메뉴 건너뛰기




Volumn 18, Issue 11, 2013, Pages 633-643

Emerging roles for RNA polymerase II CTD in Arabidopsis

Author keywords

CTD kinase; Histone mark; MiRNA; RNA polymerase II CTD; RNA processing; Transcription

Indexed keywords

ARABIDOPSIS; MAMMALIA;

EID: 84887017354     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2013.07.001     Document Type: Review
Times cited : (70)

References (122)
  • 1
    • 0023807922 scopus 로고
    • The C-terminal domain of the largest subunit of RNA polymerase II of Saccharomyces cerevisiae, Drosophila melanogaster, and mammals: a conserved structure with an essential function
    • Allison L.A., et al. The C-terminal domain of the largest subunit of RNA polymerase II of Saccharomyces cerevisiae, Drosophila melanogaster, and mammals: a conserved structure with an essential function. Mol. Cell. Biol. 1988, 8:321-329.
    • (1988) Mol. Cell. Biol. , vol.8 , pp. 321-329
    • Allison, L.A.1
  • 2
    • 0024994551 scopus 로고
    • Homologous domains of the largest subunit of eucaryotic RNA polymerase II are conserved in plants
    • Nawrath C., et al. Homologous domains of the largest subunit of eucaryotic RNA polymerase II are conserved in plants. Mol. Gen. Genet. 1990, 223:65-75.
    • (1990) Mol. Gen. Genet. , vol.223 , pp. 65-75
    • Nawrath, C.1
  • 3
    • 33845887976 scopus 로고    scopus 로고
    • A multistep process gave rise to RNA polymerase IV of land plants
    • Luo J., Hall B.D. A multistep process gave rise to RNA polymerase IV of land plants. J. Mol. Evol. 2007, 64:101-112.
    • (2007) J. Mol. Evol. , vol.64 , pp. 101-112
    • Luo, J.1    Hall, B.D.2
  • 4
    • 58649104893 scopus 로고    scopus 로고
    • Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II
    • Ream T.S., et al. Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. Mol. Cell 2009, 33:192-203.
    • (2009) Mol. Cell , vol.33 , pp. 192-203
    • Ream, T.S.1
  • 5
    • 84870942752 scopus 로고    scopus 로고
    • In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing
    • Haag J.R., et al. In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing. Mol. Cell 2012, 48:811-818.
    • (2012) Mol. Cell , vol.48 , pp. 811-818
    • Haag, J.R.1
  • 6
    • 79960716754 scopus 로고    scopus 로고
    • Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing
    • Haag J.R., Pikaard C.S. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat. Rev. Mol. Cell Biol. 2011, 12:483-492.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 483-492
    • Haag, J.R.1    Pikaard, C.S.2
  • 7
    • 1242309371 scopus 로고    scopus 로고
    • The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability
    • Chapman R.D., et al. The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability. Nucleic Acids Res. 2004, 32:35-44.
    • (2004) Nucleic Acids Res. , vol.32 , pp. 35-44
    • Chapman, R.D.1
  • 8
    • 5144224201 scopus 로고    scopus 로고
    • Arabidopsis C-terminal domain phosphatase-like 1 and 2 are essential Ser-5-specific C-terminal domain phosphatases
    • Koiwa H., et al. Arabidopsis C-terminal domain phosphatase-like 1 and 2 are essential Ser-5-specific C-terminal domain phosphatases. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:14539-14544.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 14539-14544
    • Koiwa, H.1
  • 9
    • 2942653299 scopus 로고    scopus 로고
    • Functional unit of the RNA polymerase II C-terminal domain lies within heptapeptide pairs
    • Stiller J.W., Cook M.S. Functional unit of the RNA polymerase II C-terminal domain lies within heptapeptide pairs. Eukaryot. Cell 2004, 3:735-740.
    • (2004) Eukaryot. Cell , vol.3 , pp. 735-740
    • Stiller, J.W.1    Cook, M.S.2
  • 10
    • 22344456265 scopus 로고    scopus 로고
    • A structural perspective of CTD function
    • Meinhart A., et al. A structural perspective of CTD function. Genes Dev. 2005, 19:1401-14156.
    • (2005) Genes Dev. , vol.19 , pp. 1401-14156
    • Meinhart, A.1
  • 11
    • 70449641057 scopus 로고    scopus 로고
    • Progression through the RNA polymerase II CTD cycle
    • Buratowski S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 2009, 36:541-546.
    • (2009) Mol. Cell , vol.36 , pp. 541-546
    • Buratowski, S.1
  • 12
    • 84862493306 scopus 로고    scopus 로고
    • Updating the RNA polymerase CTD code: adding gene-specific layers
    • Egloff S., et al. Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet. 2012, 28:333-341.
    • (2012) Trends Genet. , vol.28 , pp. 333-341
    • Egloff, S.1
  • 13
    • 84867160564 scopus 로고    scopus 로고
    • The RNA polymerase II CTD coordinates transcription and RNA processing
    • Hsin J.P., Manley J.L. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 2012, 26:2119-2137.
    • (2012) Genes Dev. , vol.26 , pp. 2119-2137
    • Hsin, J.P.1    Manley, J.L.2
  • 14
    • 65549156025 scopus 로고    scopus 로고
    • TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II
    • Akhtar M.S., et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell 2009, 34:387-393.
    • (2009) Mol. Cell , vol.34 , pp. 387-393
    • Akhtar, M.S.1
  • 15
    • 77954224687 scopus 로고    scopus 로고
    • The integrator complex recognizes a new double mark on the RNA polymerase II carboxyl-terminal domain
    • Egloff S., et al. The integrator complex recognizes a new double mark on the RNA polymerase II carboxyl-terminal domain. J. Biol. Chem. 2010, 285:20564-20569.
