-
1
-
-
36049041612
-
RNA quality control in eukaryotes
-
Doma, M. K. & Parker, R. RNA quality control in eukaryotes. Cell 131, 660-668 (2007).
-
(2007)
Cell
, vol.131
, pp. 660-668
-
-
Doma, M.K.1
Parker, R.2
-
2
-
-
84863313893
-
Cellular strategies of protein quality control
-
Chen, B., Retzlaff, M., Roos, T. & Frydman, J. Cellular strategies of protein quality control. Cold Spring Harb. Perspect. Biol. 3, a004374 (2011).
-
(2011)
Cold Spring Harb. Perspect. Biol.
, vol.3
-
-
Chen, B.1
Retzlaff, M.2
Roos, T.3
Frydman, J.4
-
3
-
-
11244309014
-
From the lysosome to ubiquitin and the proteasome
-
Ciechanover, A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nature Rev. Mol. Cell Biol. 6, 79-87 (2005).
-
(2005)
Nature Rev. Mol. Cell Biol.
, vol.6
, pp. 79-87
-
-
Proteolysis, C.A.1
-
4
-
-
0032488846
-
The proteasome: Paradigm of a self-compartmentalizing protease
-
Baumeister, W., Walz, J., Zühl, F. & Seemüller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367-380 (1998).
-
(1998)
Cell
, vol.92
, pp. 367-380
-
-
Baumeister, W.1
Walz, J.2
Zühl, F.3
Seemüller, E.4
-
5
-
-
0029042511
-
Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution
-
Löwe, J. et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268, 533-539 (1995).
-
(1995)
Science
, vol.268
, pp. 533-539
-
-
Löwe, J.1
-
6
-
-
0030897031
-
Structure of 20S proteasome from yeast at 2.4 Å resolution
-
Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463-471 (1997).
-
(1997)
Nature
, vol.386
, pp. 463-471
-
-
Groll, M.1
-
7
-
-
0029060166
-
Proteasome from Thermoplasma acidophilum: A threonine protease
-
Seemüller, E. et al. Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268, 579-582 (1995).
-
(1995)
Science
, vol.268
, pp. 579-582
-
-
Seemüller, E.1
-
8
-
-
0030702085
-
The exosome: A conserved eukaryotic RNA processing complex containing multiple 3′?>5′ exoribonucleases
-
Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M. & Tollervey, D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′?>5′ exoribonucleases. Cell 91, 457-466 (1997).
-
(1997)
Cell
, vol.91
, pp. 457-466
-
-
Mitchell, P.1
Petfalski, E.2
Shevchenko, A.3
Mann, M.4
Tollervey, D.5
-
9
-
-
0032727868
-
The exosome: A proteasome for RNA?
-
Van Hoof, A. & Parker, R. The exosome: a proteasome for RNA? Cell 99, 347-350 (1999).
-
(1999)
Cell
, vol.99
, pp. 347-350
-
-
Van Hoof, A.1
Parker, R.2
-
11
-
-
79960696302
-
Functions of the cytoplasmic exosome
-
Schaeffer, D., Clark, A., Klauer, A. A., Tsanova, B. & Van Hoof, A. Functions of the cytoplasmic exosome. Adv. Exp. Med. Biol. 702, 79-90 (2011).
-
(2011)
Adv. Exp. Med. Biol.
, vol.702
, pp. 79-90
-
-
Schaeffer, D.1
Clark, A.2
Klauer, A.A.3
Tsanova, B.4
Van Hoof, A.5
-
12
-
-
22144493835
-
The archaeal exosome core is a hexameric ring structure with three catalytic subunits
-
Lorentzen, E. et al. The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nature Struct. Mol. Biol. 12, 575-581 (2005).
-
(2005)
Nature Struct. Mol. Biol.
, vol.12
, pp. 575-581
-
-
Lorentzen, E.1
-
13
-
-
27644435644
-
Structural framework for the mechanism of archaeal exosomes in RNA processing
-
Büttner, K., Wenig, K. & Hopfner, K.-P. Structural framework for the mechanism of archaeal exosomes in RNA processing. Mol. Cell 20, 461-471 (2005).
-
(2005)
Mol. Cell
, vol.20
, pp. 461-471
-
-
Büttner, K.1
Wenig, K.2
Hopfner, K.-P.3
-
14
-
-
27644496002
-
Structural basis of 3′ end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core
-
Lorentzen, E. & Conti, E. Structural basis of 3′ end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core. Mol. Cell 20, 473-481 (2005).
