et al. Apharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell. 2006;125(4):733-747.
-
(2006)
Cell
, vol.125
, Issue.4
, pp. 733-747
-
-
Knight, Z.A.1
Gonzalez, B.2
Feldman, M.E.3
-
23
-
-
77955308513
-
Amelioration of high fat diet induced liver lipogenesis and hepatic steatosis by interleukin-22
-
Yang L, Zhang Y, Wang L, et al. Amelioration of high fat diet induced liver lipogenesis and hepatic steatosis by interleukin-22. J Hepatol. 2010;53(2):339-347.
-
(2010)
J Hepatol
, vol.53
, Issue.2
, pp. 339-347
-
-
Yang, L.1
Zhang, Y.2
Wang, L.3
-
24
-
-
2542450776
-
Modulation of direct leptin signaling by soluble leptin receptor
-
Yang G, Ge H, Boucher A, Yu X, Li C. Modulation of direct leptin signaling by soluble leptin receptor. Mol Endocrinol. 2004;18(6): 1354-1362.
-
(2004)
Mol Endocrinol
, vol.18
, Issue.6
, pp. 1354-1362
-
-
Yang, G.1
Ge, H.2
Boucher, A.3
Yu, X.4
Li, C.5
-
25
-
-
0034611732
-
Central nervous system control of food intake
-
Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404(6778): 661-671.
-
(2000)
Nature
, vol.404
, Issue.6778
, pp. 661-671
-
-
Schwartz, M.W.1
Woods, S.C.2
Porte Jr., D.3
Seeley, R.J.4
Baskin, D.G.5
-
26
-
-
0035936764
-
Obesity and the regulation of energy balance
-
Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell. 2001;104(4):531-543.
-
(2001)
Cell
, vol.104
, Issue.4
, pp. 531-543
-
-
Spiegelman, B.M.1
Flier, J.S.2
-
27
-
-
12344277552
-
Diabetes, obesity, and the brain
-
Schwartz MW, Porte D Jr. Diabetes, obesity, and the brain. Science. 2005;307(5708):375-379.
-
(2005)
Science
, vol.307
, Issue.5708
, pp. 375-379
-
-
Schwartz, M.W.1
Porte Jr., D.2
-
28
-
-
70349484212
-
MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity
-
Kleinridders A, Schenten D, Könner AC, et al. MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab. 2009;10(4):249- 259.
-
(2009)
Cell Metab
, vol.10
, Issue.4
, pp. 249-259
-
-
Kleinridders, A.1
Schenten, D.2
Könner, A.C.3
-
29
-
-
54349113070
-
Selective inactivation of Socs3 in SF1 neurons improves glucose homeostasis without affecting body weight
-
Zhang R, Dhillon H, Yin H, et al. Selective inactivation of Socs3 in SF1 neurons improves glucose homeostasis without affecting body weight. Endocrinology. 2008;149(11):5654-5661.
-
(2008)
Endocrinology
, vol.149
, Issue.11
, pp. 5654-5661
-
-
Zhang, R.1
Dhillon, H.2
Yin, H.3
-
30
-
-
3142723983
-
Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity
-
Mori H, Hanada R, Hanada T, et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med. 2004;10(7):739-743.
-
(2004)
Nat Med
, vol.10
, Issue.7
, pp. 739-743
-
-
Mori, H.1
Hanada, R.2
Hanada, T.3
-
31
-
-
3142782772
-
Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3
-
Howard JK, Cave BJ, Oksanen LJ, Tzameli I, Bjørbaek C, Flier JS. Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med. 2004;10(7): 734-738.
-
(2004)
Nat Med
, vol.10
, Issue.7
, pp. 734-738
-
-
Howard, J.K.1
Cave, B.J.2
Oksanen, L.J.3
Tzameli, I.4
Bjørbaek, C.5
Flier, J.S.6
-
32
-
-
0033937071
-
Obesity is associated with a decreased leptin transport across the blood-brain barrier in rats
-
Burguera B, Couce ME, Curran GL, et al. Obesity is associated with a decreased leptin transport across the blood-brain barrier in rats. Diabetes. 2000;49(7):1219-1223.