    • (2010) J. Biol. Chem. , vol.285 , pp. 20564-20569
    • Egloff, S.1
  • 16
    • 0038740693 scopus 로고    scopus 로고
    • Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation
    • Hampsey M., Reinberg D. Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation. Cell 2003, 113:429-432.
    • (2003) Cell , vol.113 , pp. 429-432
    • Hampsey, M.1    Reinberg, D.2
  • 17
    • 34347273423 scopus 로고    scopus 로고
    • Hyperphosphorylation of the carboxyterminal repeat domain of RNA polymerase II facilitates dissociation of its complex with mediator
    • Max T., et al. Hyperphosphorylation of the carboxyterminal repeat domain of RNA polymerase II facilitates dissociation of its complex with mediator. J. Biol. Chem. 2007, 282:14113-14120.
    • (2007) J. Biol. Chem. , vol.282 , pp. 14113-14120
    • Max, T.1
  • 18
    • 73649143873 scopus 로고    scopus 로고
    • RNA polymerase II C-terminal heptarepeat domain Ser-7 phosphorylation is established in a mediator-dependent fashion
    • Boeing S., et al. RNA polymerase II C-terminal heptarepeat domain Ser-7 phosphorylation is established in a mediator-dependent fashion. J. Biol. Chem. 2010, 285:188-196.
    • (2010) J. Biol. Chem. , vol.285 , pp. 188-196
    • Boeing, S.1
  • 19
    • 70350005395 scopus 로고    scopus 로고
    • "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions
    • Perales R., Bentley D. "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions. Mol. Cell 2009, 36:178-191.
    • (2009) Mol. Cell , vol.36 , pp. 178-191
    • Perales, R.1    Bentley, D.2
  • 20
    • 0042818412 scopus 로고    scopus 로고
    • The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p
    • Wood A., et al. The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J. Biol. Chem. 2003, 278:34739-34742.
    • (2003) J. Biol. Chem. , vol.278 , pp. 34739-34742
    • Wood, A.1
  • 21
    • 27944450463 scopus 로고    scopus 로고
    • The Bur1/Bur2 complex is required for histone H2B monoubiquitination by Rad6/Bre1 and histone methylation by COMPASS
    • Wood A., et al. The Bur1/Bur2 complex is required for histone H2B monoubiquitination by Rad6/Bre1 and histone methylation by COMPASS. Mol. Cell 2005, 20:589-599.
    • (2005) Mol. Cell , vol.20 , pp. 589-599
    • Wood, A.1
  • 22
    • 33645814013 scopus 로고    scopus 로고
    • The Spt4p subunit of yeast DSIF stimulates association of the Paf1 complex with elongating RNA polymerase II
    • Qiu H., et al. The Spt4p subunit of yeast DSIF stimulates association of the Paf1 complex with elongating RNA polymerase II. Mol. Cell. Biol. 2006, 26:3135-3148.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 3135-3148
    • Qiu, H.1
  • 23
    • 62549104640 scopus 로고    scopus 로고
    • Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters
    • Qiu H., et al. Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol. Cell 2009, 33:752-762.
    • (2009) Mol. Cell , vol.33 , pp. 752-762
    • Qiu, H.1
  • 24
    • 0344022572 scopus 로고    scopus 로고
    • Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity
    • Ng H.H., et al. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 2003, 11:709-719.
    • (2003) Mol. Cell , vol.11 , pp. 709-719
    • Ng, H.H.1
  • 25
    • 23944445861 scopus 로고    scopus 로고
    • BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex
    • Laribee R.N., et al. BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex. Curr. Biol. 2005, 15:1487-1493.
    • (2005) Curr. Biol. , vol.15 , pp. 1487-1493
    • Laribee, R.N.1
  • 26
    • 33847070442 scopus 로고    scopus 로고
    • The role of chromatin during transcription
    • Li B., et al. The role of chromatin during transcription. Cell 2007, 128:707-719.
    • (2007) Cell , vol.128 , pp. 707-719
    • Li, B.1
  • 27
    • 64249111489 scopus 로고    scopus 로고
    • Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5' transcribed regions
    • Kim T., Buratowski S. Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5' transcribed regions. Cell 2009, 137:259-272.
    • (2009) Cell , vol.137 , pp. 259-272
    • Kim, T.1    Buratowski, S.2
  • 28
    • 76949107741 scopus 로고    scopus 로고
    • Histone H3 lysine 4 (H3K4) methylation in development and differentiation
    • Eissenberg J.C., Shilatifard A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev. Biol. 2010, 339:240-249.
    • (2010) Dev. Biol. , vol.339 , pp. 240-249
    • Eissenberg, J.C.1    Shilatifard, A.2
  • 29
    • 84861870951 scopus 로고    scopus 로고
    • The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis
    • Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem. 2012, 81:65-95.
    • (2012) Annu. Rev. Biochem. , vol.81 , pp. 65-95
    • Shilatifard, A.1
  • 30
    • 27744577727 scopus 로고    scopus 로고
    • Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription
    • Carrozza M.J., et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 2005, 123:581-592.
    • (2005) Cell , vol.123 , pp. 581-592
    • Carrozza, M.J.1
  • 31
    • 27744587302 scopus 로고    scopus 로고
    • Cotranscriptional Set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex
    • Keogh M.C., et al. Cotranscriptional Set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 2005, 123:593-605.