-
(2005)
Mol. Cell
, vol.20
, pp. 473-481
-
-
Lorentzen, E.1
Conti, E.2
-
15
-
-
33646523370
-
The exosome and the proteasome: Nano-compartments for degradation
-
Lorentzen, E. & Conti, E. The exosome and the proteasome: nano-compartments for degradation. Cell 125, 651-654 (2006).
-
(2006)
Cell
, vol.125
, pp. 651-654
-
-
Lorentzen, E.1
Conti, E.2
-
16
-
-
33748510412
-
The exosome: A macromolecular cage for controlled RNA degradation
-
Büttner, K., Wenig, K. & Hopfner, K.-P. The exosome: a macromolecular cage for controlled RNA degradation. Mol. Microbiol. 61, 1372-1379 (2006).
-
(2006)
Mol. Microbiol.
, vol.61
, pp. 1372-1379
-
-
Büttner, K.1
Wenig, K.2
Hopfner, K.-P.3
-
17
-
-
33845407784
-
Reconstitution activities, and structure of the eukaryotic RNA exosome
-
Liu, Q., Greimann, J. C. & Lima, C. D. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127, 1223-1237 (2006).
-
(2006)
Cell
, vol.127
, pp. 1223-1237
-
-
Liu, Q.1
Greimann, J.C.2
Lima, C.D.3
-
18
-
-
33846068920
-
A single subunit, Dis3, is essentially responsible for yeast exosome core activity
-
Dziembowski, A., Lorentzen, E., Conti, E. & Séraphin, B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nature Struct. Mol. Biol. 14, 15-22 (2007).
-
(2007)
Nature Struct. Mol. Biol.
, vol.14
, pp. 15-22
-
-
Dziembowski, A.1
Lorentzen, E.2
Conti, E.3
Séraphin, B.4
-
19
-
-
70350336247
-
The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation
-
Bonneau, F., Basquin, J., Ebert, J., Lorentzen, E. & Conti, E. The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 139, 547-559 (2009).
-
(2009)
Cell
, vol.139
, pp. 547-559
-
-
Bonneau, F.1
Basquin, J.2
Ebert, J.3
Lorentzen, E.4
Conti, E.5
-
20
-
-
78649469070
-
RNA channelling by the eukaryotic exosome
-
Malet, H. et al. RNA channelling by the eukaryotic exosome. EMBO Rep. 11, 936-942 (2010).
-
(2010)
EMBO Rep.
, vol.11
, pp. 936-942
-
-
Malet, H.1
-
21
-
-
84867395423
-
Exo-and endoribonucleolytic activities of yeast cytoplasmic and nuclear RNA exosomes are dependent on the noncatalytic core and central channel
-
Wasmuth, E. V. & Lima, C. D. Exo- and endoribonucleolytic activities of yeast cytoplasmic and nuclear RNA exosomes are dependent on the noncatalytic core and central channel. Mol. Cell 48, 133-144 (2012).
-
(2012)
Mol. Cell
, vol.48
, pp. 133-144
-
-
Wasmuth, E.V.1
Lima, C.D.2
-
22
-
-
84874742223
-
Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex
-
Makino, D. L., Baumgärtner, M. & Conti, E. Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 495, 70-75 (2013).
-
(2013)
Nature
, vol.495
, pp. 70-75
-
-
Makino, D.L.1
Baumgärtner, M.2
Conti, E.3
-
23
-
-
84866269021
-
Near-atomic resolution structural model of the yeast 26S proteasome
-
Beck, F. et al. Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl Acad. Sci. USA 109, 14870-14875 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 14870-14875
-
-
Beck, F.1
-
24
-
-
84857134729
-
Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
-
Lasker, K. et al. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc. Natl Acad. Sci. USA 109, 1380-1387 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 1380-1387
-
-
Lasker, K.1
-
25
-
-
84856976866
-
Complete subunit architecture of the proteasome regulatory particle
-
Lander, G. C. et al. Complete subunit architecture of the proteasome regulatory particle. Nature 482, 186-191 (2012).
-
(2012)
Nature
, vol.482
, pp. 186-191
-
-
Lander, G.C.1
-
26
-
-
84876916040
-
Structural biology of the proteasome
-
Kish-Trier, E. & Hill, C. P. Structural biology of the proteasome. Annu. Rev. Biophys. 42, 29-49 (2013).
-
(2013)
Annu. Rev. Biophys.
, vol.42
, pp. 29-49
-
-
Kish-Trier, E.1
Hill, C.P.2
-
27
-
-
33646910002
-
20S proteasomes have the potential to keep substrates in store for continual degradation
-
Sharon, M. et al. 20S proteasomes have the potential to keep substrates in store for continual degradation. J. Biol. Chem. 281, 9569-9575 (2006).