-
(2000)
Diabetes
, vol.49
, Issue.7
, pp. 1219-1223
-
-
Burguera, B.1
Couce, M.E.2
Curran, G.L.3
-
33
-
-
33748069813
-
Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes
-
Ozcan U, Yilmaz E, Ozcan L, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313(5790):1137-1140.
-
(2006)
Science
, vol.313
, Issue.5790
, pp. 1137-1140
-
-
Ozcan, U.1
Yilmaz, E.2
Ozcan, L.3
-
34
-
-
56749112559
-
Endoplasmic reticulum stress induces leptin resistance
-
Hosoi T, Sasaki M, Miyahara T, et al. Endoplasmic reticulum stress induces leptin resistance. Mol Pharmacol. 2008;74(6):1610-1619.
-
(2008)
Mol Pharmacol
, vol.74
, Issue.6
, pp. 1610-1619
-
-
Hosoi, T.1
Sasaki, M.2
Miyahara, T.3
-
35
-
-
57849115277
-
Endoplasmic reticulum stress plays a central role in development of leptin resistance
-
Ozcan L, Ergin AS, Lu A, et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 2009; 9(1):35-51.
-
(2009)
Cell Metab
, vol.9
, Issue.1
, pp. 35-51
-
-
Ozcan, L.1
Ergin, A.S.2
Lu, A.3
-
36
-
-
52949096557
-
Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity
-
Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135(1):61-73.
-
(2008)
Cell
, vol.135
, Issue.1
, pp. 61-73
-
-
Zhang, X.1
Zhang, G.2
Zhang, H.3
Karin, M.4
Bai, H.5
Cai, D.6
-
37
-
-
33746810001
-
Neuronal PTP1B regulates body weight, adiposity and leptin action
-
Bence KK, Delibegovic M, Xue B, et al. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med. 2006;12(8): 917-924.
-
(2006)
Nat Med
, vol.12
, Issue.8
, pp. 917-924
-
-
Bence, K.K.1
Delibegovic, M.2
Xue, B.3
-
38
-
-
80455122701
-
Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance
-
Loh K, Fukushima A, Zhang X, et al. Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance. Cell Metab. 2011; 14(5):684-699.
-
(2011)
Cell Metab
, vol.14
, Issue.5
, pp. 684-699
-
-
Loh, K.1
Fukushima, A.2
Zhang, X.3
-
39
-
-
33847733103
-
Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions
-
Yamauchi T, Nio Y, Maki T, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007;13(3):332-339.
-
(2007)
Nat Med
, vol.13
, Issue.3
, pp. 332-339
-
-
Yamauchi, T.1
Nio, Y.2
Maki, T.3
-
40
-
-
33846443694
-
Deficiency of adiponectin receptor 2 reduces diet-induced insulin resistance but promotes type 2 diabetes
-
Liu Y, Michael MD, Kash S, et al. Deficiency of adiponectin receptor 2 reduces diet-induced insulin resistance but promotes type 2 diabetes. Endocrinology. 2007;148(2):683-692.
-
(2007)
Endocrinology
, vol.148
, Issue.2
, pp. 683-692
-
-
Liu, Y.1
Michael, M.D.2
Kash, S.3
-
41
-
-
77956627976
-
PI3K signaling in the ventromedial hypothalamic nucleus is required for normal energy homeostasis
-
Xu Y, Hill JW, Fukuda M, et al. PI3K signaling in the ventromedial hypothalamic nucleus is required for normal energy homeostasis. Cell Metab. 2010;12(1):88-95.
-
(2010)
Cell Metab
, vol.12
, Issue.1
, pp. 88-95
-
-
Xu, Y.1
Hill, J.W.2
Fukuda, M.3
|