    • (2005) Cell , vol.123 , pp. 593-605
    • Keogh, M.C.1
  • 32
    • 13444267442 scopus 로고    scopus 로고
    • Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation
    • Pray-Grant M.G., et al. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 2005, 433:434-438.
    • (2005) Nature , vol.433 , pp. 434-438
    • Pray-Grant, M.G.1
  • 33
    • 33845968873 scopus 로고    scopus 로고
    • Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions
    • Govind C.K., et al. Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions. Mol. Cell 2007, 25:31-42.
    • (2007) Mol. Cell , vol.25 , pp. 31-42
    • Govind, C.K.1
  • 34
    • 77955497472 scopus 로고    scopus 로고
    • Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes
    • Govind C.K., et al. Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes. Mol. Cell 2010, 39:234-246.
    • (2010) Mol. Cell , vol.39 , pp. 234-246
    • Govind, C.K.1
  • 35
    • 0034307008 scopus 로고    scopus 로고
    • Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription
    • Komarnitsky P., et al. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 2000, 14:2452-2460.
    • (2000) Genes Dev. , vol.14 , pp. 2452-2460
    • Komarnitsky, P.1
  • 36
    • 79960455840 scopus 로고    scopus 로고
    • Deciphering the RNA polymerase II CTD code in fission yeast
    • Schwer B., Shuman S. Deciphering the RNA polymerase II CTD code in fission yeast. Mol. Cell 2011, 43:311-318.
    • (2011) Mol. Cell , vol.43 , pp. 311-318
    • Schwer, B.1    Shuman, S.2
  • 37
    • 75849118597 scopus 로고    scopus 로고
    • Structure of the Saccharomyces cerevisiae Cet1-Ceg1 mRNA capping apparatus
    • Gu M., et al. Structure of the Saccharomyces cerevisiae Cet1-Ceg1 mRNA capping apparatus. Structure 2010, 18:216-227.
    • (2010) Structure , vol.18 , pp. 216-227
    • Gu, M.1
  • 38
    • 16644377508 scopus 로고    scopus 로고
    • The plant-specific kinase CDKF;1 is involved in activating phosphorylation of cyclin-dependent kinase-activating kinases in Arabidopsis
    • Shimotohno A., et al. The plant-specific kinase CDKF;1 is involved in activating phosphorylation of cyclin-dependent kinase-activating kinases in Arabidopsis. Plant Cell 2004, 16:2954-2966.
    • (2004) Plant Cell , vol.16 , pp. 2954-2966
    • Shimotohno, A.1
  • 39
    • 33747046597 scopus 로고    scopus 로고
    • Diverse phosphoregulatory mechanisms controlling cyclin-dependent kinase-activating kinases in Arabidopsis
    • Shimotohno A., et al. Diverse phosphoregulatory mechanisms controlling cyclin-dependent kinase-activating kinases in Arabidopsis. Plant J. 2006, 47:701-710.
    • (2006) Plant J. , vol.47 , pp. 701-710
    • Shimotohno, A.1
  • 40
    • 77955608634 scopus 로고    scopus 로고
    • Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana
    • Van Leene J., et al. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol. Syst. Biol. 2010, 6:397-408.
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 397-408
    • Van Leene, J.1
  • 41
    • 84861689319 scopus 로고    scopus 로고
    • CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-terminal domain of Arabidopsis RNA polymerase II
    • Hajheidari M., et al. CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-terminal domain of Arabidopsis RNA polymerase II. Plant Cell 2012, 24:1626-1642.
    • (2012) Plant Cell , vol.24 , pp. 1626-1642
    • Hajheidari, M.1
  • 42
    • 47249089938 scopus 로고    scopus 로고
    • Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana
    • Laubinger S., et al. Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:8795-8800.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 8795-8800
    • Laubinger, S.1
  • 43
    • 67650642156 scopus 로고    scopus 로고
    • Ars2 and the cap-binding complex team up for silencing
    • Nielsen A.F., et al. Ars2 and the cap-binding complex team up for silencing. Cell 2009, 138:224-226.
    • (2009) Cell , vol.138 , pp. 224-226
    • Nielsen, A.F.1
  • 44
    • 84875537312 scopus 로고    scopus 로고
    • NOT2 proteins promote polymerase II-dependent transcription and interact with multiple microRNA biogenesis factors in Arabidopsis
    • Wang L., et al. NOT2 proteins promote polymerase II-dependent transcription and interact with multiple microRNA biogenesis factors in Arabidopsis. Plant Cell 2013, 10.1105/tpc.112.105882.
    • (2013) Plant Cell
    • Wang, L.1
  • 45
    • 77953202940 scopus 로고    scopus 로고
    • PLANT HOMOLOGOUS TO PARAFIBROMIN is a component of the Paf1 complex and assists in regulating expression of genes within H3K27me3-enriched chromatin
    • Park S., et al. PLANT HOMOLOGOUS TO PARAFIBROMIN is a component of the Paf1 complex and assists in regulating expression of genes within H3K27me3-enriched chromatin. Plant Physiol. 2010, 153:821-831.
    • (2010) Plant Physiol. , vol.153 , pp. 821-831
    • Park, S.1
  • 46
    • 77954292774 scopus 로고    scopus 로고
    • The Arabidopsis Paf1c complex component CDC73 participates in the modification of FLOWERING LOCUS C chromatin
    • Yu X., Michaels S.D. The Arabidopsis Paf1c complex component CDC73 participates in the modification of FLOWERING LOCUS C chromatin. Plant Physiol. 2010, 153:1074-1084.
    • (2010) Plant Physiol. , vol.153 , pp. 1074-1084
    • Yu, X.1    Michaels, S.D.2
  • 47
    • 0141483281 scopus 로고    scopus 로고
    • The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B
    • Ng H.H., et al. The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B. J. Biol. Chem. 2003, 278:33625-33628.