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 9569-9575
-
-
Sharon, M.1
-
28
-
-
0032476030
-
Contribution of proteasomal β-subunits to the cleavage of peptide substrates analyzed with yeast mutants
-
Dick, T. P. et al. Contribution of proteasomal β-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J. Biol. Chem. 273, 25637-25646 (1998).
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 25637-25646
-
-
Dick, T.P.1
-
29
-
-
36749085158
-
Architecture of the yeast Rrp44 exosome complex suggests routes of RNA recruitment for 3′ end processing
-
Wang, H.-W. et al. Architecture of the yeast Rrp44 exosome complex suggests routes of RNA recruitment for 3′ end processing. Proc. Natl Acad. Sci. USA 104, 16844-16849 (2007).
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 16844-16849
-
-
Wang, H.-W.1
-
30
-
-
0034693061
-
Poly(A) tail-dependent exonuclease AtRrp41p from Arabidopsis thaliana rescues 5.8 S rRNA processing and mRNA decay defects of the yeast ski6 mutant and is found in an exosome-sized complex in plant and yeast cells
-
Chekanova, J. A., Shaw, R. J., Wills, M. A. & Belostotsky, D. A. Poly(A) tail-dependent exonuclease AtRrp41p from Arabidopsis thaliana rescues 5.8 S rRNA processing and mRNA decay defects of the yeast ski6 mutant and is found in an exosome-sized complex in plant and yeast cells. J. Biol. Chem. 275, 33158-33166 (2000).
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 33158-33166
-
-
Chekanova, J.A.1
Shaw, R.J.2
Wills, M.A.3
Belostotsky, D.A.4
-
31
-
-
0034934778
-
Polynucleotide phosphorylase functions as both an exonuclease and a poly(A) polymerase in spinach chloroplasts
-
Yehudai-Resheff, S., Hirsh, M. & Schuster, G. Polynucleotide phosphorylase functions as both an exonuclease and a poly(A) polymerase in spinach chloroplasts. Mol. Cell. Biol. 21, 5408-5416 (2001).
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 5408-5416
-
-
Yehudai-Resheff, S.1
Hirsh, M.2
Schuster, G.3
-
32
-
-
41549120528
-
Polynucleotide phosphorylase and the archaeal exosome as poly(A)-polymerases
-
Slomovic, S., Portnoy, V., Yehudai-Resheff, S., Bronshtein, E. & Schuster, G. Polynucleotide phosphorylase and the archaeal exosome as poly(A)- polymerases. Biochim. Biophys. Acta 1779, 247-255 (2008).
-
(2008)
Biochim. Biophys. Acta
, vol.1779
, pp. 247-255
-
-
Slomovic, S.1
Portnoy, V.2
Yehudai-Resheff, S.3
Bronshtein, E.4
Schuster, G.5
-
33
-
-
33846081676
-
Wrong PH for RNA degradation
-
Wahle, E. Wrong PH for RNA degradation. Nature Struct. Mol. Biol. 14, 5-7 (2007).
-
(2007)
Nature Struct. Mol. Biol.
, vol.14
, pp. 5-7
-
-
Wahle, E.1
-
34
-
-
65249098267
-
Catalytic mechanism and assembly of the proteasome
-
Marques, A. J., Palanimurugan, R., Matias, A. C., Ramos, P. C. & Dohmen, R. J. Catalytic mechanism and assembly of the proteasome. Chem. Rev. 109, 1509-1536 (2009).
-
(2009)
Chem. Rev.
, vol.109
, pp. 1509-1536
-
-
Marques, A.J.1
Palanimurugan, R.2
Matias, A.C.3
Ramos, P.C.4
Dohmen, R.J.5
-
35
-
-
0033197542
-
Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown
-
Kisselev, A. F., Akopian, T. N., Castillo, V. & Goldberg, A. L. Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown. Mol. Cell 4, 395-402 (1999).
-
(1999)
Mol. Cell
, vol.4
, pp. 395-402
-
-
Kisselev, A.F.1
Akopian, T.N.2
Castillo, V.3
Goldberg, A.L.4
-
36
-
-
0141704418
-
The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites
-
Kisselev, A. F. et al. The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites. J. Biol. Chem. 278, 35869-35877 (2003).
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 35869-35877
-
-
Kisselev, A.F.1
-
37
-
-
0033525086
-
The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation
-
Kisselev, A. F., Akopian, T. N., Woo, K. M. & Goldberg, A. L. The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J. Biol. Chem. 274, 3363-3371 (1999).