    • (2003) J. Biol. Chem. , vol.278 , pp. 33625-33628
    • Ng, H.H.1
  • 48
    • 84887022734 scopus 로고    scopus 로고
    • Conservation and divergence of the histone H2B monoubiquitination pathway from yeast to humans and plants
    • Cao Y., Ma L. Conservation and divergence of the histone H2B monoubiquitination pathway from yeast to humans and plants. Front. Biol. 2011, 6:109-117.
    • (2011) Front. Biol. , vol.6 , pp. 109-117
    • Cao, Y.1    Ma, L.2
  • 49
    • 57749114640 scopus 로고    scopus 로고
    • Histone H2B Monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis
    • Cao Y., et al. Histone H2B Monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. Plant Cell 2008, 20:2586-2602.
    • (2008) Plant Cell , vol.20 , pp. 2586-2602
    • Cao, Y.1
  • 50
    • 76449092751 scopus 로고    scopus 로고
    • The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and functionally interacts with HUB1/2
    • Lolas I.B., et al. The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and functionally interacts with HUB1/2. Plant J. 2010, 61:686-697.
    • (2010) Plant J. , vol.61 , pp. 686-697
    • Lolas, I.B.1
  • 51
    • 47649119137 scopus 로고    scopus 로고
    • Evolution of SET-domain protein families in the unicellular and multicellular Ascomycota fungi
    • Veerappan C.S., et al. Evolution of SET-domain protein families in the unicellular and multicellular Ascomycota fungi. BMC Evol. Biol. 2008, 8:190-210.
    • (2008) BMC Evol. Biol. , vol.8 , pp. 190-210
    • Veerappan, C.S.1
  • 52
    • 79952291949 scopus 로고    scopus 로고
    • Two distinct roles of ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1) at promoters and within transcribed regions of ATX1-regulated genes
    • Ding Y., et al. Two distinct roles of ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1) at promoters and within transcribed regions of ATX1-regulated genes. Plant Cell 2011, 23:350-363.
    • (2011) Plant Cell , vol.23 , pp. 350-363
    • Ding, Y.1
  • 53
    • 79955124012 scopus 로고    scopus 로고
    • Epigenetic modifications in plants: an evolutionary perspective
    • Feng S., Jacobsen S.E. Epigenetic modifications in plants: an evolutionary perspective. Curr. Opin. Plant Biol. 2011, 14:179-186.
    • (2011) Curr. Opin. Plant Biol. , vol.14 , pp. 179-186
    • Feng, S.1    Jacobsen, S.E.2
  • 54
    • 77958587420 scopus 로고    scopus 로고
    • CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1
    • Bartkowiak B., et al. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev. 2010, 24:2303-2316.
    • (2010) Genes Dev. , vol.24 , pp. 2303-2316
    • Bartkowiak, B.1
  • 55
    • 84860832960 scopus 로고    scopus 로고
    • BRD4 is an atypical kinase that phosphorylates serine-2 of the RNA polymerase II carboxy-terminal domain
    • Devaiah B.N., et al. BRD4 is an atypical kinase that phosphorylates serine-2 of the RNA polymerase II carboxy-terminal domain. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:6927-6932.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 6927-6932
    • Devaiah, B.N.1
  • 56
    • 41349094797 scopus 로고    scopus 로고
    • Transcription regulation through promoter-proximal pausing of RNA polymerase II
    • Core L.J., Lis J.T. Transcription regulation through promoter-proximal pausing of RNA polymerase II. Science 2008, 319:1791-1792.
    • (2008) Science , vol.319 , pp. 1791-1792
    • Core, L.J.1    Lis, J.T.2
  • 57
    • 79955795581 scopus 로고    scopus 로고
    • Paused RNA polymerase II as a developmental checkpoint
    • Levine M. Paused RNA polymerase II as a developmental checkpoint. Cell 2011, 145:502-511.
    • (2011) Cell , vol.145 , pp. 502-511
    • Levine, M.1
  • 58
    • 79959939884 scopus 로고    scopus 로고
    • Human Mediator subunit MED26 functions as a docking site for transcription elongation factors
    • Takahashi H., et al. Human Mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 2011, 146:92-104.
    • (2011) Cell , vol.146 , pp. 92-104
    • Takahashi, H.1
  • 59
    • 84871590658 scopus 로고    scopus 로고
    • FUS binds the CTD of RNA polymerase II and regulates its phosphorylation at Ser2
    • Schwartz J.C., et al. FUS binds the CTD of RNA polymerase II and regulates its phosphorylation at Ser2. Genes Dev. 2012, 26:2690-2695.
    • (2012) Genes Dev. , vol.26 , pp. 2690-2695
    • Schwartz, J.C.1
  • 60
    • 18144371989 scopus 로고    scopus 로고
    • HEXIM2, a HEXIM1-related protein, regulates positive transcription elongation factor b through association with 7SK
    • Byers S.A., et al. HEXIM2, a HEXIM1-related protein, regulates positive transcription elongation factor b through association with 7SK. J. Biol. Chem. 2005, 280:16360-16367.
    • (2005) J. Biol. Chem. , vol.280 , pp. 16360-16367
    • Byers, S.A.1
  • 61
    • 77953773890 scopus 로고    scopus 로고
    • P-TEFb stimulates transcription elongation and pre-mRNA splicing through multilateral mechanisms
    • Lenasi T., Barboric M. P-TEFb stimulates transcription elongation and pre-mRNA splicing through multilateral mechanisms. RNA Biol. 2010, 7:145-150.
    • (2010) RNA Biol. , vol.7 , pp. 145-150
    • Lenasi, T.1    Barboric, M.2
  • 62
    • 34447311914 scopus 로고    scopus 로고
    • H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex
    • Wyce A., et al. H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex. Mol. Cell 2007, 27:275-288.
    • (2007) Mol. Cell , vol.27 , pp. 275-288
    • Wyce, A.1
  • 63
    • 33846141146 scopus 로고    scopus 로고
    • Ctk complex-mediated regulation of histone methylation by COMPASS
    • Wood A., et al. Ctk complex-mediated regulation of histone methylation by COMPASS. Mol. Cell. Biol. 2007, 27:709-720.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 709-720
    • Wood, A.1
  • 64
    • 33846525436 scopus 로고    scopus 로고
    • The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export
    • Yoh S.M., et al. The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export. Genes Dev. 2007, 21:160-174.
    • (2007) Genes Dev. , vol.21 , pp. 160-174
    • Yoh, S.M.1
  • 65
    • 58049206591 scopus 로고    scopus 로고
    • The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation
    • Yoh S.M., et al. The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation. Genes Dev. 2008, 22:3422-3434.
    • (2008) Genes Dev. , vol.22 , pp. 3422-3434
    • Yoh, S.M.1
  • 66
    • 38949154793 scopus 로고    scopus 로고
    • Spn1 regulates the recruitment of Spt6 and the Swi/Snf complex during transcriptional activation by RNA polymerase II
    • Zhang L., et al. Spn1 regulates the recruitment of Spt6 and the Swi/Snf complex during transcriptional activation by RNA polymerase II. Mol. Cell. Biol. 2008, 28:1393-1403.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 1393-1403
    • Zhang, L.1
  • 67
    • 78649713364 scopus 로고    scopus 로고
    • A tandem SH2 domain in transcription elongation factor Spt6 binds the phosphorylated RNA polymerase II C-terminal repeat domain (CTD)
    • Sun M., et al. A tandem SH2 domain in transcription elongation factor Spt6 binds the phosphorylated RNA polymerase II C-terminal repeat domain (CTD). J. Biol. Chem. 2010, 285:41597-41603.
    • (2010) J. Biol. Chem. , vol.285 , pp. 41597-41603
    • Sun, M.1
  • 68
    • 84862977456 scopus 로고    scopus 로고
    • CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II
    • Mayer A., et al. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 2012, 336:1723-1725.
    • (2012) Science , vol.336 , pp. 1723-1725
    • Mayer, A.1
  • 69
    • 80054709866 scopus 로고    scopus 로고
    • Cotranscriptional association of mRNA export factor Yra1 with C-terminal domain of RNA polymerase II
    • MacKellar A.L., Greenleaf A.L. Cotranscriptional association of mRNA export factor Yra1 with C-terminal domain of RNA polymerase II. J. Biol. Chem. 2011, 286:36385-36395.
    • (2011) J. Biol. Chem. , vol.286 , pp. 36385-36395
    • MacKellar, A.L.1    Greenleaf, A.L.2
  • 70
    • 0034659241 scopus 로고    scopus 로고
    • RNA polymerase II and the integration of nuclear events
    • Hirose Y., Manley J.L. RNA polymerase II and the integration of nuclear events. Genes Dev. 2000, 14:1415-1429.
    • (2000) Genes Dev. , vol.14 , pp. 1415-1429
    • Hirose, Y.1    Manley, J.L.2
  • 71
    • 33644863653 scopus 로고    scopus 로고
    • The structure of Prp40 FF1 domain and its interaction with the crn-TPR1 motif of Clf1 gives a new insight into the binding mode of FF domains
    • Gasch A., et al. The structure of Prp40 FF1 domain and its interaction with the crn-TPR1 motif of Clf1 gives a new insight into the binding mode of FF domains. J. Biol. Chem. 2006, 281:356-364.
    • (2006) J. Biol. Chem. , vol.281 , pp. 356-364
    • Gasch, A.1
  • 72
    • 79955691547 scopus 로고    scopus 로고
    • The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65-Prp19 complex
    • David C.J., et al. The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65-Prp19 complex. Genes Dev. 2011, 25:972-983.
    • (2011) Genes Dev. , vol.25 , pp. 972-983
    • David, C.J.1
  • 73
    • 22544472117 scopus 로고    scopus 로고
    • Role for PSF in mediating transcriptional activator-dependent stimulation of pre-mRNA processing in vivo
    • Rosonina E., et al. Role for PSF in mediating transcriptional activator-dependent stimulation of pre-mRNA processing in vivo. Mol. Cell. Biol. 2005, 25:6734-6746.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 6734-6746
    • Rosonina, E.1
  • 74
    • 33745473130 scopus 로고    scopus 로고
    • Human transcription elongation factor CA150 localizes to splicing factor-rich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions
    • Sanchez-Alvarez M., et al. Human transcription elongation factor CA150 localizes to splicing factor-rich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions. Mol. Cell. Biol. 2006, 26:4998-5014.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 4998-5014
    • Sanchez-Alvarez, M.1
  • 75
    • 34250639338 scopus 로고    scopus 로고
    • Roles of Arabidopsis cyclin-dependent kinase C complexes in cauliflower mosaic virus infection, plant growth, and development
    • Cui X., et al. Roles of Arabidopsis cyclin-dependent kinase C complexes in cauliflower mosaic virus infection, plant growth, and development. Plant Cell 2007, 19:1388-1402.