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 3363-3371
-
-
Kisselev, A.F.1
Akopian, T.N.2
Woo, K.M.3
Goldberg, A.L.4
-
38
-
-
0020528142
-
Peptide intermediates in the degradation of cellular proteins. Bestatin permits their accumulation in mouse liver in vivo
-
Botbol, V. & Scornik, O. A. Peptide intermediates in the degradation of cellular proteins. Bestatin permits their accumulation in mouse liver in vivo. J. Biol. Chem. 258, 1942-1949 (1983).
-
(1983)
J. Biol. Chem.
, vol.258
, pp. 1942-1949
-
-
Botbol, V.1
Scornik, O.A.2
-
39
-
-
0026764311
-
Proteolysis proteasomes and antigen presentation
-
Goldberg, A. L. & Rock, K. L. Proteolysis, proteasomes and antigen presentation. Nature 357, 375-379 (1992).
-
(1992)
Nature
, vol.357
, pp. 375-379
-
-
Goldberg, A.L.1
Rock, K.L.2
-
40
-
-
0029920469
-
Antigen processing and presentation by the class i major histocompatibility complex
-
York, I. A. & Rock, K. L. Antigen processing and presentation by the class I major histocompatibility complex. Annu. Rev. Immunol. 14, 369-396 (1996).
-
(1996)
Annu. Rev. Immunol.
, vol.14
, pp. 369-396
-
-
York, I.A.1
Rock, K.L.2
-
41
-
-
0028985984
-
MHC ligands and peptide motifs: First listing
-
Rammensee, H. G., Friede, T. & Stevanović, S. MHC ligands and peptide motifs: first listing. Immunogenetics 41, 178-228 (1995).
-
(1995)
Immunogenetics
, vol.41
, pp. 178-228
-
-
Rammensee, H.G.1
Friede, T.2
Stevanović, S.3
-
42
-
-
0027980321
-
The ubiquitin-proteasome pathway is required for processing the NF-κ B1 precursor protein and the activation of NF-κB
-
Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-κ B1 precursor protein and the activation of NF-κB. Cell 78, 773-785 (1994).
-
(1994)
Cell
, vol.78
, pp. 773-785
-
-
Palombella, V.J.1
Rando, O.J.2
Goldberg, A.L.3
Maniatis, T.4
-
43
-
-
0034268493
-
Activation of a membrane-bound transcription factor by regulated ubiquitin/ proteasome-dependent processing
-
Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/ proteasome-dependent processing. Cell 102, 577-586 (2000).
-
(2000)
Cell
, vol.102
, pp. 577-586
-
-
Hoppe, T.1
-
44
-
-
0033591451
-
An N-terminal region of Sp1 targets its proteasome-dependent degradation in vitro
-
Su, K. et al. An N-terminal region of Sp1 targets its proteasome-dependent degradation in vitro. J. Biol. Chem. 274, 15194-15202 (1999).
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 15194-15202
-
-
Su, K.1
-
45
-
-
28544434064
-
A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-κB
-
Tian, L., Holmgren, R. A. & Matouschek, A. A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-κB. Nature Struct. Mol. Biol. 12, 1045-1053 (2005).
-
(2005)
Nature Struct. Mol. Biol.
, vol.12
, pp. 1045-1053
-
-
Tian, L.1
Holmgren, R.A.2
Matouschek, A.3
-
46
-
-
0010586475
-
The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair
-
Russell, S. J., Reed, S. H., Huang, W., Friedberg, E. C. & Johnston, S. A. The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol. Cell 3, 687-695 (1999).
-
(1999)
Mol. Cell
, vol.3
, pp. 687-695
-
-
Russell, S.J.1
Reed, S.H.2
Huang, W.3
Friedberg, E.C.4
Johnston, S.A.5
-
47
-
-
1242271997
-
Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3
-
Ezhkova, E. & Tansey, W. P. Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Mol. Cell 13, 435-442 (2004).
-
(2004)
Mol. Cell
, vol.13
, pp. 435-442
-
-
Ezhkova, E.1
Tansey, W.P.2
-
48
-
-
27544486193
-
The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators
-
Lee, D. et al. The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators. Cell 123, 423-436 (2005).
-
(2005)
Cell
, vol.123
, pp. 423-436
-
-
Lee, D.1
-
49
-
-
0037159223
-
A nonproteolytic function of the 19S regulatory subunit of the 26S proteasome is required for efficient activated transcription by human RNA polymerase II
-
Ferdous, A., Kodadek, T. & Johnston, S. A. A nonproteolytic function of the 19S regulatory subunit of the 26S proteasome is required for efficient activated transcription by human RNA polymerase II. Biochemistry 41, 12798-12805 (2002).