    • (2007) Plant Cell , vol.19 , pp. 1388-1402
    • Cui, X.1
  • 76
    • 65249093731 scopus 로고    scopus 로고
    • An effector of RNA-directed DNA methylation in Arabidopsis is an ARGONAUTE 4- and RNA-binding protein
    • He X.J., et al. An effector of RNA-directed DNA methylation in Arabidopsis is an ARGONAUTE 4- and RNA-binding protein. Cell 2009, 137:498-508.
    • (2009) Cell , vol.137 , pp. 498-508
    • He, X.J.1
  • 77
    • 67349099134 scopus 로고    scopus 로고
    • RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family
    • Bies-Etheve N., et al. RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family. EMBO Rep. 2009, 10:649-654.
    • (2009) EMBO Rep. , vol.10 , pp. 649-654
    • Bies-Etheve, N.1
  • 78
    • 79959838293 scopus 로고    scopus 로고
    • Independent chromatin binding of ARGONAUTE4 and SPT5L/KTF1 mediates transcriptional gene silencing
    • Rowley M.J., et al. Independent chromatin binding of ARGONAUTE4 and SPT5L/KTF1 mediates transcriptional gene silencing. PLoS Genet. 2011, 7:e1002120.
    • (2011) PLoS Genet. , vol.7
    • Rowley, M.J.1
  • 79
    • 80555125055 scopus 로고    scopus 로고
    • Spt6 of S. pombe is required for heterochromatic silencing
    • Kiely C.M., et al. Spt6 of S. pombe is required for heterochromatic silencing. Mol. Cell. Biol. 2011, 31:4193-4204.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 4193-4204
    • Kiely, C.M.1
  • 80
    • 84863050097 scopus 로고    scopus 로고
    • SPT6L encoding a putative WG/GW-repeat protein regulates apical-basal polarity of embryo in Arabidopsis
    • Gu X., et al. SPT6L encoding a putative WG/GW-repeat protein regulates apical-basal polarity of embryo in Arabidopsis. Mol. Plant 2012, 5:249-259.
    • (2012) Mol. Plant , vol.5 , pp. 249-259
    • Gu, X.1
  • 81
    • 77649247669 scopus 로고    scopus 로고
    • Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression
    • Li L., et al. Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:3918-3923.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 3918-3923
    • Li, L.1
  • 82
    • 18044371378 scopus 로고    scopus 로고
    • The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing
    • Wang B.B., Brendel V. The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing. Genome Biol. 2004, 5:102.1-102.23.
    • (2004) Genome Biol. , vol.5
    • Wang, B.B.1    Brendel, V.2
  • 83
    • 62349104663 scopus 로고    scopus 로고
    • Arabidopsis thaliana PRP40s are RNA polymerase II C-terminal domain-associating proteins
    • Kang C.H., et al. Arabidopsis thaliana PRP40s are RNA polymerase II C-terminal domain-associating proteins. Arch. Biochem. Biophys. 2009, 484:30-38.
    • (2009) Arch. Biochem. Biophys. , vol.484 , pp. 30-38
    • Kang, C.H.1
  • 84
    • 0031037856 scopus 로고    scopus 로고
    • The C-terminal domain of RNA polymerase II couples messenger RNA processing to transcription
    • McCracken S., et al. The C-terminal domain of RNA polymerase II couples messenger RNA processing to transcription. Nature 1997, 385:357-361.
    • (1997) Nature , vol.385 , pp. 357-361
    • McCracken, S.1
  • 85
    • 77957770031 scopus 로고    scopus 로고
    • Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain
    • Lunde B.M., et al. Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain. Nat. Struct. Mol. Biol. 2010, 17:1195-1201.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1195-1201
    • Lunde, B.M.1
  • 86
    • 0036682601 scopus 로고    scopus 로고
    • Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination
    • Dichtl B., et al. Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination. EMBO J. 2002, 21:4125-4135.
    • (2002) EMBO J. , vol.21 , pp. 4125-4135
    • Dichtl, B.1
  • 87
    • 49449110180 scopus 로고    scopus 로고
    • The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain
    • Vasiljeva L., et al. The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat. Struct. Mol. Biol. 2008, 15:795-804.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 795-804
    • Vasiljeva, L.1
  • 88
    • 84865845346 scopus 로고    scopus 로고
    • Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1
    • Kubicek K., et al. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1. Genes Dev. 2012, 26:1891-1896.
    • (2012) Genes Dev. , vol.26 , pp. 1891-1896
    • Kubicek, K.1
  • 89
    • 0038037805 scopus 로고    scopus 로고
    • Autoregulation of the site of 3' end formation in FCA pre-mRNA prevents precocious flowering
    • Quesada V., et al. Autoregulation of the site of 3' end formation in FCA pre-mRNA prevents precocious flowering. EMBO J. 2003, 22:3142-3152.
    • (2003) EMBO J. , vol.22 , pp. 3142-3152
    • Quesada, V.1
  • 90
    • 76249122261 scopus 로고    scopus 로고
    • The spen family protein FPA controls alternative cleavage and polyadenylation of RNA
    • Hornyik C., et al. The spen family protein FPA controls alternative cleavage and polyadenylation of RNA. Dev. Cell 2010, 18:203-213.
    • (2010) Dev. Cell , vol.18 , pp. 203-213
    • Hornyik, C.1
  • 91
    • 74849099777 scopus 로고    scopus 로고
    • Targeted 3' processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing
    • Liu F., et al. Targeted 3' processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science 2010, 327:94-97.
    • (2010) Science , vol.327 , pp. 94-97
    • Liu, F.1
  • 92
    • 79957709082 scopus 로고    scopus 로고
    • RNA 3' processing functions of Arabidopsis FCA and FPA limit intergenic transcription
    • Sonmez C., et al. RNA 3' processing functions of Arabidopsis FCA and FPA limit intergenic transcription. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:8508-8513.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 8508-8513
    • Sonmez, C.1
  • 93
    • 44349123376 scopus 로고    scopus 로고
    • Arabidopsis PCFS4, a homolog of yeast polyadenylation factor Pcf11p, regulates FCA alternative processing and promotes flowering time
    • Xing D., et al. Arabidopsis PCFS4, a homolog of yeast polyadenylation factor Pcf11p, regulates FCA alternative processing and promotes flowering time. Plant J. 2008, 54:899-910.
    • (2008) Plant J. , vol.54 , pp. 899-910
    • Xing, D.1
  • 94
    • 84855880038 scopus 로고    scopus 로고
    • Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes
    • Egloff S., et al. Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes. Mol. Cell 2012, 45:111-122.
    • (2012) Mol. Cell , vol.45 , pp. 111-122
    • Egloff, S.1
  • 95
    • 38949205017 scopus 로고    scopus 로고
    • Evolutionary radiation pattern of novel protein phosphatases revealed by analysis of protein data from the completely sequenced genomes of humans, green algae, and higher plants
    • Kerk D., et al. Evolutionary radiation pattern of novel protein phosphatases revealed by analysis of protein data from the completely sequenced genomes of humans, green algae, and higher plants. Plant Physiol. 2008, 146:351-367.
    • (2008) Plant Physiol. , vol.146 , pp. 351-367
    • Kerk, D.1
  • 96
    • 58249089943 scopus 로고    scopus 로고
    • Evolution of protein phosphatases in plants and animals
    • Moorhead G.B., et al. Evolution of protein phosphatases in plants and animals. Biochem. J. 2009, 417:401-409.
    • (2009) Biochem. J. , vol.417 , pp. 401-409
    • Moorhead, G.B.1
  • 97
    • 4143117908 scopus 로고    scopus 로고
    • Structure and mechanism of RNA polymerase II CTD phosphatases
    • Kamenski T., et al. Structure and mechanism of RNA polymerase II CTD phosphatases. Mol. Cell 2004, 15:399-407.
    • (2004) Mol. Cell , vol.15 , pp. 399-407
    • Kamenski, T.1
  • 98
    • 55949110622 scopus 로고    scopus 로고
    • The structure of Fcp1, an essential RNA polymerase II CTD phosphatase
    • Ghosh A., et al. The structure of Fcp1, an essential RNA polymerase II CTD phosphatase. Mol. Cell 2008, 32:478-490.
    • (2008) Mol. Cell , vol.32 , pp. 478-490
    • Ghosh, A.1
  • 99
    • 12844250536 scopus 로고    scopus 로고
    • Small CTD phosphatases function in silencing neuronal gene expression
    • Yeo M., et al. Small CTD phosphatases function in silencing neuronal gene expression. Science 2005, 307:596-600.
    • (2005) Science , vol.307 , pp. 596-600
    • Yeo, M.1
  • 100
    • 2342533807 scopus 로고    scopus 로고
    • Ssu72 is an RNA polymerase II CTD phosphatase
    • Krishnamurthy S., et al. Ssu72 is an RNA polymerase II CTD phosphatase. Mol. Cell 2004, 14:387-394.
    • (2004) Mol. Cell , vol.14 , pp. 387-394
    • Krishnamurthy, S.1
  • 101
    • 79953127123 scopus 로고    scopus 로고
    • Cis-proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72
    • Werner-Allen J.W., et al. Cis-proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72. J. Biol. Chem. 2011, 286:5717-5726.
    • (2011) J. Biol. Chem. , vol.286 , pp. 5717-5726
    • Werner-Allen, J.W.1
  • 102
    • 84856273602 scopus 로고    scopus 로고
    • A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes
    • Bataille A.R., et al. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol. Cell 2012, 45:158-170.
    • (2012) Mol. Cell , vol.45 , pp. 158-170
    • Bataille, A.R.1
  • 103
    • 84871441895 scopus 로고    scopus 로고
    • Emerging views on the CTD code
    • Zhang D.W., et al. Emerging views on the CTD code. Genet. Res. Int. 2012, 2012:347214.
    • (2012) Genet. Res. Int. , vol.2012 , pp. 347214
    • Zhang, D.W.1
  • 104
    • 64749116042 scopus 로고    scopus 로고
    • Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation
    • Mosley A.L., et al. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. Mol. Cell 2009, 34:168-178.
    • (2009) Mol. Cell , vol.34 , pp. 168-178
    • Mosley, A.L.1
  • 105
    • 84864831445 scopus 로고    scopus 로고
    • The yeast regulator of transcription protein Rtr1 lacks an active site and phosphatase activity
    • Xiang K., et al. The yeast regulator of transcription protein Rtr1 lacks an active site and phosphatase activity. Nat. Commun. 2012, 3:946.
    • (2012) Nat. Commun. , vol.3 , pp. 946
    • Xiang, K.1
  • 106
    • 84871738828 scopus 로고    scopus 로고
    • Loss of function of Arabidopsis C-terminal domain phosphatase-like1 activates iron deficiency responses at the transcriptional level
    • Aksoy E., et al. Loss of function of Arabidopsis C-terminal domain phosphatase-like1 activates iron deficiency responses at the transcriptional level. Plant Physiol. 2013, 161:330-345.