-
(2002)
Biochemistry
, vol.41
, pp. 12798-12805
-
-
Ferdous, A.1
Kodadek, T.2
Johnston, S.A.3
-
50
-
-
57749189164
-
Endonucleolytic RNA cleavage by a eukaryotic exosome
-
Lebreton, A., Tomecki, R., Dziembowski, A. & Séraphin, B. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456, 993-996 (2008).
-
(2008)
Nature
, vol.456
, pp. 993-996
-
-
Lebreton, A.1
Tomecki, R.2
Dziembowski, A.3
Séraphin, B.4
-
51
-
-
58149236691
-
The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities
-
Schaeffer, D. et al. The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nature Struct. Mol. Biol. 16, 56-62 (2009).
-
(2009)
Nature Struct. Mol. Biol.
, vol.16
, pp. 56-62
-
-
Schaeffer, D.1
-
52
-
-
62049085366
-
The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome
-
Schneider, C., Leung, E., Brown, J. & Tollervey, D. The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res. 37, 1127-1140 (2009).
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 1127-1140
-
-
Schneider, C.1
Leung, E.2
Brown, J.3
Tollervey, D.4
-
53
-
-
0032557455
-
Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3′ end formation
-
Briggs, M. W., Burkard, K. T. & Butler, J. S. Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3′ end formation. J. Biol. Chem. 273, 13255-13263 (1998).
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 13255-13263
-
-
Briggs, M.W.1
Burkard, K.T.2
Butler, J.S.3
-
54
-
-
0033567131
-
The yeast exosome and human PM-Scl are related complexes of 3′ ->5′ exonucleases
-
Allmang, C. et al. The yeast exosome and human PM-Scl are related complexes of 3′ ->5′ exonucleases. Genes Dev. 13, 2148-2158 (1999).
-
(1999)
Genes Dev.
, vol.13
, pp. 2148-2158
-
-
Allmang, C.1
-
55
-
-
0141669145
-
Rrp47p is an exosome-associated protein required for the 3′ processing of stable RNAs
-
Mitchell, P. et al. Rrp47p is an exosome-associated protein required for the 3′ processing of stable RNAs. Mol. Cell. Biol. 23, 6982-6992 (2003).
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 6982-6992
-
-
Mitchell, P.1
-
56
-
-
34548712987
-
The PMC2NT domain of the catalytic exosome subunit Rrp6p provides the interface for binding with its cofactor Rrp47p, a nucleic acid-binding protein
-
Stead, J. A., Costello, J. L., Livingstone, M. J. & Mitchell, P. The PMC2NT domain of the catalytic exosome subunit Rrp6p provides the interface for binding with its cofactor Rrp47p, a nucleic acid-binding protein. Nucleic Acids Res. 35, 5556-5567 (2007).
-
(2007)
Nucleic Acids Res.
, vol.35
, pp. 5556-5567
-
-
Stead, J.A.1
Costello, J.L.2
Livingstone, M.J.3
Mitchell, P.4
-
57
-
-
34250339672
-
C1D and hMtr4p associate with the human exosome subunit PM/Scl-100 and are involved in pre-rRNA processing
-
Schilders, G., van Dijk, E. & Pruijn, G. J. M. C1D and hMtr4p associate with the human exosome subunit PM/Scl-100 and are involved in pre-rRNA processing. Nucleic Acids Res. 35, 2564-2572 (2007).
-
(2007)
Nucleic Acids Res.
, vol.35
, pp. 2564-2572
-
-
Schilders, G.1
Van Dijk, E.2
Pruijn, G.J.M.3
-
58
-
-
0033214175
-
Functions of the exosome in rRNA, snoRNA and snRNA synthesis
-
Allmang, C. et al. Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J. 18, 5399-5410 (1999).
-
(1999)
EMBO J.
, vol.18
, pp. 5399-5410
-
-
Allmang, C.1
-
59
-
-
79551681406
-
The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates
-
Basu, U. et al. The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell 144, 353-363 (2011).
-
(2011)
Cell
, vol.144
, pp. 353-363
-
-
Basu, U.1
-
60
-
-
84870393391
-
The direction of protein entry into the proteasome determines the variety of products and depends on the force needed to unfold its two termini
-
Berko, D. et al. The direction of protein entry into the proteasome determines the variety of products and depends on the force needed to unfold its two termini. Mol. Cell 48, 601-611 (2012).
-
(2012)
Mol. Cell
, vol.48
, pp. 601-611
-
-
Berko, D.1
-
61
-
-
40849106786
-
Structure of the active subunit of the yeast exosome core, Rrp44: Diverse modes of substrate recruitment in the RNase II nuclease family
-
Lorentzen, E., Basquin, J., Tomecki, R., Dziembowski, A. & Conti, E. Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family. Mol. Cell 29, 717-728 (2008).