    • (2013) Plant Physiol. , vol.161 , pp. 330-345
    • Aksoy, E.1
  • 107
    • 0036678452 scopus 로고    scopus 로고
    • C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth and development
    • Koiwa H., et al. C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth and development. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:10893-10898.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 10893-10898
    • Koiwa, H.1
  • 108
    • 46249120401 scopus 로고    scopus 로고
    • The Arabidopsis thaliana carboxyl-terminal domain phosphatase-like 2 regulates plant growth, stress and auxin responses
    • Ueda A., et al. The Arabidopsis thaliana carboxyl-terminal domain phosphatase-like 2 regulates plant growth, stress and auxin responses. Plant Mol. Biol. 2008, 67:683-697.
    • (2008) Plant Mol. Biol. , vol.67 , pp. 683-697
    • Ueda, A.1
  • 109
    • 58149127300 scopus 로고    scopus 로고
    • CTD phosphatases in the attenuation of wound-induced transcription of jasmonic acid biosynthetic genes in Arabidopsis
    • Matsuda O., et al. CTD phosphatases in the attenuation of wound-induced transcription of jasmonic acid biosynthetic genes in Arabidopsis. Plant J. 2009, 57:96-108.
    • (2009) Plant J. , vol.57 , pp. 96-108
    • Matsuda, O.1
  • 110
    • 33750060045 scopus 로고    scopus 로고
    • Arabidopsis carboxyl-terminal domain phosphatase-like isoforms share common catalytic and interaction domains but have distinct in planta functions
    • Bang W., et al. Arabidopsis carboxyl-terminal domain phosphatase-like isoforms share common catalytic and interaction domains but have distinct in planta functions. Plant Physiol. 2006, 142:586-594.
    • (2006) Plant Physiol. , vol.142 , pp. 586-594
    • Bang, W.1
  • 111
    • 77955505437 scopus 로고    scopus 로고
    • Arabidopsis SCP1-like small phosphatases differentially dephosphorylate RNA polymerase II C-terminal domain
    • Feng Y., et al. Arabidopsis SCP1-like small phosphatases differentially dephosphorylate RNA polymerase II C-terminal domain. Biochem. Biophys. Res. Commun. 2010, 397:355-360.
    • (2010) Biochem. Biophys. Res. Commun. , vol.397 , pp. 355-360
    • Feng, Y.1
  • 112
    • 79951983772 scopus 로고    scopus 로고
    • AtCPL5, a novel Ser-2-specific RNA polymerase II C-terminal domain phosphatase, positively regulates ABA and drought responses in Arabidopsis
    • Jin Y-M., et al. AtCPL5, a novel Ser-2-specific RNA polymerase II C-terminal domain phosphatase, positively regulates ABA and drought responses in Arabidopsis. New Phytol. 2011, 190:57-74.
    • (2011) New Phytol. , vol.190 , pp. 57-74
    • Jin, Y.-M.1
  • 113
    • 84869054771 scopus 로고    scopus 로고
    • Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1
    • Manavella P.A., et al. Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 2012, 151:859-870.
    • (2012) Cell , vol.151 , pp. 859-870
    • Manavella, P.A.1
  • 115
    • 79958729004 scopus 로고    scopus 로고
    • Phosphorylation of RNAPII: To P-TEFb or not to P-TEFb?
    • Bartkowiak B., Greenleaf A.L. Phosphorylation of RNAPII: To P-TEFb or not to P-TEFb?. Transcription 2011, 2:115-119.
    • (2011) Transcription , vol.2 , pp. 115-119
    • Bartkowiak, B.1    Greenleaf, A.L.2
  • 116
    • 84865197343 scopus 로고    scopus 로고
    • Gene-specific requirement of RNA polymerase II CTD phosphorylation
    • Drogat J., Hermand D. Gene-specific requirement of RNA polymerase II CTD phosphorylation. Mol. Microbiol. 2012, 84:995-1004.
    • (2012) Mol. Microbiol. , vol.84 , pp. 995-1004
    • Drogat, J.1    Hermand, D.2
  • 117
    • 84856133989 scopus 로고    scopus 로고
    • Cdc14 phosphatase promotes segregation of telomeres through repression of RNA polymerase II transcription
    • Clemente-Blanco A., et al. Cdc14 phosphatase promotes segregation of telomeres through repression of RNA polymerase II transcription. Nat. Cell Biol. 2011, 13:1450-1456.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1450-1456
    • Clemente-Blanco, A.1
  • 118
    • 84862206497 scopus 로고    scopus 로고
    • Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation
    • Hintermair C., et al. Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation. EMBO J. 2012, 31:2784-2797.
    • (2012) EMBO J. , vol.31 , pp. 2784-2797
    • Hintermair, C.1
  • 119
    • 80555125095 scopus 로고    scopus 로고
    • RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3' end processing
    • Hsin J.P., et al. RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3' end processing. Science 2011, 334:683-686.
    • (2011) Science , vol.334 , pp. 683-686
    • Hsin, J.P.1
  • 120
    • 37249015899 scopus 로고    scopus 로고
    • Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7
    • Chapman R.D., et al. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 2007, 318:1780-1782.
    • (2007) Science , vol.318 , pp. 1780-1782
    • Chapman, R.D.1
  • 121
    • 0034650723 scopus 로고    scopus 로고
    • Evolutionary complementation for polymerase II CTD function
    • Stiller J.W., et al. Evolutionary complementation for polymerase II CTD function. Yeast 2000, 16:57-64.
    • (2000) Yeast , vol.16 , pp. 57-64
    • Stiller, J.W.1
  • 122
    • 79953288782 scopus 로고    scopus 로고
    • The C-terminal domain of RNA polymerase II is modified by site-specific methylation
    • Sims R.J., et al. The C-terminal domain of RNA polymerase II is modified by site-specific methylation. Science 2011, 332:99-103.
    • (2011) Science , vol.332 , pp. 99-103
    • Sims, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.