-
(2008)
Mol. Cell
, vol.29
, pp. 717-728
-
-
Lorentzen, E.1
Basquin, J.2
Tomecki, R.3
Dziembowski, A.4
Conti, E.5
-
62
-
-
57149094672
-
Evidence for core exosome independent function of the nuclear exoribonuclease Rrp6p
-
Callahan, K. P. & Butler, J. S. Evidence for core exosome independent function of the nuclear exoribonuclease Rrp6p. Nucleic Acids Res. 36, 6645-6655 (2008).
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 6645-6655
-
-
Callahan, K.P.1
Butler, J.S.2
-
64
-
-
0043192299
-
The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation
-
Förster, A., Whitby, F. G. & Hill, C. P. The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation. EMBO J. 22, 4356-4364 (2003).
-
(2003)
EMBO J.
, vol.22
, pp. 4356-4364
-
-
Förster, A.1
Whitby, F.G.2
Hill, C.P.3
-
65
-
-
34548274872
-
Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry
-
Smith, D. M. et al. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol. Cell 27, 731-744 (2007).
-
(2007)
Mol. Cell
, vol.27
, pp. 731-744
-
-
Smith, D.M.1
-
66
-
-
0031456970
-
Structure of the proteasome activator REGalpha (PA28alpha)
-
Knowlton, J. R. et al. Structure of the proteasome activator REGalpha (PA28alpha). Nature 390, 639-643 (1997).
-
(1997)
Nature
, vol.390
, pp. 639-643
-
-
Knowlton, J.R.1
-
67
-
-
0034597824
-
Structural basis for the activation of 20S proteasomes by 11S regulators
-
Whitby, F. G. et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408, 115-120 (2000).
-
(2000)
Nature
, vol.408
, pp. 115-120
-
-
Whitby, F.G.1
-
68
-
-
19444387760
-
The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome- PAN/PA700 interactions
-
Förster, A., Masters, E. I., Whitby, F. G., Robinson, H. & Hill, C. P. The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome- PAN/PA700 interactions. Mol. Cell 18, 589-599 (2005).
-
(2005)
Mol. Cell
, vol.18
, pp. 589-599
-
-
Förster, A.1
Masters, E.I.2
Whitby, F.G.3
Robinson, H.4
Hill, C.P.5
-
69
-
-
77649243592
-
Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening
-
Sadre-Bazzaz, K., Whitby, F. G., Robinson, H., Formosa, T. & Hill, C. P. Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol. Cell 37, 728-735 (2010).
-
(2010)
Mol. Cell
, vol.37
, pp. 728-735
-
-
Sadre-Bazzaz, K.1
Whitby, F.G.2
Robinson, H.3
Formosa, T.4
Hill, C.P.5
-
70
-
-
0037449572
-
Endoproteolytic activity of the proteasome
-
Liu, C.-W., Corboy, M. J., Demartino, G. N. & Thomas, P. J. Endoproteolytic activity of the proteasome. Science 299, 408-411 (2003).
-
(2003)
Science
, vol.299
, pp. 408-411
-
-
Liu, C.-W.1
Corboy, M.J.2
Demartino, G.N.3
Thomas, P.J.4
-
71
-
-
0034118002
-
The yeast antiviral proteins Ski2p, Ski3p, and Ski8p exist as a complex in vivo
-
Brown, J. T., Bai, X. & Johnson, A. W. The yeast antiviral proteins Ski2p, Ski3p, and Ski8p exist as a complex in vivo. RNA 6, 449-457 (2000).
-
(2000)
RNA
, vol.6
, pp. 449-457
-
-
Brown, J.T.1
Bai, X.2
Johnson, A.W.3
-
72
-
-
0035801392
-
Ski7p G protein interacts with the exosome and the Ski complex for 3′-to-5′ mRNA decay in yeast
-
Araki, Y. et al. Ski7p G protein interacts with the exosome and the Ski complex for 3′-to-5′ mRNA decay in yeast. EMBO J. 20, 4684-4693 (2001).
-
(2001)
EMBO J.
, vol.20
, pp. 4684-4693
-
-
Araki, Y.1
-
73
-
-
20444368818
-
RNA degradation by the exosome is promoted by a nuclear polyadenylation complex
-
Lacava, J. et al. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121, 713-724 (2005).
-
(2005)
Cell
, vol.121
, pp. 713-724
-
-
Lacava, J.1
-
74
-
-
20444368036
-
Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase
-
Wyers, F. et al. Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121, 725-737 (2005).
-
(2005)
Cell
, vol.121
, pp. 725-737
-
-
Wyers, F.1
-
75
-
-
22744459614
-
A new yeast poly(A) polymerase complex involved in RNA quality control
-
Vaňáčová, S. et al. A new yeast poly(A) polymerase complex involved in RNA quality control. Plos Biol. 3, e189 (2005).
-
(2005)
Plos Biol.
, vol.3
-
-
Vaňáčová, S.1
-
76
-
-
84882796823
-
The yeast Ski complex: Crystal structure and RNA channeling to the exosome complex
-
Halbach, F., Reichelt, P., Rode, M. & Conti, E. The yeast Ski complex: crystal structure and RNA channeling to the exosome complex. Cell 154, 814-826 (2013).
-
(2013)
Cell
, vol.154
, pp. 814-826
-
-
Halbach, F.1
Reichelt, P.2
Rode, M.3
Conti, E.4
-
77
-
-
0037155584
-
Exosome-mediated recognition and degradation of mRNAs lacking a termination codon
-
Van Hoof, A., Frischmeyer, P. A., Dietz, H. C. & Parker, R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295, 2262-2264 (2002).
-
(2002)
Science
, vol.295
, pp. 2262-2264
-
-
Van Hoof, A.1
Frischmeyer, P.A.2
Dietz, H.C.3
Parker, R.4
-
78
-
-
60149090021
-
The many pathways of RNA degradation
-
Houseley, J. & Tollervey, D. The many pathways of RNA degradation. Cell 136, 763-776 (2009).
-
(2009)
Cell
, vol.136
, pp. 763-776
-
-
Houseley, J.1
Tollervey, D.2
-
79
-
-
79955587252
-
The nuclear RNA polymerase II surveillance system targets polymerase III transcripts
-
Wlotzka, W., Kudla, G., Granneman, S. & Tollervey, D. The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. EMBO J. 30, 1790-1803 (2011).
-
(2011)
EMBO J.
, vol.30
, pp. 1790-1803
-
-
Wlotzka, W.1
Kudla, G.2
Granneman, S.3
Tollervey, D.4
-
80
-
-
29244475356
-
MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation
-
Schilders, G., Raijmakers, R., Raats, J. M. H. & Pruijn, G. J. M. MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation. Nucleic Acids Res. 33, 6795-6804 (2005).
-
(2005)
Nucleic Acids Res.
, vol.33
, pp. 6795-6804
-
-
Schilders, G.1
Raijmakers, R.2
Raats, J.M.H.3
Pruijn, G.J.M.4
-
81
-
-
84876412543
-
Allosteric effects in the regulation of 26S proteasome activities
-
Sledź, P., Förster, F. & Baumeister, W. Allosteric effects in the regulation of 26S proteasome activities. J. Mol. Biol. 425, 1415-1423 (2013).
-
(2013)
J. Mol. Biol.
, vol.425
, pp. 1415-1423
-
-
Sledź, P.1
Förster, F.2
Baumeister, W.3
-
82
-
-
84869082850
-
Transcriptome-wide analysis of exosome targets
-
Schneider, C., Kudla, G., Wlotzka, W., Tuck, A. & Tollervey, D. Transcriptome-wide analysis of exosome targets. Mol. Cell 48, 422-433 (2012).
-
(2012)
Mol. Cell
, vol.48
, pp. 422-433
-
-
Schneider, C.1
Kudla, G.2
Wlotzka, W.3
Tuck, A.4
Tollervey, D.5
-
83
-
-
77955842254
-
Genome-wide approaches to systematically identify substrates of the ubiquitin-proteasome pathway
-
Liu, C., Choe, V. & Rao, H. Genome-wide approaches to systematically identify substrates of the ubiquitin-proteasome pathway. Trends Biotechnol. 28, 461-467 (2010).
-
(2010)
Trends Biotechnol.
, vol.28
, pp. 461-467
-
-
Liu, C.1
Choe, V.2
Rao, H.3
-
84
-
-
79956366646
-
Proteasome inhibitors in cancer therapy
-
Crawford, L. J., Walker, B. & Irvine, A. E. Proteasome inhibitors in cancer therapy. J. Cell Commun. Signal 5, 101-110 (2011).
-
(2011)
J. Cell Commun. Signal
, vol.5
, pp. 101-110
-
-
Crawford, L.J.1
Walker, B.2
Irvine, A.E.3
-
85
-
-
84856373151
-
Proteasome inhibitors: An expanding army attacking a unique target
-
Kisselev, A. F., van der Linden, W. A. & Overkleeft, H. S. Proteasome inhibitors: an expanding army attacking a unique target. Chem. Biol. 19, 99-115 (2012).
-
(2012)
Chem. Biol.
, vol.19
, pp. 99-115
-
-
Kisselev, A.F.1
Van Der Linden, W.A.2
Overkleeft, H.S.3
-
86
-
-
0035853037
-
RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: A negative feedback circuit
-
Xie, Y. & Varshavsky, A. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc. Natl Acad. Sci. USA 98, 3056-3061 (2001).
-
(2001)
Proc. Natl Acad. Sci. USA
, vol.98
, pp. 3056-3061
-
-
Xie, Y.1
Varshavsky, A.2
-
87
-
-
58849093135
-
Molecular mechanisms of proteasome assembly
-
Murata, S., Yashiroda, H. & Tanaka, K. Molecular mechanisms of proteasome assembly. Nature Rev. Mol. Cell Biol. 10, 104-115 (2009).
-
(2009)
Nature Rev. Mol. Cell Biol.
, vol.10
, pp. 104-115
-
-
Murata, S.1
Yashiroda, H.2
Tanaka, K.3
-
88
-
-
84875666140
-
The proteasome: From basic mechanisms to emerging roles
-
Tanaka, K. The proteasome: from basic mechanisms to emerging roles. Keio J. Med. 62, 1-12 (2013).
-
(2013)
Keio J. Med.
, vol.62
, pp. 1-12
-
-
Tanaka, K.1
-
89
-
-
84855261941
-
Widespread cotranslational formation of protein complexes
-
Duncan, C. D. S. & Mata, J. Widespread cotranslational formation of protein complexes. PLoS Genet. 7, e1002398 (2011).
-
(2011)
PLoS Genet.
, vol.7
-
-
Duncan, C.D.S.1
Mata, J.2
-
90
-
-
0142215475
-
Global analysis of protein expression in yeast
-
Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737-741 (2003).
-
(2003)
Nature
, vol.425
, pp. 737-741
-
-
Ghaemmaghami, S.1
-
91
-
-
0020674228
-
Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex
-
Wilk, S. & Orlowski, M. Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. J. Neurochem. 40, 842-849 (1983).
-
(1983)
J. Neurochem.
, vol.40
, pp. 842-849
-
-
Wilk, S.1
Orlowski, M.2
-
93
-
-
0242522904
-
Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly
-
Fehlker, M., Wendler, P., Lehmann, A. & Enenkel, C. Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly. EMBO Rep. 4, 959-963 (2003).
-
(2003)
EMBO Rep.
, vol.4
, pp. 959-963
-
-
Fehlker, M.1
Wendler, P.2
Lehmann, A.3
Enenkel, C.4
-
94
-
-
0026669739
-
Purification, and characterization of a protein activator (PA28) of the 20 S proteasome (macropain)
-
Ma, C. P., Slaughter, C. A. & DeMartino, G. N. Identification, purification, and characterization of a protein activator (PA28) of the 20 S proteasome (macropain). J. Biol. Chem. 267, 10515-10523 (1992).
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 10515-10523
-
-
Ma, C.P.1
Slaughter, C.A.2
Identification, N.D.G.3
-
95
-
-
0026498493
-
Purification of an 11 S regulator of the multicatalytic protease
-
Dubiel, W., Pratt, G., Ferrell, K. & Rechsteiner, M. Purification of an 11 S regulator of the multicatalytic protease. J. Biol. Chem. 267, 22369-22377 (1992).
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 22369-22377
-
-
Dubiel, W.1
Pratt, G.2
Ferrell, K.3
Rechsteiner, M.4
-
96
-
-
0033607805
-
Structural and functional characterizations of the proteasome-activating protein PA26 from
-
Yao, Y. et al. Structural and functional characterizations of the proteasome-activating protein PA26 from Trypanosoma brucei. J. Biol. Chem. 274, 33921-33930 (1999).
-
(1999)
Trypanosoma Brucei. J. Biol. Chem.
, vol.274
, pp. 33921-33930
-
-
Yao, Y.1
-
97
-
-
0036646488
-
PA200, a nuclear proteasome activator involved in DNA repair
-
Ustrell, V., Hoffman, L., Pratt, G. & Rechsteiner, M. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J. 21, 3516-3525 (2002).
-
(2002)
EMBO J.
, vol.21
, pp. 3516-3525
-
-
Ustrell, V.1
Hoffman, L.2
Pratt, G.3
Rechsteiner, M.4
-
98
-
-
0034652143
-
Subcellular localization of proteasomes and their regulatory complexes in mammalian cells
-
Brooks, P. et al. Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochem. J. 346 Pt. 1, 155-161 (2000).
-
(2000)
Biochem. J.
, vol.346
, Issue.PART 1
, pp. 155-161
-
-
Brooks, P.1
|